Logic Synthesis and Verification

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Fall 2014

1

Two-Level Logic Minimization (1/2)

Reading:

Logic Synthesis in a Nutshell

Section 3 (§3.1-§3.2)

most of the following slides are by courtesy of Andreas Kuehlmann

Quine-McCluskey Procedure

Given G and D (covers for $\mathfrak{T} = (f,d,r)$ and d, respectively), find a minimum cover G^* of primes where:

$$f \subseteq G^* \subseteq f+d$$
 (G* is a prime cover of \mathfrak{I})

- Q-M Procedure:
 - 1. Generate all primes of \Im , $\{P_j\}$ (i.e. primes of (f+d) = G+D)
 - 2. Generate all minterms $\{m_i\}$ of $f = G \land \neg D$
 - 3. Build Boolean matrix B where

$$B_{ij} = 1 \text{ if } m_i \in P_j$$

= 0 otherwise

4. Solve the minimum column covering problem for B (unate covering problem)

3

Complexity

 \square ~2ⁿ minterms; ~3ⁿ/n primes

There are O(2ⁿ) rows and Ω(3ⁿ/n) columns. Moreover, minimum covering problem is NP-complete. (Hence the complexity can probably be double exponential in size of input, i.e. difficulty is O(2^{3ⁿ}))

Two-Level Logic Minimization

Covering Table

■ Definition. An essential prime is a prime that covers an onset minterm of f not covered by any other primes.

6

Covering Table Row Equality

■ Row equality:

- In practice, many rows in a covering table are identical. That is, there exist minterms that are contained in the same set of primes.
- Example

m₁ 0101101m₂ 0101101

7

Covering Table Row and Column Dominance

■ Row dominance:

- A row i₁ whose set of primes is contained in the set of primes of row i₂ is said to dominate i₂.
- Example

i₁ 011010 i₂ 011110

- □ i₁ dominates i₂
- □ Can remove row i₂ because have to choose a prime to cover i₁, and any such prime also covers i₂. So i₂ is automatically covered.

Covering Table Row and Column Dominance

□ Column dominance:

■ A *column* j₁ whose rows are a superset of another *column* j₂ is said to dominate j₂.

Example	j₁	\mathbf{j}_2
•	1	0
	0	0
	1	1
	0	0
	1	1

- $\Box j_1$ dominates j_2
- We can remove column j_2 since j_1 covers all those rows and more. We would never choose j_2 in a minimum cover since it can always be replaced by j_1 .

9

Covering Table Table Reduction

- 1. Remove all rows covered by essential primes (columns in row singletons). Put these primes in the cover G.
- 2. Group identical rows together and remove dominated rows.
- 3. Remove dominated columns. For equal columns, keep one prime to represent them.
- Newly formed row singletons define induced essential primes.
- 5. Go to 1 if covering table decreased.
- The resulting reduced covering table is called the cyclic core. This has to be solved (unate covering problem). A minimum solution is added to G. The resulting G is a minimum cover.

Covering Table Table Reduction

Solving Cyclic Core

- Best known method (for unate covering) is branch and bound with some clever bounding heuristics
- Independent Set Heuristic:
 - Find a maximum set I of "independent" rows. Two rows B_{i_1} , B_{i_2} are independent if **not** $\exists j$ such that $B_{i_1j} = B_{i_2j} = 1$. (They have no column in common.)
 - ExampleA covering matrix B rearranged with independent sets first

Independent set § of rows

Solving Cyclic Core

Lemma:

|Solution of Covering| $\geq |\mathcal{I}|$

m₁ must be covered by one of the three columns

13

Solving Cyclic Core

- Heuristic algorithm:
 - Let 𝓕 = { I₁, I₂, ..., Ik} be the independent set of rows
- 1. choose $j \in I_i$ such that column j covers the most rows of A. Put Pj in G
- 2. eliminate all rows covered by column j
- 3. $\mathscr{G} \leftarrow \mathscr{G} \setminus \{I_i\}$
- 4. go to 1 if $| \mathcal{I} | > 0$
- If B is empty, then done (in this case achieve minimum solution because of the lower bound of previous lemma attained - IMPORTANT)
- 6. If B is not empty, choose an independent set of B and go to 1

1 11 1111 1 1 1	0
A	С

Prime Generation for Single-Output Function

Tabular method

(based on *consensus* operation, or \forall):

- Start with minterm canonical form of F
- Group pairs of adjacent minterms into cubes
- Repeat merging cubes until no more merging possible; mark (√) + remove all covered cubes.
- □ Result: set of *primes* of *f*.

Example

$$F = x' y' + w x y + x' y z' + w y' z$$

$$F = x'y' + w x y + x' y z' + w y' z$$

w' x' y' z' √	w'x'y' √	x'y'
	w' x' z' √	x' z'
	x' y' z' 1	
w' x' y' z √	x' y' z √	
w'x'yz'	x'yz' √	
$w x' y' z' \sqrt{1}$	w x' y' √	
WXyZ	w x' z' √	
$w x' y' z \sqrt{}$	w y' z	
$w x' y z' \checkmark$	wyz'	
$w \times y z' \checkmark$	w x y	
$w \times y' \times \sqrt{}$	WXZ	
wxyz 1		

Courtesy: Maciej Ciesielski, UMASS

15

Prime Generation for Multi-Output Function

- □ Similar to single-output function, except that we should include also the primes of the products of individual functions
 - Example

x y z	$f_1 f_2$
0 - 0	0 1
0 1 1	1 1
1 – 1	1 0

Can also represent it as:

x y z	$f_1 f_2$
0 - 0	0 1
01-	0 1
-11	1 0
1 – 1	10

Prime Generation

Example

Modification from single-output case: When two adjacent implicants are merged, the output parts are intersected

There are five primes for this two-output function

- What is the min cover?

17

 $p_1 p_2 p_3 p_4 p_5$

0 0 0

18

1 0

Minimize Multi-Output Cover

1. List multiple-output primes

Example

Min cover has 3 primes:

$$F = \{ p_1, p_2, p_5 \}$$

Prime Generation Using Unate Recursive Paragidm

- Apply unate recursive paradigm with the following merge step
 - (Assume we have just generated all primes of f_{x_i} and f_{-x_i})
- □ Theorem.

p is a prime of f iff p is maximal (in terms of containment) among the set consisting of

- \blacksquare P = $x_i q$, q is a prime of f_{x_i} , $q \not\subset f_{\neg x_i}$
- P = x_i 'r, r is a prime of $f_{\neg x_i}$, $r \not\subset f_{x_i}$
- \blacksquare P = q r, q is a prime of f_{x_i} , r is a prime of $f_{\neg x_i}$

19

Prime Generation Using Unate Recursive Paradigm

Example

- Assume q = abc is a prime of f_{x_i} . Form $p = x_i abc$.
- Suppose r = ab is a prime of $f_{\neg x_i}$. Then x_i 'ab is an implicant of f.

$$f = x_i abc + x_i' ab + abc + \cdots$$

- Thus abc and x_i 'ab are implicants, so x_iabc is not prime.
- Note: abc is prime because if not, $ab \subseteq f$ (or ac, or bc) contradicting abc prime of f_{x_i} .
- Note: x_i 'ab is prime, since if not then either $ab \subseteq f$, x_i 'a $\subseteq f$, x_i 'b $\subseteq f$. The first contradicts abc prime of f_{x_i} and the second and third contradict ab prime of f_{-x_i} .

Summary

- Quine-McCluskey Method:
- 1. Generate cover of all primes $G = p_1 + p_2 + \cdots + p_{3^n/n}$
- 2. Make G irredundant (in optimum way)
 - Q-M is exact, i.e., it gives an exact minimum
- Heuristic Methods:
- 1. Generate (somehow) a cover of \Im using some of the primes $G = p_{i_1} + p_{i_2} + \dots + p_{i_k}$
- 2. Make G irredundant (maybe not optimally)
- 3. Keep best result try again (i.e. go to 1)