Logic Synthesis and
Verification I

Jie-Hong Roland Jiang
LR

/\\
Department of Electrical Engineering I\
National Taiwan University

Fall 2014

Multi-Level Logic
Minimization I

Reading:
Logic Synthesis in a Nutshell
Section 3 (§3.3)

most of the following slides are by
courtesy of Andreas Kuehlmann

2

Finite State Machine

X=(Xq, X e 1 Xp,) Y=Y 1. Y00 2Y0) Finite-State Machine F(Q,Q,,X,Y,3,1)

—_— A f— where:
, o ,. Q: Setofinternal states
S=(S1,S;.-.-.Sp) § L5 T(1S2-8n) Qg Setof initial states

X: Input alphabet

Y: Output alphabet

8 XxQ —> Q (next state function)
A XXQ—Y (output function)

General Logic Structure

OO0 Combinational
optimization
B keep latches/registers

at current positions,
keep their function

B optimize combinational
logic in between
0 Sequential
optimization
B change latch
position/function

Optimization Criteria for Synthesis

O The optimization criteria for multi-level logic is to

minimize some function of:

1.
(approximated by in technology
independent optimization)

2. of the longest path through the logic

3. of the circuit, measured in terms
of the percentage of faults covered by a specified set of
test vectors for an approximate fault model (e.g. single
or multiple stuck-at faults)

4. consumed by the logic gates

5.

6.

while simultaneously satisfying upper or lower bound
constraints placed on these physical quantities

Area-Delay Trade-off

AREA
OPTIMAL AREADELAY TRADEQOFF

O Example

LARGE DESIGN —_— TRADEGFF FOR 100% TESTABIITY

>

DELAY CONSTRAINT
=T,

v

LOGIT SYNTHESIS

SMALL DESIGN A

T. DELAY

FAST DESIGN SLOW DESIGN

Two-Level (PLA) vs. Multi-Level

PLA
E.g. Standard Cell Layout

Inputs Qutputs

CL ITT TTI \‘TH\‘HH
.

! I I

CIT T H‘HH\H\\
[[—— []

\\H\l\\lHH.lH
— 1 1 —

O PLA O Multi-level logic

® Control logic Control logic, data path
Constrained layout General layout
Highly automatic Automatic
Technology independent Partially technology independent
Multi-valued logic Some ideas of multi-valued logic
Input, output, state encoding Occasionally involving encoding
Predictable Hard to predict

General Approaches to Synthesis

O
B theory well understood
B predictable results in a top-down flow

B optimization criteria very complex
O except special cases, no general theory available
B greedy optimization approach
Oincrementally improve along various dimensions of the
criteria
B works on common design representation (circuit or
network representation)

Oattempt a change, accept if criteria improve, reject
otherwise

Transformation-based Synthesis

I
O
B set of transformations that change network representation
O work on uniform network representation
B “script”’ of “scenario” that can orchestrate various
transformations
O

B the scope they are applied

O Local vs. global restructuring
the domain they optimize

O combinational vs. sequential

O timing vs. area

O technology independent vs. technology dependent
the underlying algorithms they use

00 BDD based, SAT based, structure based

Network Representation

O Boolean network 21

B Directed acyclic graph
(DAG)

B Node logic function
representation f,(x,y)

B Node variable y;: y;=f;(x,y)
B Edge (i,j) if f; depends
explicitly on y;
O Inputs: X = (Xq, ...y X,)
O Outputs: z = (2, ..., Zp)
O External don't cares:
d;(x), ..., dy(x) for outputs

OUTPUTS zp
[

Node |

INPUTS

o

277 BooLEAN
/ NETWORK

10

Typical Synthesis Scenario

- read Verilog

1l

Technology Independent Optimizations

1l

Technology Mapping

1l

Technology Dependent Optimizations

1l

Test Preparation

- basic logic restructuring
- crude measures for goals

- use logic gates from target
cell library

- timing optimization
- physically driven optimization

- improve testability
- test logic insertion

11

Local vs. Global Transformation

O

B smaller area considered
faster performance
B map to a particular set of cells

B merging nodes
B splitting nodes
B removing/changing connections between nodes

m keep size bounded to avoid blow-up of local transformations
O SOP, POS
0O BDD
O Factored forms
O AIG + cut computation (modern logic synthesis method)

12

Sum-of-Products (SOP)

O Example
abc’+a’bd+b'd'+b’e’'f

O Advantages:
B Easy to manipulate and minimize
B many algorithms available (e.g. AND, OR, TAUTOLOGY)
B two-level theory applies

[Disadvantages:
B Not representative of logic complexity
OE.g., f=ad+ae+bd+be+cd+ce and f=ab'c'+de’
differ in their implementation by an inverter

B Not easy to estimate logic; difficult to estimate progress
during logic manipulation

13

Reduced Ordered BDD

O Represents both function and its
, like factored forms to be

discussed
O Like network of muxes, but restricted since
controlled by variables

B not really a good estimator for
implementation complexity
O Given an ordering, reduced BDD is
, hence a good replacement for
truth tables

O For a good , BDDs remain i
reasonably small for complicated functions
(but not muiltipliers, for instance)

are well defined and efficient

Only support variables (dependency

on primary input variables) are displayed

f=ab+c

oo

14

Factor Form

O Example
(ad+b’c)(c+d'(e+ac’))+(d+e)fg

O Advantages
B good representative of logic complexity
f=ad+ae+bd+be+cd+ce
f=ab'c+de’ = f=(a+b+c)(d+e)
B in many designs (e.g. complex gate CMOS) the

implementation of a function corresponds directly to its
factored form

B good estimator of logic implementation complexity
B doesn’t blow up easily

O Disadvantages

B not as many algorithms available for manipulation
B usually converted into SOP before manipulation

15

Factor Form

X=(a+b)c + d

Vdd

Note:

literal count = transistor
count ~ area

O however, area also
depends on wiring, gate
size, etc.

O

Gnd

16

Factored Form

O Definition: fis an if f is a set of cubes (SOP),
such that no single cube contains another (minimal with respect
to single cube containment)

B Example
a-+ab is not an algebraic expression (factoring gives a(1+b))

O Definition: The of two expressions f and g is a set defined
byfg={cd|cef andd eg and cd #0}
B Example

(a+b)(c+d+a’)=ac+ad+bc+bd+a'b

O Definition: fg is an if f and g are algebraic
expressions and have disjoint support (that is, they have no input
variables in common)

B Example
(a+b)(c+d)=ac+ad+bc+bd is an algebraic product

17

Factored Form

O Definition: A can be defined recursively by
the following rules. A factored form is either a product or
sum where:

B a product is either a single literal or a product of
factored forms

B a sum is either a single literal or a sum of factored forms

O A factored form is a parenthesized algebraic expression

B In effect a factored form is a
or a

O Any logic function can be represented by a factored form,
and any factored form is a representation of some logic
function

18

Factored Form

COExample

® X, y’, abc’, a+b'’c, ((@’+b)cd+e)(a+b)+e’ are
factored forms

M (a+b)’c is not a factored form since
complement is not allowed, except on literals

OFactored forms are not unique
B Three equivalent factored forms
ab+c(a+b), bc+a(b+c), ac+b(a+c)

19

Factored Form

O Definition: The of an algebraic
factorization F=G,G,+R is defined to be
fact_val(F,G,) = lits(F) - (lits(G,) + lits(G,) + lits(R))
= (IG11-1) lits(G,) + (]G,I-1) lits(G,)
B Assuming G,, G, and R are algebraic expressions, where |H]| is
the number of cubes in the SOP form of H
B Example
F = ae+af+ag+bce+bcf+bcg+bde+bdf+bdg
can be expressed in the form F = (a+b(c+d))(e+f+g), which
requires 7 literals, rather than 24
B If G,=(a+bc+bd) and G,=(e+f+g), then R=< and
fact_val(F,G,) = 2x3+2x5=16

O The above factored form saves 17 literals, not 16. The extra literal
saving comes from recursively applying the formula to the factored
form of G,.

20

Factored Form

[0 Factored forms are more compact
representations of logic functions than the
traditional SOP forms

B Example:
(at+b)(c+d(e+f(g+h+i+j)))
when represented as an SOP form is

ac+ade+adfg+adfh+adfi+adfj+bc+bde+bdfg+
bdfh+bdfi+bdfj

0 SOP is a factored form, but it may not be a good
factorization

21

Factored Form

O There are functions whose size is exponential in SOP
representation, but polynomial in factored form
B Example: i=n/2
Achilles’ heel function T (x,_, +X,)
i=1

n literals in factored form and (n/2)x2"/2 literals in SOP form

Factored forms are useful in estimating
area and delay in a multi-level synthesis
and optimization system. In many design
X=a+be+d - styles (e.g. complex gate CMOS design)
the implementation of a function
corresponds directly to its factored form.

22

Factored Form

O Factored forms can be graphically represented as labeled
trees, called factoring trees, in which each internal node
including the root is labeled with either + or %, and each
leaf has a label of either a variable or its complement

B Example
factoring tree of ((a'+b)cd+e)(a+b’)+e’

((a’+b)cd+e)(a+b’)+e’

23

Factored Form

O Definition: The of a factored form F (denoted p(F)) is
the number of literals in the factored form

m E.g., p((a+b)ca’) = 4, p((a+b+cd)(a'+b’)) = 6

O A factored form of a function is optimal if no other factored
form has less literals

O A factored form is in x, if X appears in F, but
X' does not. A factored form is in x, if X’
appears in F, but x does not.

OFis in x if it is either positive or negative unate in x,
otherwise F is in X
m E.g., F = (a+b)c+a’
positive unate in c; negative unate in b; binate in a

24

Factored Form
Cofactor

O The
is the factored form FX1:

Fri =1() (or F, .=F, —o(x)) obtained by

M replacing all occurrences of x; by 1, and x,’ by
0

m simplifying the factored form using the
Boolean algebra identities
ly=y 1+y=1 O0y=0 O+y=y

M after constant propagation (all constants are
removed), part of the factored form may
appear as G+G. In general, G is in a factored
form.

25

Factored Form
Cofactor

OThe
is a factored form

obtained by successively cofactoring F
with each literal in c
B Example

F = (X+y'+z)(X'u+z'y'(v+u’)) and c = vz'.

Then

F, = (x+y)(Xu+y'(v+u))

I:z’ v (X+y,) (X'U+y’)

26

Factored Form
Optimality

O Definition
Let f be a completely specified Boolean function,
and p(f) is the minimum number of literals in any
factored form of f
B Recall p(F) is the number of literals of a factored form F

O Definition

Let sup(f) be the true support variable of f, i.e.
the set of variables that f depends on. Two
functions f and g are , denoted , If

27

Factored Form
Optimality

O Lemma: Let f = g + h such that g L h, then p(f) = p(g) + p(h)
H Proof:
Let F, G and H be the optimum factored forms of f, g and h. Since G+H
is a factored form, .

Let c be a minterm, on sup(g), of g'. Since g and h have disjoint
support, we have f.=(g+h).=g.+h.=0+h.,=h.=h. Similarly, if d is a
minterm of h’, f,=g. Because p(h)Zp(fC)_p(FD and p(g)=p(f)sp(Fy,

Let m (n) be the number of literals in F that are from SUPPORT(Q)
(SUPPORT (h)). When computing F. (Fy), we replace all the literals from
SUPPORT(g) (SUPPORT(h)) by the appropriate values and simplify the
factored form by eliminating all the constants and possibly some literals
from sup(g) (sup(h)) by using the Boolean identities. Hence p(F.) < n
and p(Fy) < m. Since p(F) = m+n,

V\ég) ha\(/Fe)p(f) < p(@)+p(h) < p(F)+p(Fy) < p(F) = p(f) = p(9) + p(h) since
p(H=p(F).

28

Factored Form
Optimality

O Note, the previous result does not imply that all minimum literal
factored forms of f are sums of the minimum literal factored forms
of gand h

O Corollary: Let f = gh such that g L h, then p(f)=p(g)+po(h)
B Proof:

Let F’ denote the factored form obtained using DeMorgan’s law. Then
pEF) = p(F"), and therefore p(f)=p(f"). From the above lemma, we have

p(0) = p(F) = p(g'+h7) = p(g)+p(h) = p(g)+p(h).

O Theorem: Let f=Y[]f, such that fiLfy, Viz or jA, then

i=1 j=1

o)=Y ()

i=1 j=1

B Proof:
Use induction on m and then n, and the above lemma and corollary.

29

Factored Form

O SOP forms are used as the internal representation of logic
functions in most multi-level logic optimization systems
O Advantages
B good algorithms for manipulating them are available
O Disadvantages

B performance is unpredictable - may accidentally generate a function
whose SOP form is too large

® factoring algorithms have to be used constantly to provide an estimate
for the size of the Boolean network, and the time spent on factoring
may become significant
O Possible solution

® avoid SOP representation by using factored forms as the internal
representation

® still not practical unless we know how to perform logic operations
directly on factored forms without converting to SOP forms

B the most common logic operations over factored form have been
partially provided

30

Boolean Network Manipulation

C0Basic techniques

M Structural operations (change topology)
OAlgebraic
OBoolean

B Node simplification (change node functions)
CONode minimization using don’t cares

31

Structural Operation

O Restructuring: Given initial network, find best network
B Example
f, = abcd+ab’cd’+acd’'e+ab’c'd'+a’c+cdf+abc’d’e’+ab’c’'df’
f, = bdg+b’dfg+b’d’g+bd’eg

f, = becd+b’cd’+cd’e+a’c+cdf+abc’d’e’+ab’c’df’
f, = bdg+dfg+b’'d’g+d’'eg

f, = c(d(b+f)+d (b+e)+a’)+ac'(bd’e'+b'df)
f, = g(d(b+f)+d'(b'+e))

f, = c(x+a’)+ac'x’
f, = gx
x = d(b+f)+d'(b'+e)
O Two problems:
B find good common subfunctions
m effect the division

32

Structural Operation

Factoring vs. Decomposition

O Basic Operations: O Tree
| |
f = abc+abd+acd+bcd = B f=(e+g’)(d(a+c)+a’b’c’)
f=xy+xy x=ab y=c+d +b(a+c)
| |
f = (az+bz)cd+e g = (az+bz)e’ h=cde = O R .
f = xy+e =xe’ h=ye x=az+bz =cd "
| ¢ : 4 ’ N y(b+dx)+Xb y series—parallel graph
f = ac+ad+bc+bd+e = O Similar to merging free
f = (a+b)(c+d)+e common nodes and
u using negative
g=a+b f=atbc = pointers in BDD. DAG
f=g(a+c) However,
| .
f=gatgb g=c+d = canonical, so have no
f = ac+ad+bcd g = c+d perfect identification
“Division” plays a key role in all of these operations of common nodes.
33 34
Structural Operation Structural Operation
Node Elimination Node Elimination
I I
i2 BEFORE
i1 Q i3 O Example xabsa’b’) asx(ysz)ex'(bd)
Q . (3 B Literals before
i value(J)=L > niJQj—l}Ij -
’ i ieFO(j) 5+7+5 = 17
oL
where Literals after © 2
n; = number of times literals y; and y;" occur in factored form f; 9+15 =24 a'craby I=5
B can treat y; and y;' the same since p(F;) = p(F}") m Difference:
I = number of literals in factored f. _ Vakn() < (te2-1)E1)-1 =7
J) after - before = x
L+ > n+c value =7 AR
1
"Rt () ()
(a'c+aby)ab+a'b’) a+({a'craby)(y+z)+bdiarc’a'+b'+y’)

I D n+c
ieFO(j)
value = (without factoring) - (with factoring)

35

o \

value(j) = Listo(j)niJijl)» I
=(n+n)(I,-1)-1,
=(1+2)(5-1)-5=7 36

Structural Operation
Node Elimination

value=-1 n = a,(c(d + 6) + f)
fi = b(n+ag)+h
o = iln+aj)+k

value:ﬂ n=a(c(d+e)+f) value=3

O] ® 0] ®

Note: Value of a node can change during elimination

value=-1

)

37

Factorization

O Given a SOP, how do we generate a “good” factored form

a
B is central in many operations
B find a good divisor
B apply division
Oresults in quotient and remainder

B factoring

B decomposition
B substitution

B extraction

38

Division

O Definition: An operation op is called division if,
given two SOP expressions F and G, it generates
expressions H and R (<H,R> = op(F,G)) such
that F=GH + R
B G is called the divisor
B H is called the quotient
B R is called the remainder

O Definition: If GH is an algebraic product, then op
is called an algebraic division (denoted F // G),

otherwise GH is a Boolean product and op is
called a Boolean division (denoted F + G)

39

Division

O Example:

f =ad + ae + bcd + j
g, =a+ bc
g,=a+b
Of//a=d+e, r=bcd +j

Also, f//a=dor f// a=e, i.e. algebraic division is
not unique

af// (bc) =d,r=ad + ae + j
Oh,=f//g,=d, r,=ae +j

Oh,=f+g,=(a+c)d, r, =ae +j.
i.,e. f = (a+b)(a+c)d + ae + j

40

Division

O Definition:

G is an algebraic factor of F if there exists an algebraic
expression H such that F = GH (using algebraic
multiplication)

O Definition:

G is an Boolean factor of F if there exists an expression H
such that F = GH (using Boolean multiplication)

O Example
B f=ac + ad + bc + bd
O (a+b) is an algebraic factor of f since f = (a+b)(c+d)
B f=-ab+ ac + bc
O (a+b) is a Boolean factor of f since f = (a+b)(-a+c)

41

Why Algebraic Methods?

C0Algebraic methods provide fast algorithms
for various operations
B Treat logic functions as polynomials
B Fast algorithms for polynomials exist
M Lost of optimality but results are still good

B Can iterate and interleave with Boolean
operations

OIn specific instances, slight extensions are available
to include Boolean methods

42

Weak Division

O Weak division is a specific example of algebraic division

O Definition:

Given two algebraic expressions F and G, a division is
called a weak division if

1. it is algebraic and
2. remainder R has as few cubes as possible
B The quotient H resulting from weak division is denoted by F/G

O Theorem:

Given expressions F and G, H and R generated by weak
division are unique

43

Weak Division

ALGORITHM WEAK DIV(F,G) {
// G = {9,,9,,--.}, F = {f,F,,...} are sets of cubes

foreach g; {
Vel = g
foreach f; {
iT(f; contains all literals of g;) {
vij = fj - literals of g;
Vol = VIl U vy,
}
b
¥
H = M,V
R=F-GH

return (H,R);
b

a4

Weak Division

Weak Division

H Example OWe use to prevent trying a division
F = ace + ade + bc + bd + be +a’b + ab
G=ae+b B G is not an algebraic divisor of F if
OG contains a literal not in F,
Ve ¢ + d OG has more terms than F,
. : ¢ 1 OFor any literal, its count in G exceeds that in F, or
Vecrdrerata OF is in the transitive fanin of G.
H=c+d = F/G H=n VS
R =be +ab + ab R=F\GH
F=(ae + b)(c+d) + be +ab+ ab
45 46
Divisor Identification
Weak Division Primary Divisor

OWeak_Div provides a method to divide an
expression for a given divisor

COHow do we find a “good” divisor?
M Restrict to algebraic divisors
B Generalize to Boolean divisors

OProblem:

Given a set of functions { F; }, find
weak divisors

47

O Definition:

An expression is cube-free if no cube divides the expression
evenly (i.e., there is no literal that is common to all the
cubes)

“ab+c” is cube-free
“ab+ac” and “abc” are not cube-free
B Note: A cube-free expression have more than one cube

O Definition:

The primary divisors of an expression F are the set of
expressions

D(F) = {F/c | c is a cube}
Note that F/c is the quotient of a weak division

48

Divisor Identification
Kernel and Co-Kernel

O Definition:

The kernels of an expression F are the set of

expressions

K(F) = {G | G € D(F) and G is cube-free}

B In other words, the kernels of an expression F are the
of F

[Definition:

A cube c used to obtain the kernel K = F/c is
called a co-kernel of K
B C(F) is used to denote the set of co-kernels of F

49

Divisor Identification
Kernel and Co-Kernel

O Example

x = adf + aef + bdf + bef + cdf + cef + g
=(a+b+c)d+e)f +g

kernels co-kernels
a+b-+c df, ef
d+e af, bf, cf

(a+b+c)(d+e)f+g| |1

50

Divisor Identification
Kernel and Kernel Intersection

O Fundamental Theorem
If two expressions F and G have the property
that
Vke € K(F), Vkg € K(G) »> | ks n ke £1

then F and G have no common algebraic divisors
with more than one cube

If we “kernel” all functions and there are no nontrivial
intersections, then the only common algebraic divisors
left are single cube divisors

51

Divisor Identification
Kernel Level

O Definition:
A kernel is of level 0 (KO) if it contains no kernels except itself

A kernel is of level n or less (K") if it contains at least one kernel
of level (n-1) or less, but no kernels (except itself) of level n or
greater

m K"(F) is the set of kernels of level n or less
B KO(F) c KY(F) c K3(F) c ... c K(F) c K(F)
B level-n kernels = K"(F) \ K™1(F)

O Example:
F = (a+b(c+d)(e+9g)
k, = a+b(c+d) eK?!
gKO::>
k,= c+d eKO°
k;= e+g eKo

52

Divisor Identification
Kerneling Algorithm

Algorithm KERNEL(j, G) {

R=0

iT(CUBE_FREE(G)) R = {G}

for(i=j+1,..., n) {
iT(l; appears only in one term) continue
itTGGk < i, I, € all cubes of G/I;) continue
R = R u KERNEL(i, MAKE_CUBE_FREE(G/I;))

¥

return R

}
MAKE_CUBE_FREE(F) removes algebraic cube factor from F

53

Divisor Identification

Kerneling Algorithm
O returns all the kernels of F
0 Note:

W The test “(3k < i, |, € all cubes of G/I,)" in the kerneling

algorithm is a major efficiency factor. It also guarantees

that no co-kernel is tried more than once.
B Can be used to generate all co-kernels

54

Divisor Identification
Kerneling Algorithm

O Example
F = abcd + abce + adfg + aefg + adbe + acdef + beg
(Leta, b, c,d, e, f,gbel, |, I3, 1, I5, Ig,1;, respectively.)

(bc + fg)(d + e) + de(b + cf) ‘

\
N

c(d+e) + de= a(d+e)
d(cte) +ce =

55

Divisor Identification

Kerneling Algorithm
O Example
co-kernels kernels
1 a((bc + fg)(d + e) + de(b + cf))) + beg
a (bc + fg)(d + e) + de(b + cf)
ab c(d+e) + de
abc d+e
abd c+e
abe c+d
ac b(d + e) + def
acd b + ef

Note: F/bc = ad + ae = a(d + e)

56

Factor

Algorithm FACTOR(F) {
iT(F has no factor) return F
// e.g. if |F]=1, or F is an OR of single literals
// or of no literal appears more than once
D = CHOOSE_DIVISOR(F)
(Q,R) = DIVIDE(F,D)
return FACTOR(Q)xFACTOR(D) + FACTOR(R) //recur

O different heuristics can be applied for CHOOSE_DIVISOR

O different DIVIDE routines may be applied (algebraic division,
Boolean division)

57

Factor
(] Example: Notation:
F=abc+abd+ae+af+g F = o_rlglnal function
. D = divisor
D=c+d - ;
— ab Q = quotient
Q=a P = partial factored form
P=ab(c+d)+ae+af +g O = final factored form by
O=ab(c+d)+a(e+f) +g FACTOR restricting to

algebraic operations only

B Problem 1:

O is not optimal since not maximally factored and can be
further factored to “a(b(c +d) + e +f) + g”

O It occurs when quotient Q is a single cube, and some of the literals
of Q also appear in the remainder R

58

Factor

OTo solve Problem 1

B Check if the quotient Q is not a single cube,
then done

B Else, pick a literal |, in Q which occurs most
frequently in cubes of F. Divide F by |, to
obtain a new divisor D,.

Now, F has a new partial factored form
(1)(Dy) + (Ry)
and literal |, does not appear in R;.

ONote: The new divisor D, contains the original D as a
divisor because |, is a literal of Q. When recursively
factoring D;, D can be discovered again.

59

Factor

O Example: Notation:
F=ace +ade +bce +bde +cf+df F = o'ri'ginal function
D=a+b D = divisor

o Q = gquotient

Q =ce +de P = partial factored form
P=(ce +de)(a+b)+ (c+d)f O = final factored form by
O =e(c+d)(a+b)+ (c+d)f FACTOR restricting to
algebraic operations only

B Problem 2:

O is not maximally factored because “(c + d)” is common to
both products “e(c + d)(a + b)” and “(c + d)f”
O The final factored form should have been “(c+d)(e(a + b) + f)”

60

Factor Factor
Algorithm GFACTOR(F, DIVISOR, DIVIDE) { // good factor
OTo solve Problem 2 D = DIVISOR(F)
H Essentially, we reverse D and Q!! S et
COMake Q to get Q, if (IQ] = 1) return LF(F, Q, DIVISOR, DIVIDE)
. . - Q = MAKE_CUBE_FREE(Q)
OObtain a new divisor D, by dividing F by Q, (D, R) = DIVIDE(F,Q)
OIf D, is cube-free, the partial factored form is ifQ(gUgExgigggg))wasm o105
F=(@Q,))(D,) + R,, and can recursively factor Q,, D,, D = GFACTOR(D. DIVISOR. DIVIDE)
and R, R = GFACTOR(R, DIVISOR, DIVIDE)
OIf D, is not cube-free, let D, = cD, and D; = Q,D,. return Q x D + R
We have the partial factoring F = cD; + R;. Now }e’lse c
recursively factor D; and R;. C = COMMON_CUBE(D) // common cube factor
return LF(F, C, DIVISOR, DIVIDE)
}
}
61 62
Factor Factor

Algorithm LF(F, C, DIVISOR, DIVIDE) { // literal
factor

L = BEST_LITERAL(F, C) //L e C most frequent in F
(Q, R) = DIVIDE(F, L)

C = COMMON_CUBE(Q) // largest one

Q = CUBE_FREE(Q)

Q = GFACTOR(Q, DIVISOR, DIVIDE)

R = GFACTOR(R, DIVISOR, DIVIDE)

return LxCxQ+R

63

O Various kinds of factoring can be obtained by choosing
different forms of DIVISOR and DIVIDE

O CHOOSE_DIVISOR:
LITERAL - chooses most frequent literal
QUICK_DIVISOR - chooses the first level-0 kernel
BEST DIVISOR - chooses the best kernel

O DIVIDE:

Algebraic Division
Boolean Division

64

Factor

O Example
X = ac + ad + ae + ag + bc + bd +be + bf + ce + cf + df
+ dg

LITERAL_FACTOR:
x=a(lc+d+e+g)+b(c+d+e+f)+c(e+f)+d(f+

9)

QUICK_FACTOR:
x=g(a+d)+@+b)(c+d+e)+c(e+f)+f(b+d)

GOOD_FACTOR:
(c+d+e)a+b)+f(b+c+d)+g(a+d) +ce

65

Factor

O QUICK_FACTOR uses GFACTOR, first level-0 kernel
DIVISOR, and WEAK_DIV

O Example
X = ae + afg + afh + bce + bcfg + bcfh + bde + bdfg +
bcfth

D=c+d ---- level-0 kernel (first found)
Q =x/D =b(e + f(g + h)) ---- weak division
Q=e+f(g+h) ---- make cube-free

(D, R) = WEAK_DIV(X, Q) ---- second division

D=a+ b(c+d)

X = QD + R, R=0

x = (e +f(g+ h)) (a+b(c+d))

66

Decomposition

O Decomposition is the same as factoring except:

B divisors are added as nodes in the network
B the new nodes may elsewhere in the network in both
and phases

Algorithm DECOMP(T;) {
k = CHOOSE_KERNEL(fi)
if (k == 0) return
Ty = K // create new node m + j

i = (Fi/KYn+(Fi/k*)y . j+r // change node 1 using
// new node for kernel
DECOMP(F;)
DECOMP (Fy45)
}

Similar to factoring, we can define
pick a level O kernel and improve it
pick the best kernel

67

Substitution

O An existing node in a network may be a useful divisor in
another node. If so, no loss in using it (unless delay is a factor).

O Algebraic substitution consists of the process of algebraically
dividing the function f; at node i in the network by the function f
(or by 1)) at node j. Durlng substitution, if f; is an algebraic dIVISJOI‘
of f;, then f; is transformed into

f—qy,+r (or fi=oa.y; +doyj+r)

O In practice, this is tried for each node pair of the network. n nodes
in the network = O(n2) divisions.

68

Extraction

O Extraction operation identifies sub-
expressions and restructures a Boolean network
B Combine and to provide an

effective extraction algorithm

Algorithm EXTRACT

foreach node n {
DECOMP(n) // decompose all network nodes

}

foreach node n {
RESUB(n) // resubstitute using existing nodes

}
ELIMINATE_NODES_WITH_SMALL_VALUE

Extraction

O

Find all kernels of all functions

Choose kernel intersection with best “value”
Create new node with this as function
Algebraically substitute new node everywhere
Repeat 1,2,3,4 until best value < threshold

ahNPE

@ . ®

} New Node
69 70
Extraction
Extraction Rectangle Covering
0O Example O Alternative method for extraction

f,=ab(c(d+e)+f+g)+h
f =ai(c(d+e)+f+j) +k
(only level-0 kernels used in this example)

atid i3 = b v e

I=d
f=ab(c|+f+g)+h
f=a|(c|+f+j)+

Ko(f,) = {cl + f + g}; KO(f,) = {cl + f+j)
KO(f,) n KO(f,) =cl + f
m=cl+f
f,=ab(m+g)+h
f,=ai(m+j) +k
No kernel intersections anymore!!

= am
=b(n+ag) +h
= j)

n
i(n+aj) +k

71

O Build co-kernel cube matrix M = RT C
B rows correspond to co-kernels of individual functions
B columns correspond to individual cubes of kernel
B m; = cubes of functions
B m; = 0 if cube not there

B identify sub-matrix M* = R*T C*, where R* c R, C* c C,
and m*;=0

B construct divisor d corresponding to M* as new node

B extract d from all functions

72

Extraction Extraction
Rectangle Covering Rectangle Covering
O Example O Example (cont'd)
F = af + bf + ag + cg + ade + bde + cde F = af + bf + ag + cg + ade + bde + cde
G = af + bf + ace + bce a b c ce de f g Giaf+bf+ace_‘—bce a b ¢ ce de f g
H = ade + cde H = ade + cde F a ade af ag
F a ade af ag B Pick sub-matrix M’ F b bde Dbf
Kernels/Co-kernels: F b bde bf B Extract new expression X
F: (de+f+g)/a F=fx+ag+cg+dex+cde F de| jade bde cde
(de + f)/b F de| ade bde cde G = fx + cex o t B
(a+b+c)/de E f af bf H fade + cde 4
(a + b)/f . SZarh M=F ¢ cde cg
(de+g)/c M=F ¢ cde cg P
a+c)/ F 9| ag cg
(a+)/g F a c
G: (ce+f/{a,b} 9 &g 9 G a ace af
(a+b)/{f,ce} G a ace af
H: (a+c)/de G b bee bf
G b bce bf
b G ce||ace bce
G Cfe a‘;e b‘;e G f| af bf
G a H de| ade cde
H de| ade cde s 4
Extraction Extraction
Rectangle Covering Rectangle Covering

O Number literals before - Number of literals after

VR\C)= 2 v=2 W -2 W

ieR, jeC ieR’ jeC
v;; : Number of literals of cube my

W

I
C

Wi

B For prior example
Ov=20-10-2=38

: (Number of literals of the cube associated with row i)+1
: Number of literals of the cube associated with column j

T OOOOTMTTTTTT

a b c ce de f g
E ade af ag
b bde bf
de| [ade bde| cde
f
c cde cg
g | ag cg
a ace af
b bce bf
ce||ace bce
f af bf
de | ade cde 75

O Pseudo Boolean Division

B |dea: consider entries in covering matrix that are don't cares
Ooverlap of rectangles (a+a = a)

O product that cancel each other out (a-a’ = 0)

B Example:

F=ab +ac+ab + ac+ bc +b

Result:
X=a +b +c
F = ax + bx + cx

<
I
e A W e B

a b c a b ¢
a = abi ac:
b Eiloe w2 lofe
c A=Ce=hEces
a'l * a'b a'c
b'l ab' * b'c
c'| ac' bc' *

76

Fast Kernel Computation

O Non-robustness of kernel extraction
B Recomputation of kernels after every substitution:
expensive
B Some functions may have many kernels (e.g. symmetric
functions)

O Cannot measure if kernel can be used as complemented
node

O Solution: compute only subset of kernels:
B Two-cube “kernel” extraction [Rajski et al ‘90]
B Objects:
O2-cube divisors
O 2-literal cube divisors
B Example: f = abd + a’b'd + a'cd
Oab + a'b’, b’ + c and ab + a’c are 2-cube divisors.
Oa'd is a 2-literal cube divisor.

77

Fast Kernel Computation

O Properties of fast divisor (kernel) extraction:

B O(n?) number of 2-cube divisors in an n-cube Boolean
expression

B Concurrent extraction of 2-cube divisors and 2-literal
cube divisors

B Handle divisor and complemented divisor simultaneously

O Example:
f=abd + a’b'd + a'cd
k=ab + ab’, kk =ab’'+ab (both 2-cube divisors)
j=ab+ac, j=ab +ac (both 2-cube divisors)
c = ab (2-literal cube), ¢’ = a + b’ (2-cube divisor)

78

Fast Kernel Computation

O Generating all two cube divisors
F={c}
D(F) = {d | d = make_cube_free(c; + c)}
B ¢, c; are any pair of cubes in F
O 1.e., take all pairs of cubes in F and makes them cube-free
B Divisor generation is O(n2), where n = number of cubes in F

O Example:
F = axe + ag + bcxe + bcg
make_cube_free(c; + ¢;) = {xe + g, a + bc, axe + bcg, ag
+ bcxe}

B Note: Function F is made into an algebraic expression before
generating double-cube divisors

B Not all 2-cube divisors are kernels (why?)

79

Fast Kernel Computation

O Key results of 2-cube divisors

Theorem: Expressions F and G have a common multiple-
cube divisors if and only if D(F) n D(G) = 0

Proof:
If:

If D(F) n D(G) # 0 then 3d € D(F) n D(G) which is a double-
cube divisor of F and G. d is a multiple-cube divisor of F and of
G

Only if:
Suppose C = {c,, C,, ..., C,} is a multiple-cube divisor of F and
of G. Take any e = (c; + c;). If e is cube-free, then e € D(F) N
D(G). If e is not cube-free, then let d = make_cube_free(c; +
c.). d has 2 cubes since F and G are algebraic expressions.
Hence d € D(F) n D(G).

80

Fast Kernel Computation

O Example:
Suppose that is a multiple divisor

of Fand G
Ife =ac + f, e is cube-free and e € D(F) n D(G)

Ife=ab+ac,d={{b +c} € D(F) n D(G)

As a result of the Theorem, all multiple-cube
divisors can be “discovered” by using just double-
cube divisors

81

Fast Kernel Computation

O Algorithm:

B Generate and store all 2-cube kernels (2-literal cubes)
and recognize complement divisors

B Find the best 2-cube kernel or 2-literal cube divisor at
each stage and extract it

B Update 2-cube divisor (2-literal cubes) set after
extraction
B |terate extraction of divisors until no more improvement

0 Results:
B Much faster
B Quality as good as that of kernel extraction

82

Boolean Division

OWhat's wrong with algebraic division?
® Divisor and quotient are orthogonal!
M Better factored form might be:

(9:+ 9o+ ...+g,) (dy+dy+...+d)
Og; and d; may share same literals
Oredundant product literals

= Example
abe+ace+abd+cd / (ae+d) = I
aabe+ace+abd+cd / (ae+d) = (ab+c)
Og; and d; may share opposite literals
Oproduct terms are non-existing
= Example
a'b+ac+bc / (a'+c) = I
a'a+a’b+ac+bc / (a'+c) = (a+b)

83

Boolean Division

O Definition:

g is a Boolean divisor of fif h and r exist such
thatf=gh +r,gh =0

g is said to be a factor of fif, in addition, r = O,
i.,e., f=gh

M h is called the gquotient
M r is called the remainder

B h and r may not be unique

84

Boolean Division

OTheorem:

A logic function g is a Boolean factor of a
logic function f if and only if f < g (i.e. fg’
=0,i.e.g cf)

85

Boolean Division

Proof:
(=) g is a Boolean factor of f. Then 3h such that f = gh;
Hence, f < g (as well as h).

(&) fcg=f=g9gf =g(f +r) =gh. (Hereris any function
rcg.)

O Note:
B h = f works fine for the proof
B Given f and g, h is not unique

B To get a small h is the same as to get a small f + r. Since rg =
0, this is the same as minimizing (simplifying) f with DC = g'.

86

Boolean Division

OTheorem:

g is a Boolean divisor of f if and only if fg #
0]

87

Boolean Division

Proof:

(=)f=gh +r,gh=0=fg =gh + gr. Since gh =
0, fg = 0.

(<) Assume that fg = 0. f = fg + fg' = g(f + k) +
fg’. (Here k c g'.)

Then f =gh + r, with h =f + k, r = fg'. Since gh
= fg # 0, then gh = O.

O Note:

B f has many divisors. We are looking for some g such
that f = gh+r, where g, h, r are simple functions.
(simplify f with DC = @g’)

88

Boolean Division
Incomplete Specified Function

OF = (f,d,r)

O Definition:

A completely specified logic function g is a
if there exist h, e
(completely specified) such that
fcgh+e c f+d
and gh « d.

O Definition:

gisa of F if there exists h such
that
fcghcf+d

89

Boolean Division
Incomplete Specified Function

O Lemma:
fc g ifand only if g is a Boolean factor of F.

Proof:

(=) Assume that f ¢ g. Let h = f + k where kg c d.
Then hg = (f + k) g c (f + d).
Since fc g, fg =fand thusf < (f+ k) g =gh.
Thus

fc(+kgc f+d

(<) Assume that f = gh.
Suppose 3 minterm m such that f(m) = 1 but g(m) = 0.
Then f(m) = 1 but g(m)h(m) = 0 implying that f ¢ gh.
Thus f(m) = 1 impliesg(m) =1, i.e.fcg

O Note:
B Since kg c d, k ¢ (d + @"). Hence obtain
h =f + k by simplifying f with DC = (d + g’).

90

Boolean Division
Incomplete Specified Function

O Lemma:
fg = 0 if and only if g is a Boolean divisor of F.

Proof:

(=) Assume fg = 0.
Letfgchc (f+d+g)andfg cec (f+d).
Thenf=fg+fggcgh+ecg(f+d+g)+f+d=Ff+d
Also, 0 # fg < gh —» ghf = 0.
Now gh ¢ d, since otherwise ghf = 0 (since fd = 0),
verifying the conditions of Boolean division.

(<) Assume that g is a Boolean divisor.

Then 3h such that gh ¢ d and
fcgh+ecf+d
Since gh = (ghf + ghd) « d, then fgh = 0 implying that fg = O.

91

Boolean Division
Incomplete Specified Function

O
(fcgh+e c f+d)
B Choose g such that fg # O
u Simplify fg with DC = (d + g’) to get h

B Simplify fg’ with DC = (d + fg) to get e (could
use DC =d + gh)

Ofg c h cf+d+g
fgg cecfg+d+fg =f+d

92

SAT & Logic Synthesis

Functional Dependency as
Boolean division

93

Functional Dependency

Of(x) functionally depends on g;(x),
92(X), ., () if £(x) = h(gy(x), g2(X). ..., gm(X)),
denoted h(6(x))

® Under what condition can function f be
expressed as some function h over a set
6={g;,.-.9n} Of functions ?

® h exists < Aa,b such that f(a)=f(b) and G(a)=6(b)

i.e., 6 is more distinguishing than f

94

Motivation

O Applications of functional dependency

Resynthesis/rewiring
Redundant register removal
BDD minimization
Verification reduction

Boolean Network
fo

h
)
Q/‘\‘\o © target function
o

o © base functions

95

BDD-Based Computation

CO0BDD-based computation of h
hon ={y e B": y = 6(x) and f(x) =1, x € B"}
hoff = {y e Bm: y = 6(x) and f(x) = 0, x B"}

f(x)=1
hon = 3x.(y=G)Af

f(x)=0 hoff = 3x.(y=6)A—f

96

BDD-Based Computation

CPros
W Exact computation of hor and hoff
M Better support for don’t care minimization

COCons
M 2 image computations for every choice of G

B Inefficient when |G| is large or when there are
many choices of G

97

SAT-Based Computation

Oh exists <
Aa,b such that f(a)=f(b) and 6(a)=6(b),
i.e., (FOOZF(XDAG(X)=6(x)) is UNSAT

OHow to derive h? How to select G?

98

SAT-Based Computation

O (f(x)zf(X)IA(G(x)=6(x")) is UNSAT

Yo is the output variable of f; y; is the output variable of g;, i > 0

99

SAT-Based Computation

Clause set A: Cprnon: Yo

Clause set B: Cppnors —Yo . (YY) fori=1,..m

I is an overapproximation of Img(for) and is disjoint from
Img(foff)

I only refers toy;,..., Y,

Therefore, I corresponds to a feasible implementation of h

oo Oooo

100

Incremental SAT Solving

[Controlled equality constraints
(y=y) = (GyivyT va)(yv -y v a)
with auxiliary variables o,
a; = true = i* equality constraint is disabled

B Fast switch between target and base functions by unit
assumptions over control variables

B Fast enumeration of different base functions
B Share learned clauses

SAT vs. BDD

O SAT

B Pros

O Detect multiple choices of
G automatically

[Scalable to large |G|

O Fast enumeration of
?ifferent target functions

O Fast enumeration of
different base functions &

H Cons

O Single feasible
implementation of h

O BDD

B Cons

O Detect one choice of G at
a time

O Limited to small |G|

O Slow enumeration of
gifferent target functions

O Slow enumeration of
different base functions G
® Pros

O All possible
implementations of h

101 102
P . 1 E 1 . P I 1 E 1 .
I I
SAT vs. BDD L .
circuit size vs. runtime
Original Retimed SAT (original) BDD (original) SAT (retimed) BDD (retimed)
Circuit | #Nodes | #FF. | #Dep-s | #DepB | #FF. | #Dep-s | #Dep-B Time | Mem | Time | Mem | Time Mem | Time | Mem 100000
$5378 2794 179 52 25 308 283 173 12 18 16 20 06 18 7 51 R? = 0.9664
10000 4

$9234.1 5597 211 46 X 459 301 201 41 19 X X 17 19 194.6 149

s13207.1 | 8022 638 190 136 1930 802 x 156 22 314 78 153 22 X x 2
1000 - R“=0.909

515850.1 9785 534 18 9 907 402 X 233 22 82.6 94 79 22 X X —_—

535932 16065 1728 0 - 2026 1170 - 176.7 27 1117 164 78.1 27 8-) 100 i

38417 22397 | 1636 95 - 5016 243 - 2703 30 - - 1231 32 ::

538584 19407 1452 24 - 4350 2569 - 166.5 21 - - 99.4 30 1117 164 E 10 -

b12 946 121 4 2 170 66 3 015 17 128 38 0.13 17 25 42 =

(J
bl4 9847 245 2 25 2 - 33 22 - - 52 22 i P
1 A Original

b15 8367 449 0 1134 793 - 58 22 - - 58 22 N

b17 30777 | 1415 0 3967 2350 - 119.1 28 - - 1617 2 0.1 1 ® Retimed

b18 111241 | 3320 5 - 9254 5723 - 1414 100 - - 2842.6 100

b19 224624 | 6642 0 7164 337 - 81848 | 217 - - 110406 | 234 0.01 T T

b20 19682 490 4 1604 1167 - 257 28 - - 36 30

100 1000 10000 100000 1000000
b21 20027 490 4 1950 1434 - 246 29 - - 363 31
b22 20162 735 6 3013 2217 - 734 36 - - 90.6 37 Number of nodes (IOQ)
103 104

Practical Evaluation

Practical Evaluation

Incremental SAT #total input vs. #redundant inputs
100 ,
——b19 (200k nodes) —— b18 (100k nodes) 12
——Db17 (30k nodes) ——b15 (10k nodes) 311 * 2
o ° ° 2
10 - © 10 * *>

s 9 >0 o 5
3, 8 oo 00— 00006

S g7 . !
g 5 6l eeeee— o 9

g g5 . . 2
£ 0.1 G 4tee—o o 4
g g KR DN ——

001 E 2 [emmn T 68

] R R — S

R TR ———~———

0.001 ‘ 0 50 100 150 200
1 50 99 Number of input variables
Iteration
105 106
Practical Evaluation Summary
I I

interpolant size vs. support size

10000 s =
.fi ‘.
—~ o sﬂ -~
& 1000 | S
~ W R? o aniPay e 2 _
§ ﬁ‘. R ﬂo'g.ejﬁ‘» R? = 0.8506
2100 - AL S 4L
S |" f -t
2
[<5} A a1l
£ 10 v Orlgmal
- s A0 » Retimed
1 T T
1 10 100

Number of variables (log)

1000

107

O Functional dependency is computable with
pure SAT solving (with the help of Craig
interpolation)

O Compared to BDD-based computation, it is
much scalable to large designs

108

