
1

Logic Synthesis and
Verification

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Fall 2014

2

Multi-Level Logic
Minimization

Reading:
Logic Synthesis in a Nutshell

Section 3 (§3.3)

most of the following slides are by
courtesy of Andreas Kuehlmann

3

Finite State Machine

Finite-State Machine F(Q,Q0,X,Y,,)
where:
Q: Set of internal states
Q0: Set of initial states
X: Input alphabet
Y: Output alphabet
: X x Q Q (next state function)
: X x Q Y (output function)

Delay element:
• Clocked: synchronous circuit

• single-phase clock, multiple-phase clocks
• Clockless: asynchronous circuit

x=(x1,x2,…,xn) y=(y1,y2,…,yn)

s=(s1,s2,…,sn) s’ =(s’1,s’2,…,s’n)

D

4

General Logic Structure
 Combinational

optimization
 keep latches/registers

at current positions,
keep their function

 optimize combinational
logic in between

 Sequential
optimization
 change latch

position/function

5

Optimization Criteria for Synthesis
 The optimization criteria for multi-level logic is to

minimize some function of:
1. Area occupied by the logic gates and interconnect

(approximated by literals = transistors in technology
independent optimization)

2. Critical path delay of the longest path through the logic
3. Degree of testability of the circuit, measured in terms

of the percentage of faults covered by a specified set of
test vectors for an approximate fault model (e.g. single
or multiple stuck-at faults)

4. Power consumed by the logic gates
5. Noise immunity
6. Placeability, routability

while simultaneously satisfying upper or lower bound
constraints placed on these physical quantities

6

Area-Delay Trade-off

Example

7

Two-Level (PLA) vs. Multi-Level

 PLA
 Control logic
 Constrained layout
 Highly automatic
 Technology independent
 Multi-valued logic
 Input, output, state encoding
 Predictable

 Multi-level logic
 Control logic, data path
 General layout
 Automatic
 Partially technology independent
 Some ideas of multi-valued logic
 Occasionally involving encoding
 Hard to predict

E.g. Standard Cell Layout

8

General Approaches to Synthesis
 PLA synthesis:

 theory well understood
 predictable results in a top-down flow

Multi-level synthesis:
 optimization criteria very complex

except special cases, no general theory available
 greedy optimization approach

 incrementally improve along various dimensions of the
criteria

 works on common design representation (circuit or
network representation)
attempt a change, accept if criteria improve, reject

otherwise

9

Transformation-based Synthesis
 All modern synthesis systems are transformation based

 set of transformations that change network representation
work on uniform network representation

 “script” of “scenario” that can orchestrate various
transformations

 Transformations differ in:
 the scope they are applied

 Local vs. global restructuring
 the domain they optimize

 combinational vs. sequential
 timing vs. area
 technology independent vs. technology dependent

 the underlying algorithms they use
 BDD based, SAT based, structure based

10

Network Representation
 Boolean network

 Directed acyclic graph
(DAG)

 Node logic function
representation fj(x,y)

 Node variable yj: yj=fj(x,y)
 Edge (i,j) if fj depends

explicitly on yi

 Inputs: x = (x1, …, xn)
 Outputs: z = (z1, …, zp)
 External don’t cares:

d1(x), …, dp(x) for outputs

11

Typical Synthesis Scenario

RTL to Network Transformation

Technology Independent Optimizations

Technology Mapping

Technology Dependent Optimizations

Test Preparation

- read Verilog
- control/datapath analysis

- basic logic restructuring
- crude measures for goals

- use logic gates from target
cell library

- timing optimization
- physically driven optimization

- improve testability
- test logic insertion

12

Local vs. Global Transformation
 Local transformations optimize one node’s function in the network

 smaller area considered
 faster performance
 map to a particular set of cells

 Global transformations restructure the entire network
 merging nodes
 splitting nodes
 removing/changing connections between nodes

 Node representation:
 keep size bounded to avoid blow-up of local transformations

 SOP, POS
 BDD
 Factored forms
 AIG + cut computation (modern logic synthesis method)

13

Sum-of-Products (SOP)
 Example

abc’+a’bd+b’d’+b’e’f

 Advantages:
 Easy to manipulate and minimize
 many algorithms available (e.g. AND, OR, TAUTOLOGY)
 two-level theory applies

 Disadvantages:
 Not representative of logic complexity

E.g., f=ad+ae+bd+be+cd+ce and f’=a’b’c’+d’e’
differ in their implementation by an inverter

 Not easy to estimate logic; difficult to estimate progress
during logic manipulation

14

Reduced Ordered BDD
 Represents both function and its

complement, like factored forms to be
discussed

 Like network of muxes, but restricted since
controlled by primary input variables
 not really a good estimator for

implementation complexity
 Given an ordering, reduced BDD is

canonical, hence a good replacement for
truth tables

 For a good ordering, BDDs remain
reasonably small for complicated functions
(but not multipliers, for instance)

 Manipulations are well defined and efficient
 Only true support variables (dependency

on primary input variables) are displayed

15

Factor Form
 Example

(ad+b’c)(c+d’(e+ac’))+(d+e)fg

 Advantages
 good representative of logic complexity

f=ad+ae+bd+be+cd+ce
f’=a’b’c’+d’e’ f=(a+b+c)(d+e)

 in many designs (e.g. complex gate CMOS) the
implementation of a function corresponds directly to its
factored form

 good estimator of logic implementation complexity
 doesn’t blow up easily

 Disadvantages
 not as many algorithms available for manipulation
 usually converted into SOP before manipulation

16

Factor Form

Note:
literal count transistor
count area
 however, area also
depends on wiring, gate
size, etc.
 therefore very crude
measure

17

Factored Form
 Definition: f is an algebraic expression if f is a set of cubes (SOP),

such that no single cube contains another (minimal with respect
to single cube containment)
 Example

a+ab is not an algebraic expression (factoring gives a(1+b))

 Definition: The product of two expressions f and g is a set defined
by fg = {cd | c f and d g and cd 0}
 Example

(a+b)(c+d+a’)=ac+ad+bc+bd+a’b

 Definition: fg is an algebraic product if f and g are algebraic
expressions and have disjoint support (that is, they have no input
variables in common)
 Example

(a+b)(c+d)=ac+ad+bc+bd is an algebraic product

18

Factored Form
 Definition: A factored form can be defined recursively by

the following rules. A factored form is either a product or
sum where:
 a product is either a single literal or a product of

factored forms
 a sum is either a single literal or a sum of factored forms

 A factored form is a parenthesized algebraic expression
 In effect a factored form is a product of sums of

products or a sum of products of sums

 Any logic function can be represented by a factored form,
and any factored form is a representation of some logic
function

19

Factored Form

Example
 x, y’, abc’, a+b’c, ((a’+b)cd+e)(a+b’)+e’ are

factored forms
 (a+b)’c is not a factored form since

complement is not allowed, except on literals

Factored forms are not unique
 Three equivalent factored forms

ab+c(a+b), bc+a(b+c), ac+b(a+c)

20

Factored Form
 Definition: The factorization value of an algebraic

factorization F=G1G2+R is defined to be
fact_val(F,G2) = lits(F) - (lits(G1) + lits(G2) + lits(R))
= (|G1|-1) lits(G2) + (|G2|-1) lits(G1)
 Assuming G1, G2 and R are algebraic expressions, where |H| is

the number of cubes in the SOP form of H
 Example

F = ae+af+ag+bce+bcf+bcg+bde+bdf+bdg
can be expressed in the form F = (a+b(c+d))(e+f+g), which
requires 7 literals, rather than 24

 If G1=(a+bc+bd) and G2=(e+f+g), then R= and
fact_val(F,G2) = 23+25=16
 The above factored form saves 17 literals, not 16. The extra literal

saving comes from recursively applying the formula to the factored
form of G1.

21

Factored Form
 Factored forms are more compact

representations of logic functions than the
traditional SOP forms
 Example:

(a+b)(c+d(e+f(g+h+i+j)))
when represented as an SOP form is
ac+ade+adfg+adfh+adfi+adfj+bc+bde+bdfg+
bdfh+bdfi+bdfj

 SOP is a factored form, but it may not be a good
factorization

22

Factored Form
 There are functions whose size is exponential in SOP

representation, but polynomial in factored form
 Example:

Achilles’ heel function

n literals in factored form and (n/2)2n/2 literals in SOP form

(x2i1 x2i)
i1

in / 2

Factored forms are useful in estimating
area and delay in a multi-level synthesis
and optimization system. In many design
styles (e.g. complex gate CMOS design)
the implementation of a function
corresponds directly to its factored form.

23

Factored Form
 Factored forms can be graphically represented as labeled

trees, called factoring trees, in which each internal node
including the root is labeled with either + or , and each
leaf has a label of either a variable or its complement
 Example

factoring tree of ((a’+b)cd+e)(a+b’)+e’

24

Factored Form
 Definition: The size of a factored form F (denoted (F)) is

the number of literals in the factored form
 E.g., ((a+b)ca’) = 4, ((a+b+cd)(a’+b’)) = 6

 A factored form of a function is optimal if no other factored
form has less literals

 A factored form is positive unate in x, if x appears in F, but
x’ does not. A factored form is negative unate in x, if x’
appears in F, but x does not.

 F is unate in x if it is either positive or negative unate in x,
otherwise F is binate in x
 E.g., F = (a+b’)c+a’

positive unate in c; negative unate in b; binate in a

25

Factored Form
Cofactor
 The cofactor of a factored form F, with respect to

a literal x1 (or x1’), is the factored form Fx1
=

Fx1=1(x) (or Fx1’=Fx1=0(x)) obtained by
 replacing all occurrences of x1 by 1, and x1’ by

0
 simplifying the factored form using the

Boolean algebra identities
1y=y 1+y=1 0y=0 0+y=y

 after constant propagation (all constants are
removed), part of the factored form may
appear as G+G. In general, G is in a factored
form.

26

Factored Form
Cofactor

The cofactor of a factored form F, with
respect to a cube c, is a factored form FC
obtained by successively cofactoring F
with each literal in c
 Example

F = (x+y’+z)(x’u+z’y’(v+u’)) and c = vz’.
Then
Fz’ = (x+y’)(x’u+y’(v+u’))
Fz’ v = (x+y’)(x’u+y’)

27

Factored Form
Optimality

 Definition
Let f be a completely specified Boolean function,
and (f) is the minimum number of literals in any
factored form of f
 Recall (F) is the number of literals of a factored form F

 Definition
Let sup(f) be the true support variable of f, i.e.
the set of variables that f depends on. Two
functions f and g are orthogonal, denoted f g, if
sup(f) sup(g) =

28

Factored Form
Optimality
 Lemma: Let f = g + h such that g h, then (f) = (g) + (h)

 Proof:
Let F, G and H be the optimum factored forms of f, g and h. Since G+H
is a factored form, (f)=(F) (G+H)=(g)+(h).

Let c be a minterm, on sup(g), of g’. Since g and h have disjoint
support, we have fc=(g+h)c=gc+hc=0+hc=hc=h. Similarly, if d is a
minterm of h’, fd=g. Because (h)=(fc)(Fc) and (g)=(fd)(Fd),
(h)+(g) (Fc)+(Fd).

Let m (n) be the number of literals in F that are from SUPPORT(g)
(SUPPORT(h)). When computing Fc (Fd), we replace all the literals from
SUPPORT(g) (SUPPORT(h)) by the appropriate values and simplify the
factored form by eliminating all the constants and possibly some literals
from sup(g) (sup(h)) by using the Boolean identities. Hence (Fc) n
and (Fd) m. Since (F) = m+n, (Fc)+(Fd) m+n = (F).
We have (f) (g)+(h) (Fc)+(Fd) (F) (f) = (g) + (h) since
(f)=(F).

29

Factored Form
Optimality
 Note, the previous result does not imply that all minimum literal

factored forms of f are sums of the minimum literal factored forms
of g and h

 Corollary: Let f = gh such that g h, then (f)=(g)+(h)
 Proof:

Let F’ denote the factored form obtained using DeMorgan’s law. Then
(F) = (F’), and therefore (f)=(f’). From the above lemma, we have
(f) = (f’) = (g’+h’) = (g’)+(h’) = (g)+(h).

 Theorem: Let such that fijfkl, ik or jl, then

 Proof:
Use induction on m and then n, and the above lemma and corollary.

f fij
j1

m

i1

n

(f) (fij)

j1

m

i1

n

30

Factored Form
 SOP forms are used as the internal representation of logic

functions in most multi-level logic optimization systems
 Advantages

 good algorithms for manipulating them are available
 Disadvantages

 performance is unpredictable - may accidentally generate a function
whose SOP form is too large

 factoring algorithms have to be used constantly to provide an estimate
for the size of the Boolean network, and the time spent on factoring
may become significant

 Possible solution
 avoid SOP representation by using factored forms as the internal

representation
 still not practical unless we know how to perform logic operations

directly on factored forms without converting to SOP forms
 the most common logic operations over factored form have been

partially provided

31

Boolean Network Manipulation

Basic techniques
Structural operations (change topology)

Algebraic
Boolean

Node simplification (change node functions)
Node minimization using don’t cares

32

Structural Operation
 Restructuring: Given initial network, find best network

 Example
f1 = abcd+ab’cd’+acd’e+ab’c’d’+a’c+cdf+abc’d’e’+ab’c’df’
f2 = bdg+b’dfg+b’d’g+bd’eg
minimizing
f1 = bcd+b’cd’+cd’e+a’c+cdf+abc’d’e’+ab’c’df’
f2 = bdg+dfg+b’d’g+d’eg
factoring
f1 = c(d(b+f)+d’(b’+e)+a’)+ac’(bd’e’+b’df’)
f2 = g(d(b+f)+d’(b’+e))
decompose
f1 = c(x+a’)+ac’x’
f2 = gx
x = d(b+f)+d’(b’+e)

 Two problems:
 find good common subfunctions
 effect the division

33

Structural Operation
 Basic Operations:

 Decomposition (single function)
f = abc+abd+a’c’d’+b’c’d’
f = xy+x’y’ x = ab y = c+d

 Extraction (multiple functions)
f = (az+bz’)cd+e g = (az+bz’)e’ h = cde
f = xy+e g = xe’ h = ye x = az+bz’ y = cd

 Factoring (series-parallel decomposition)
f = ac+ad+bc+bd+e
f = (a+b)(c+d)+e

 Substitution
g = a+b f = a+bc
f = g(a+c)

 Collapsing (also called elimination)
f = ga+g’b g = c+d
f = ac+ad+bc’d’ g = c+d

“Division” plays a key role in all of these operations

34

Factoring vs. Decomposition
 Factoring:

 f=(e+g’)(d(a+c)+a’b’c’)
+b(a+c)

 Decomposition:
 y(b+dx)+xb’y’

Similar to merging
common nodes and
using negative
pointers in BDD.
However, not
canonical, so have no
perfect identification
of common nodes.

Tree

DAG

35

Structural Operation
Node Elimination

where
ni = number of times literals yj and yj’ occur in factored form fi
 can treat yj and yj’ the same since (Fj) = (Fj’)

lj = number of literals in factored fj
with factoring

without factoring

value = (without factoring) - (with factoring)

value(j) ni

iFO(j)

 l j1 l j

l j ni

iFO(j)
 c

l j ni

iFO(j)
 c

36

Structural Operation
Node Elimination

 Example
 Literals before

5+7+5 = 17
 Literals after

9+15 = 24
 Difference:

after - before =
value = 7

xx

value(j) ni
iFO(j)

 l j1 l j

 (n1 n2)(l3 1) l3

 (1 2)(51) 5 7

37

Structural Operation
Node Elimination

Note: Value of a node can change during elimination

value=3

38

Factorization
 Given a SOP, how do we generate a “good” factored form

 Division operation:
 is central in many operations
 find a good divisor
 apply division

results in quotient and remainder

 Applications:
 factoring
 decomposition
 substitution
 extraction

39

Division
 Definition: An operation op is called division if,

given two SOP expressions F and G, it generates
expressions H and R (<H,R> = op(F,G)) such
that F = GH + R
 G is called the divisor
 H is called the quotient
 R is called the remainder

 Definition: If GH is an algebraic product, then op
is called an algebraic division (denoted F // G),
otherwise GH is a Boolean product and op is
called a Boolean division (denoted F G)

40

Division
 Example:

f = ad + ae + bcd + j
g1 = a + bc
g2 = a + b

 Algebraic division:
f // a = d + e, r = bcd + j

Also, f // a = d or f // a = e, i.e. algebraic division is
not unique

f // (bc) = d, r = ad + ae + j
h1 = f // g1 = d, r1 = ae + j

 Boolean division:
h2 = f g2 = (a + c)d, r2 = ae + j.

i.e. f = (a+b)(a+c)d + ae + j

41

Division
 Definition:

G is an algebraic factor of F if there exists an algebraic
expression H such that F = GH (using algebraic
multiplication)

 Definition:
G is an Boolean factor of F if there exists an expression H
such that F = GH (using Boolean multiplication)

 Example
 f = ac + ad + bc + bd

 (a+b) is an algebraic factor of f since f = (a+b)(c+d)
 f = ab + ac + bc

 (a+b) is a Boolean factor of f since f = (a+b)(a+c)

42

Why Algebraic Methods?

Algebraic methods provide fast algorithms
for various operations
 Treat logic functions as polynomials
 Fast algorithms for polynomials exist
 Lost of optimality but results are still good
Can iterate and interleave with Boolean

operations
In specific instances, slight extensions are available

to include Boolean methods

43

Weak Division
 Weak division is a specific example of algebraic division

 Definition:
Given two algebraic expressions F and G, a division is
called a weak division if
1. it is algebraic and
2. remainder R has as few cubes as possible
 The quotient H resulting from weak division is denoted by F/G

 Theorem:
Given expressions F and G, H and R generated by weak
division are unique

44

Weak Division
ALGORITHM WEAK_DIV(F,G) {
// G = {g1,g2,...}, F = {f1,f2,...} are sets of cubes
foreach gi {

Vgi =
foreach fj {

if(fj contains all literals of gi) {
vij = fj - literals of gi
Vgi = Vgi vij

}
}

}
H = iVgi
R = F - GH
return (H,R);

}

45

Weak Division
 Example

F = ace + ade + bc + bd + be +a’b + ab
G = ae + b

Vae= c + d
Vb = c + d + e + a’ + a

H = c + d = F/G H = Vgi

R = be + a’b + ab R = F \ GH

F = (ae + b)(c + d) + be + a’b + ab

46

Weak Division

We use filters to prevent trying a division
G is not an algebraic divisor of F if

G contains a literal not in F,
G has more terms than F,
For any literal, its count in G exceeds that in F, or
F is in the transitive fanin of G.

47

Weak Division
Weak_Div provides a method to divide an

expression for a given divisor

How do we find a “good” divisor?
Restrict to algebraic divisors
Generalize to Boolean divisors

Problem:
Given a set of functions { Fi }, find
common weak (algebraic) divisors

48

Divisor Identification
Primary Divisor
 Definition:

An expression is cube-free if no cube divides the expression
evenly (i.e., there is no literal that is common to all the
cubes)

“ab+c” is cube-free
“ab+ac” and “abc” are not cube-free

 Note: A cube-free expression must have more than one cube

 Definition:
The primary divisors of an expression F are the set of
expressions

D(F) = {F/c | c is a cube}
Note that F/c is the quotient of a weak division

49

Divisor Identification
Kernel and Co-Kernel

 Definition:
The kernels of an expression F are the set of
expressions
K(F) = {G | G D(F) and G is cube-free}
 In other words, the kernels of an expression F are the

cube-free primary divisors of F

 Definition:
A cube c used to obtain the kernel K = F/c is
called a co-kernel of K
 C(F) is used to denote the set of co-kernels of F

50

Divisor Identification
Kernel and Co-Kernel

Example
x = adf + aef + bdf + bef + cdf + cef + g

= (a + b + c)(d + e)f + g

kernels co-kernels
a+b+c df, ef
d+e af, bf, cf
(a+b+c)(d+e)f+g 1

51

Divisor Identification
Kernel and Kernel Intersection
 Fundamental Theorem

If two expressions F and G have the property
that

kF K(F), kG K(G) | kG kF | 1
(kG and kF have at most one term in common),
then F and G have no common algebraic divisors
with more than one cube

 Important:
If we “kernel” all functions and there are no nontrivial
intersections, then the only common algebraic divisors
left are single cube divisors

52

Divisor Identification
Kernel Level
 Definition:

A kernel is of level 0 (K0) if it contains no kernels except itself

A kernel is of level n or less (Kn) if it contains at least one kernel
of level (n-1) or less, but no kernels (except itself) of level n or
greater

 Kn(F) is the set of kernels of level n or less
 K0(F) K1(F) K2(F) ... Kn(F) K(F)
 level-n kernels = Kn(F) \ Kn-1(F)

 Example:
F = (a + b(c + d))(e + g)
k1 = a + b(c + d) K1

 K0 ==> level-1
k2 = c + d K0

k3 = e + g K0

53

Divisor Identification
Kerneling Algorithm
Algorithm KERNEL(j, G) {

R =
if(CUBE_FREE(G)) R = {G}
for(i=j+1,...,n) {

if(li appears only in one term) continue
if(k i, lk all cubes of G/li) continue
R = R KERNEL(i, MAKE_CUBE_FREE(G/li))

}
return R

}
MAKE_CUBE_FREE(F) removes algebraic cube factor from F

54

Divisor Identification
Kerneling Algorithm

 KERNEL(0, F) returns all the kernels of F

 Note:
 The test “(k i, lk all cubes of G/li)” in the kerneling

algorithm is a major efficiency factor. It also guarantees
that no co-kernel is tried more than once.

 Can be used to generate all co-kernels

55

Divisor Identification
Kerneling Algorithm
 Example

F = abcd + abce + adfg + aefg + adbe + acdef + beg
(Let a, b, c, d, e, f, g be l1, l2, l3, l4, l5, l6,l7, respectively.)

a b
c

(a)
c

d e
(a)

(a) ac+d+g
fg

d+ecd+g
ef

ce+g
f

b+cf
e

d

b+df
e

b+ef
d

c

d+e

c+e

c+d

b

c d e

(bc + fg)(d + e) + de(b + cf)

c(d+e) + de=
d(c+e) + ce =
...

a(d+e)

56

Divisor Identification
Kerneling Algorithm

 Example
co-kernels kernels

1 a((bc + fg)(d + e) + de(b + cf))) + beg
a (bc + fg)(d + e) + de(b + cf)
ab c(d+e) + de
abc d + e
abd c + e
abe c + d
ac b(d + e) + def
acd b + ef

Note: F/bc = ad + ae = a(d + e)

57

Factor
Algorithm FACTOR(F) {

if(F has no factor) return F
// e.g. if |F|=1, or F is an OR of single literals
// or of no literal appears more than once
D = CHOOSE_DIVISOR(F)
(Q,R) = DIVIDE(F,D)
return FACTOR(Q)×FACTOR(D) + FACTOR(R) //recur

}

 different heuristics can be applied for CHOOSE_DIVISOR
 different DIVIDE routines may be applied (algebraic division,

Boolean division)

58

Factor
 Example:

F = abc + abd + ae + af + g
D = c + d
Q = ab
P = ab(c + d) + ae + af + g
O = ab(c + d) + a(e + f) + g

 Problem 1:
O is not optimal since not maximally factored and can be
further factored to “a(b(c + d) + e + f) + g”
 It occurs when quotient Q is a single cube, and some of the literals

of Q also appear in the remainder R

Notation:
F = original function
D = divisor
Q = quotient
P = partial factored form
O = final factored form by
FACTOR restricting to
algebraic operations only

59

Factor
To solve Problem 1
Check if the quotient Q is not a single cube,

then done
 Else, pick a literal l1 in Q which occurs most

frequently in cubes of F. Divide F by l1 to
obtain a new divisor D1.
Now, F has a new partial factored form

(l1)(D1) + (R1)
and literal l1 does not appear in R1.
Note: The new divisor D1 contains the original D as a

divisor because l1 is a literal of Q. When recursively
factoring D1, D can be discovered again.

60

Factor
 Example:

F = ace + ade + bce + bde + cf + df
D = a + b
Q = ce + de
P = (ce + de)(a + b) + (c + d) f
O = e(c + d)(a + b) + (c + d)f

 Problem 2:
O is not maximally factored because “(c + d)” is common to
both products “e(c + d)(a + b)” and “(c + d)f”
 The final factored form should have been “(c+d)(e(a + b) + f)”

Notation:
F = original function
D = divisor
Q = quotient
P = partial factored form
O = final factored form by
FACTOR restricting to
algebraic operations only

61

Factor

To solve Problem 2
 Essentially, we reverse D and Q!!

Make Q cube-free to get Q1

Obtain a new divisor D1 by dividing F by Q1

If D1 is cube-free, the partial factored form is
F = (Q1)(D1) + R1, and can recursively factor Q1, D1,
and R1

If D1 is not cube-free, let D1 = cD2 and D3 = Q1D2.
We have the partial factoring F = cD3 + R1. Now
recursively factor D3 and R1.

62

Factor
Algorithm GFACTOR(F, DIVISOR, DIVIDE) { // good factor
D = DIVISOR(F)
if(D = 0) return F
Q = DIVIDE(F,D)
if (|Q| = 1) return LF(F, Q, DIVISOR, DIVIDE)
Q = MAKE_CUBE_FREE(Q)
(D, R) = DIVIDE(F,Q)
if (CUBE_FREE(D)) {

Q = GFACTOR(Q, DIVISOR, DIVIDE)
D = GFACTOR(D, DIVISOR, DIVIDE)
R = GFACTOR(R, DIVISOR, DIVIDE)
return Q × D + R

}
else {

C = COMMON_CUBE(D) // common cube factor
return LF(F, C, DIVISOR, DIVIDE)

}
}

63

Factor
Algorithm LF(F, C, DIVISOR, DIVIDE) { // literal

factor
L = BEST_LITERAL(F, C) //L C most frequent in F
(Q, R) = DIVIDE(F, L)
C = COMMON_CUBE(Q) // largest one
Q = CUBE_FREE(Q)
Q = GFACTOR(Q, DIVISOR, DIVIDE)
R = GFACTOR(R, DIVISOR, DIVIDE)
return L × C × Q + R

}

64

Factor
 Various kinds of factoring can be obtained by choosing

different forms of DIVISOR and DIVIDE

 CHOOSE_DIVISOR:
LITERAL - chooses most frequent literal
QUICK_DIVISOR - chooses the first level-0 kernel
BEST_DIVISOR - chooses the best kernel

 DIVIDE:
Algebraic Division
Boolean Division

65

Factor
 Example

x = ac + ad + ae + ag + bc + bd +be + bf + ce + cf + df
+ dg

LITERAL_FACTOR:
x = a(c + d + e + g) + b(c + d + e + f) + c(e + f) + d(f +
g)

QUICK_FACTOR:
x = g(a + d) + (a + b)(c + d + e) + c(e + f) + f(b + d)

GOOD_FACTOR:
(c + d + e)(a + b) + f(b + c + d) + g(a + d) + ce

66

Factor
 QUICK_FACTOR uses GFACTOR, first level-0 kernel

DIVISOR, and WEAK_DIV

 Example
x = ae + afg + afh + bce + bcfg + bcfh + bde + bdfg +
bcfh
D = c + d ---- level-0 kernel (first found)
Q = x/D = b(e + f(g + h)) ---- weak division
Q = e + f(g + h) ---- make cube-free
(D, R) = WEAK_DIV(x, Q) ---- second division
D = a + b(c + d)
x = QD + R, R = 0
x = (e + f(g + h)) (a + b(c + d))

67

Decomposition
 Decomposition is the same as factoring except:

 divisors are added as new nodes in the network
 the new nodes may fan out elsewhere in the network in both positive

and negative phases

Algorithm DECOMP(fi) {
k = CHOOSE_KERNEL(fi)if (k == 0) return
fm+j = k // create new node m + j
fi = (fi/k)ym+j+(fi/k’)y’m+j+r // change node i using

// new node for kernel
DECOMP(fi)DECOMP(fm+j)

}

Similar to factoring, we can define
QUICK_DECOMP: pick a level 0 kernel and improve it
GOOD_DECOMP: pick the best kernel

68

Substitution
 Idea: An existing node in a network may be a useful divisor in

another node. If so, no loss in using it (unless delay is a factor).

 Algebraic substitution consists of the process of algebraically
dividing the function fi at node i in the network by the function fj
(or by f’j) at node j. During substitution, if fj is an algebraic divisor
of fi, then fi is transformed into
fi = qyj + r (or fi = q1yj + q0y’j + r)

 In practice, this is tried for each node pair of the network. n nodes
in the network O(n2) divisions.

ffii

ffjj

yyjj

69

Extraction
 Recall: Extraction operation identifies common sub-

expressions and restructures a Boolean network
 Combine decomposition and substitution to provide an

effective extraction algorithm

Algorithm EXTRACT
foreach node n {

DECOMP(n) // decompose all network nodes
}
foreach node n {

RESUB(n) // resubstitute using existing nodes
}
ELIMINATE_NODES_WITH_SMALL_VALUE

}

70

Extraction
 Kernel Extraction:

1. Find all kernels of all functions
2. Choose kernel intersection with best “value”
3. Create new node with this as function
4. Algebraically substitute new node everywhere
5. Repeat 1,2,3,4 until best value threshold

New Node

71

Extraction
 Example

f1 = ab(c(d + e) + f + g) + h
f2 = ai(c(d + e) + f + j) + k

(only level-0 kernels used in this example)
1. Extraction:

K0(f1) = K0(f2) = {d + e}
K0(f1) K0(f2) = {d + e}
l = d + e
f1 = ab(cl + f + g) + h
f2 = ai(cl + f + j) + k

2. Extraction:
K0(f1) = {cl + f + g}; K0(f2) = {cl + f + j)
K0(f1) K0(f2) = cl + f
m = cl + f
f1 = ab(m + g) + h
f2 = ai(m + j) + k

No kernel intersections anymore!!
3. Cube extraction:

n = am
f1 = b(n + ag) + h
f2 = i(n + aj) + k

72

Extraction
Rectangle Covering
 Alternative method for extraction

 Build co-kernel cube matrix M = RT C
 rows correspond to co-kernels of individual functions
 columns correspond to individual cubes of kernel
 mij = cubes of functions
 mij = 0 if cube not there

 Rectangle covering:
 identify sub-matrix M* = R*T C*, where R* R, C* C,

and m*ij 0
 construct divisor d corresponding to M* as new node
 extract d from all functions

73

Extraction
Rectangle Covering
 Example

F = af + bf + ag + cg + ade + bde + cde
G = af + bf + ace + bce
H = ade + cde

Kernels/Co-kernels:
F: (de+f+g)/a

(de + f)/b
(a+b+c)/de
(a + b)/f
(de+g)/c
(a+c)/g

G: (ce+f)/{a,b}
(a+b)/{f,ce}

H: (a+c)/de

a b c ce de f g
F a ade af ag
F b bde bf
F de ade bde cde
F f af bf

M F c cde cg
F g ag cg
G a ace af
G b bce bf
G ce ace bce
G f af bf
H de ade cde

74

Extraction
Rectangle Covering
 Example (cont’d)

F = af + bf + ag + cg + ade + bde + cde
G = af + bf + ace + bce
H = ade + cde

 Pick sub-matrix M’
 Extract new expression X

F = fx + ag + cg + dex + cde
G = fx + cex
H =ade + cde
X = a + b

 Update M

a b c ce de f g
F a ade af ag
F b bde bf
F de cde
F f

M F c cde cg
F g ag cg
G a ace af
G b b

ade bde
af bf

ac
ce bf

G ce
G f
H

e b

de

ce
a
a

f b
e

f
de cd

75

Extraction
Rectangle Covering
 Number literals before - Number of literals after

 For prior example
 V = 20 - 10 - 2 = 8

, '
(', ')

: Number of literals of cube

: (Number of literals of the cube associated with row) 1

: Number of literals of the cube associated with column

r c
ij i j

i R j C i R j C

ij ij

r
i
c
j

V R C v w w

v m

w i
w j

a b c ce d e f g
F a a d e a f a g
F b b d e b f
F d e cd e
F f

M F c cd e cg
F g a g cg
G a a ce a f
G b b

a d e b d e
a f b f

a c
ce b f

G ce
G f
H

e b

d e

ce
a

a
f b

e
f

d e cd

76

Extraction
Rectangle Covering
 Pseudo Boolean Division

 Idea: consider entries in covering matrix that are don’t cares
overlap of rectangles (a+a = a)
product that cancel each other out (aa’ = 0)

 Example:
F = ab’ + ac’ + a’b + a’c + bc’ + b’

Result:
X = a’ + b’ + c’
F = ax + bx + cx

' ' '
' '

' '
' '

' ' '
'

*
*

*
*

' '
*' ' '

*

a b c a b c
F a ab ac
F b a b bc

M F c a c b c
F a a b a c
F b ab b c
F c ac bc

77

Fast Kernel Computation
 Non-robustness of kernel extraction

 Recomputation of kernels after every substitution:
expensive

 Some functions may have many kernels (e.g. symmetric
functions)

 Cannot measure if kernel can be used as complemented
node

 Solution: compute only subset of kernels:
 Two-cube “kernel” extraction [Rajski et al ‘90]
 Objects:

2-cube divisors
2-literal cube divisors

 Example: f = abd + a’b’d + a’cd
ab + a’b’, b’ + c and ab + a’c are 2-cube divisors.
a’d is a 2-literal cube divisor.

78

Fast Kernel Computation
 Properties of fast divisor (kernel) extraction:

 O(n2) number of 2-cube divisors in an n-cube Boolean
expression

 Concurrent extraction of 2-cube divisors and 2-literal
cube divisors

 Handle divisor and complemented divisor simultaneously

 Example:
f = abd + a’b’d + a’cd

k = ab + a’b’, k’ = ab’ + a’b (both 2-cube divisors)
j = ab + a’c, j’ = ab’ + a’c’ (both 2-cube divisors)
c = ab (2-literal cube), c’ = a’ + b’ (2-cube divisor)

79

Fast Kernel Computation
 Generating all two cube divisors

F = {ci}
D(F) = {d | d = make_cube_free(ci + cj)}
 ci, cj are any pair of cubes in F

 I.e., take all pairs of cubes in F and makes them cube-free
 Divisor generation is O(n2), where n = number of cubes in F

 Example:
F = axe + ag + bcxe + bcg
make_cube_free(ci + cj) = {xe + g, a + bc, axe + bcg, ag
+ bcxe}
 Note: Function F is made into an algebraic expression before

generating double-cube divisors
 Not all 2-cube divisors are kernels (why?)

80

Fast Kernel Computation
 Key results of 2-cube divisors

Theorem: Expressions F and G have a common multiple-
cube divisors if and only if D(F) D(G) 0

Proof:
If:

If D(F) D(G) 0 then d D(F) D(G) which is a double-
cube divisor of F and G. d is a multiple-cube divisor of F and of
G.

Only if:
Suppose C = {c1, c2, ..., cm} is a multiple-cube divisor of F and
of G. Take any e = (ci + cj). If e is cube-free, then e D(F)
D(G). If e is not cube-free, then let d = make_cube_free(ci +
cj). d has 2 cubes since F and G are algebraic expressions.
Hence d D(F) D(G).

81

Fast Kernel Computation
 Example:

Suppose that C = ab + ac + f is a multiple divisor
of F and G

If e = ac + f, e is cube-free and e D(F) D(G)

If e = ab + ac, d = {b + c} D(F) D(G)

As a result of the Theorem, all multiple-cube
divisors can be “discovered” by using just double-
cube divisors

82

Fast Kernel Computation
 Algorithm:

 Generate and store all 2-cube kernels (2-literal cubes)
and recognize complement divisors

 Find the best 2-cube kernel or 2-literal cube divisor at
each stage and extract it

 Update 2-cube divisor (2-literal cubes) set after
extraction

 Iterate extraction of divisors until no more improvement

 Results:
 Much faster
 Quality as good as that of kernel extraction

83

Boolean Division
What’s wrong with algebraic division?
Divisor and quotient are orthogonal!
Better factored form might be:

(g1+ g2+ …+gn) (d1+d2+…+dm)
gi and dj may share same literals
redundant product literals

 Example
abe+ace+abd+cd / (ae+d) =
But: aabe+ace+abd+cd / (ae+d) = (ab+c)

gi and dj may share opposite literals
product terms are non-existing

 Example
a’b+ac+bc / (a’+c) =
But: a’a+a’b+ac+bc / (a’+c) = (a+b)

84

Boolean Division
 Definition:

g is a Boolean divisor of f if h and r exist such
that f = gh + r, gh 0

g is said to be a factor of f if, in addition, r = 0,
i.e., f = gh

 h is called the quotient
 r is called the remainder
 h and r may not be unique

85

Boolean Division

Theorem:
A logic function g is a Boolean factor of a
logic function f if and only if f g (i.e. fg’
= 0, i.e. g’ f’)

fg

86

Boolean Division
Proof:

() g is a Boolean factor of f. Then h such that f = gh;
Hence, f g (as well as h).

() f g f = gf = g(f + r) = gh. (Here r is any function
r g’.)

 Note:
 h = f works fine for the proof
 Given f and g, h is not unique
 To get a small h is the same as to get a small f + r. Since rg =

0, this is the same as minimizing (simplifying) f with DC = g’.

87

Boolean Division

Theorem:
g is a Boolean divisor of f if and only if fg
0

f g

88

Boolean Division
Proof:

() f = gh + r, gh 0 fg = gh + gr. Since gh
0, fg 0.

() Assume that fg 0. f = fg + fg’ = g(f + k) +
fg’. (Here k g’.)
Then f = gh + r, with h = f + k, r = fg’. Since gh
= fg 0, then gh 0.

 Note:
 f has many divisors. We are looking for some g such

that f = gh+r, where g, h, r are simple functions.
(simplify f with DC = g’)

89

Boolean Division
Incomplete Specified Function
 F = (f,d,r)

 Definition:
A completely specified logic function g is a
Boolean divisor of F if there exist h, e
(completely specified) such that

f gh + e f + d
and gh d.

 Definition:
g is a Boolean factor of F if there exists h such
that

f gh f + d

90

Boolean Division
Incomplete Specified Function
 Lemma:

f g if and only if g is a Boolean factor of F.

Proof:
() Assume that f g. Let h = f + k where kg d.

Then hg = (f + k) g (f + d).
Since f g, fg = f and thus f (f + k) g = gh.

Thus
f (f + k) g f + d

() Assume that f = gh.
Suppose minterm m such that f(m) = 1 but g(m) = 0.
Then f(m) = 1 but g(m)h(m) = 0 implying that f gh.
Thus f(m) = 1 implies g(m) = 1, i.e. f g

 Note:
 Since kg d, k (d + g’). Hence obtain

h = f + k by simplifying f with DC = (d + g’).

91

Boolean Division
Incomplete Specified Function
 Lemma:

fg 0 if and only if g is a Boolean divisor of F.

Proof:
() Assume fg 0.

Let fg h (f + d + g’) and fg’ e (f + d).
Then f = fg + fg’ gh + e g(f + d + g’) + f + d = f + d
Also, 0 fg gh ghf 0.
Now gh d, since otherwise ghf = 0 (since fd = 0),
verifying the conditions of Boolean division.

() Assume that g is a Boolean divisor.
Then h such that gh d and
f gh + e f + d
Since gh = (ghf + ghd) d, then fgh 0 implying that fg 0.

92

Boolean Division
Incomplete Specified Function

Recipe for Boolean division:
(f gh + e f + d)
Choose g such that fg 0
Simplify fg with DC = (d + g’) to get h
Simplify fg’ with DC = (d + fg) to get e (could

use DC = d + gh)

fg h f + d + g’
fg’ e fg’ + d + fg = f + d

93

SAT & Logic Synthesis
Functional Dependency as

Boolean division

94

Functional Dependency
f(x) functionally depends on g1(x),

g2(x), …, gm(x) if f(x) = h(g1(x), g2(x), …, gm(x)),
denoted h(G(x))
Under what condition can function f be

expressed as some function h over a set
G={g1,…,gm} of functions ?

 h exists a,b such that f(a)f(b) and G(a)=G(b)

i.e., G is more distinguishing than f

95

Motivation
Applications of functional dependency
Resynthesis/rewiring
Redundant register removal
BDD minimization
Verification reduction
…

f

g4g3
g2

g1
target function
base functions

h
Boolean Network

96

BDD-Based Computation
BDD-based computation of h

hon = {y Bm : y = G(x) and f(x) = 1, x Bn}
hoff = {y Bm : y = G(x) and f(x) = 0, x Bn}

Bn Bm
Gf(x) = 1

f(x) = 0

hon = x.(yG)f

hoff = x.(yG)f

97

BDD-Based Computation

Pros
 Exact computation of hon and hoff

Better support for don’t care minimization

Cons
2 image computations for every choice of G
 Inefficient when |G| is large or when there are

many choices of G

98

SAT-Based Computation
h exists
a,b such that f(a)f(b) and G(a)=G(b),
i.e., (f(x)f(x*))(G(x)G(x*)) is UNSAT

How to derive h? How to select G?

99

SAT-Based Computation
 (f(x)f(x*))(G(x)G(x*)) is UNSAT

y0 is the output variable of f; yi is the output variable of gi, i > 0

= =

…

…

……

1 0

0y *y 0
*
my……1y my

1x 2x nx 1
*x *

nx*x 2

*y1Care

1 1

Care

100

SAT-Based Computation
 Clause set A: CDFNon, y0
 Clause set B: CDFNoff, y0

*, (yiyi
*) for i =1,…,m

 I is an overapproximation of Img(fon) and is disjoint from
Img(foff)

 I only refers to y1,…, ym
 Therefore, I corresponds to a feasible implementation of h

== =

…

…

……

1 0

DFNoffDFNon

0y *y 0
*y 2

*
my……1y 2y my

1x 2x nx 1
*x *

nx*x 2

*y 1

A B

Img(fon) Img(foff)

101

Incremental SAT Solving
 Controlled equality constraints

(yiyi
*) (yi yi

* i)(yi yi
* i)

with auxiliary variables i

 Fast switch between target and base functions by unit
assumptions over control variables

 Fast enumeration of different base functions
 Share learned clauses

i = true ith equality constraint is disabled

102

SAT vs. BDD
 SAT
 Pros

 Detect multiple choices of
G automatically

 Scalable to large |G|
 Fast enumeration of

different target functions
f

 Fast enumeration of
different base functions G

 Cons
 Single feasible

implementation of h

 BDD
 Cons

 Detect one choice of G at
a time

 Limited to small |G|
 Slow enumeration of

different target functions
f

 Slow enumeration of
different base functions G

 Pros
 All possible

implementations of h

103

Practical Evaluation

----3790.6----3673.4--22173013--673529162b22

----3136.3----2924.6--14341950--449020027b21

----3036----2825.7--11671604--449019682b20

----23411040.6----2178184.8--3377164--06642224624b19

----1002842.6----1001414--57239254--53320111241b18

----42161.7----28119.1--23503967--0141530777b17

----225.8----225.8--7931134--04498367b15

----225.2----223.3--2245--22459847b14

422.5170.133812.8170.15336617024121946b12

16411173099.4----21166.5--25694350--24145219407s38584

----32123.1----30270.3--2435016--95163622397s38417

----2778.1164111727176.7--11702026--0172816065s35932

xx227.99482.62223.3x4029079185349785s15850.1

xx2215.37831.42215.6x80219301361906388022s13207.1

149194.6191.7xx194.1201301459x462115597s9234.1

517180.6201.6181.217328339825521792794s5378

MemTimeMemTimeMemTimeMemTime#Dep-B#Dep-S#FF.#Dep-B#Dep-S#FF.#NodesCircuit

BDD (retimed)SAT (retimed)BDD (original)SAT (original)RetimedOriginal

SAT vs. BDD

104

Practical Evaluation
circuit size vs. runtime

R2 = 0.909

R2 = 0.9664

0.01

0.1

1

10

100

1000

10000

100000

100 1000 10000 100000 1000000
Number of nodes (log)

T
im

e
(lo

g)

Original
Retimed

105

Practical Evaluation

0.001

0.01

0.1

1

10

100

1 50 99
Iteration

Ti
m

e
(lo

g)
b19 (200k nodes) b18 (100k nodes)
b17 (30k nodes) b15 (10k nodes)

Incremental SAT

106

Practical Evaluation
#total input vs. #redundant inputs

16858
174
68
14
4
2
9
1
6
5
2
2

0
1
2
3
4
5
6
7
8
9

10
11
12

0 50 100 150 200
Number of input variables

N
um

be
r

of
 sp

ur
io

us
 v

ar
ia

bl
es

107

Practical Evaluation

R2 = 0.861 R2 = 0.8506

1

10

100

1000

10000

1 10 100 1000
Number of variables (log)

In
te

rp
ol

an
t s

iz
e

(lo
g)

Original
Retimed

interpolant size vs. support size

108

Summary

Functional dependency is computable with
pure SAT solving (with the help of Craig
interpolation)

Compared to BDD-based computation, it is
much scalable to large designs

