Logic Synthesis and Verification

Jie－Hong Roland Jiang
 江介宏
 Department of Electrical Engineering National Taiwan University

Fall 2014

Don＇t Cares and Node Minimization

Reading：

Logic Synthesis in a Nutshell Section 3 （§3．4）

Node Minimization

Problem:

■ Given a Boolean network, optimize it by minimizing each node as much as possible

Note:

- Assume initial network structure is given
aTypically obtained after the global optimization, e.g. division and resubstitution
\square We minimize the function associated with each node

Permissible Functions of a Node

-In a Boolean network, we may represent a node using the primary inputs $\left\{x_{1}, \ldots, x_{n}\right\}$ plus the intermediate variables $\left\{y_{1}, \ldots, y_{m}\right\}$, as long as the network is acyclic

Definition:
A function g_{j}, whose input variables are a subset of $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right\}$, is implementable at a node j if
\square the variables of g_{j} do not intersect with TFO $_{j}$ $\square \mathrm{TFO}_{j}=\{$ node $\mathrm{i}: \mathrm{i}=\mathrm{j}$ or \exists path from j to i$\}$
\square the replacement of the function associated with j, say f_{j}, by g_{j} does not change the functionality of the network

Permissible Functions of a Node

\square The set of implementable (or permissible) functions at j provides the solution space of the local optimization at node j

TFOj $=$ \{node $\mathrm{i}: \mathrm{i}=\mathrm{j}$ or \exists path from j to i$\}$

Prime and Irredundant Boolean Network

Consider a sum- of -products expression F_{j} associated with a node j\square Definition: F_{j} is prime (in a multi-level sense) if for all cubes $c \in F_{j}$, no literal of c can be removed without changing the functionality of the network
\square Definition: F_{j} is irredundant if for any cube $c \in F_{i}$, the removal of c from F_{j} changes the functionality of the network
\square Definition: A Boolean network is prime and irredundant if F_{j} is prime and irredundant for all j

Node Minimization

Goals:
\square Given a Boolean network:

1. make the network prime and irredundant
2. for a given node of the network, find a least-cost SOP expression among the implementable functions at the node

Note:
■ Goal 2 implies Goal 1

- There are many expressions that are prime and irredundant, just like in two-level minimization. We seek the best.

Taxonomy of Don't Cares

External don't cares - XDCThe set of don't care minterms (in terms of primary input variables) given for each primary output is denoted $\mathrm{XDC}_{k}, \mathrm{k}=1, \ldots, \mathrm{p}$

- Internal don't cares - derived from the network structure
- Satisfiability don't cares - SDC

■ Observability don't cares - ODC
\square Complete Flexibility -

- CF is a superset of SDC, ODC, and localized XDC

Satisfiability Don't Cares

\square We may represent a node using the n primary inputs plus the m intermediate variables

- Boolean space is $\mathrm{B}^{\mathrm{n}+\mathrm{m}}$
\square However, intermediate variables depend on the primary inputs
\square Thus not all the minterms of $\mathrm{B}^{\mathrm{n}+\mathrm{m}}$ can occur:
\square use the non-occuring minterms as don't cares to optimize the node function
\square we get internal don't cares even when no external don't cares exist

Satisfiability Don't Cares

Example

$$
\begin{aligned}
& y_{1}=F_{1}=\neg x_{1} \\
& y_{j}=F_{j}=y_{1} x_{2} \\
& \square \text { Since } y_{1}=\neg x_{1}, y_{1} \oplus \rightarrow x_{1} \text { never } \\
& \text { occurs. So we may include these } \\
& \text { points to represent } F_{j} \\
& \Rightarrow \text { Don't Cares } \\
& \square S D C=\left(y_{1} \oplus \neg x_{1}\right)+\left(y_{j} \oplus y_{1} x_{2}\right)
\end{aligned}
$$

In general,

$$
S D C=\sum_{j=1}^{m}\left(y_{j} \overline{F_{j}}+\overline{y_{j}} F_{j}\right)
$$

Note: $S D C \subseteq B^{n+m}$

Observability Don't Cares

$\mathrm{y}_{\mathrm{j}}=\neg \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{x}_{1} \neg \mathrm{x}_{3}$
$z_{k}=x_{1} x_{2}+y_{j} \neg x_{2}+\neg y_{j} \neg x_{3}$Any minterm of $x_{1} x_{2}+\neg x_{2} \neg x_{3}+x_{2} x_{3}$ determines z_{k} independent of y_{j}
\square The ODC of y_{j} w.r.t. z_{k} is the set of minterms of the primary inputs for which the value of y_{j} is not observable at z_{k}
$O D C_{j k}=\left\{\left.x \in B^{n}\left|z_{k}(x)\right|_{y_{j}=0} \equiv z_{k}(x)\right|_{y_{j}=1}\right\}$

This means that the two Boolean networks,
■ one with y_{j} forced to 0 and

- one with y_{j} forced to 1
compute the same value for z_{k} when $x \in O D C_{j k}$The ODC of y_{j} w.r.t. all primary outputs is $O D C_{j}=\cap_{k} O D C_{j k}$

Observability Don't Cares

$O D C_{j k}=\left\{x \in B^{n}\left|z_{k}(x)\right|_{y_{j}=0}=\left.z_{k}(x)\right|_{y_{j}=1}\right\}$
denote $O D C_{j k}=\frac{\overline{\partial z_{k}}}{\partial y_{j}}$
where $\left.\frac{\partial z_{k}}{\partial y_{j}}=\left.\left.z_{k}(x)\right|_{y_{j}=0} \oplus z_{k}(x)\right|_{y_{j}=1}\right\}$

Observability Don't Cares

-The ODCs of node i and node j in a Boolean network may not be compatible - Modifying the function of node i using ODC may invalidate ODC $_{j}$

- It brings up the issue of compatibility ODC (CODC)
- Computing CODC is too expensive to be practical
\square Practical approaches to node minimization often consider one node at a time rather than multiple nodes simultaneously

External Don't Cares

\square The XDC global for an entire Boolean network is often given
\square The XDC local for a specified window in a Boolean network can be computed
\square Question:
\square How do we represent XDC?

- How do we translate XDC into local don't care?
-XDC is originally in PI variables
-Translate XDC in terms of input variables of a node

External Don't Cares

\square Representing XDC

multi-level Boolean network for z

Don't Cares of a Node

-The don't cares of a node j can be computed by

$$
D C_{j}=\sum_{i \notin F O_{j}}\left(y_{i} \bar{F}_{i}+\bar{y}_{i} F_{i}\right)+\prod_{k=1}^{p}\left(O D C_{j k}+X D C_{k}\right)
$$

Don't Cares of a Node

\square Theorem: The function $\mathscr{f}_{\mathrm{j}}=\left(\mathrm{F}_{\mathrm{j}}-\mathrm{DC}_{\mathrm{j}}, \mathrm{DC}_{\mathrm{j}}, \neg\left(\mathrm{F}_{\mathrm{j}}+\mathrm{DC}_{\mathrm{j}}\right)\right)$ is the complete set of implementable functions at node j
\square Corollary: F_{j} is prime and irredundant (in the multi-level sense) iff it is prime and irredundant cover of \mathscr{F}_{j}
\square A least-cost expression at node j can be obtained by minimizing \mathscr{F}_{j}
\square A prime and irredundant Boolean network can be obtained by using only 2 -level logic minimization for each node j with the don't care DC_{j}

Mapping Don't Cares to Local Space

\square How can ODC + XDC be used for optimizing a node j ?
$■$ ODC and XDC are in terms of the primary input variables
\square Need to convert to the input variables of node j

Mapping Don't Cares to Local Space

\square Definition: The local space Br^{r} of node j is the Boolean space spanned by the fanin variables of node (plus maybe some other variables chosen selectively)

- A don't care set $\mathrm{D}\left(\mathrm{y}^{\mathrm{r}+}\right)$ computed in local space spanned by $\mathrm{y}^{\mathrm{r}+}$ is called a local don't care set. (The " + " stands for additional variables.)
■ Solution: $\operatorname{Map} \operatorname{DC}(x)=O D C(x)+X D C(x)$ to local space of the node to find local don't cares, i.e.,

$$
D\left(y^{r+}\right)=I M G_{g_{F_{j}^{\prime}}}(\overline{D C}(x))
$$

Mapping Don't Cares to Local Space

- Computation in two steps:

1. Find $D C(x)$ in terms of primary inputs
2. Find D, the local don't care set, by image computation and complementation

$$
D\left(y^{r+}\right)=\overline{I M G_{g_{\mathrm{FIF}_{j}}}(\overline{\overline{D C}}(x))}
$$

Mapping Don't Cares to Local Space Global Function of a Node

$$
y_{j}=\left\{\begin{array}{l}
f_{j}\left(y_{k}, \cdots, y_{l}\right) \\
g_{j}\left(x_{1}, \cdots, x_{n}\right) \text { global function }
\end{array}\right.
$$

$$
B^{m+n} \rightarrow B^{n}
$$

Mapping Don't Cares to Local Space Don't Cares in Primary Inputs
-BDD based computation

- Build BDD's representing global functions at each node
\square in both the primary network and the don't care network, $g_{j}\left(x_{1}, \ldots, x_{n}\right)$

■use BDD_compose

\square Replace all the intermediate variables in (ODC+XDC) with their global BDDs

$$
\begin{aligned}
& \tilde{h}(x, y)=D C(x, y) \rightarrow h(x)=D C(x) \\
& \tilde{h}(x, y)=\tilde{h}(x, g(x))=h(x)
\end{aligned}
$$

Mapping Don't Cares to Local Space

\square Example

$y_{10}=x_{1} x_{3} \quad y_{11}=x_{2} x_{4}$
$X D C_{2}=y_{12}$
$g_{12}=X_{1} X_{2} X_{3} X_{4}$
z (output)

$O D C_{2}=y_{1}$
$g_{1}=X_{1} X_{2} X_{3} X_{4}$
$D C_{2}=O D C_{2}{ }^{+} X D C_{2}$
$D C_{2}=X_{1} X_{2} X_{3} X_{4}{ }^{+} X_{1} X_{2} X_{3} X_{4}$

Mapping Don't Cares to Local Space Image Computation

\square Local don't cares are the set of minterms in the local space of y_{i} that cannot be reached under any input combination in the care set of y_{i} (in terms of the input variables).
\square Local don't care set: $D_{i}=\overline{\operatorname{IMAGE}}{ }_{\left(g_{1}, g_{2}, \cdots, g_{r}\right)}$ [care set]
i.e. those patterns of $\left(y_{1}, \ldots, y_{r}\right)$ that never appear as images of input cares.

$O D C_{2}=y_{1}$
$O D C_{2}=y_{12}$
$D C_{2}=X_{1} X_{2} X_{3} X_{4}{ }^{+} X_{1} \bar{X}_{2} X_{3} \bar{X}_{4}$ $\overline{D C_{2}}=\bar{X}_{1}+\bar{X}_{3}+X_{2} \bar{X}_{4}+\bar{X}_{2} X_{4}$ $D_{2}=y_{7} y_{8}$

Note that D_{2} is given in this space $y_{5}, y_{6}, y_{7}, y_{8}$. Thus in the space $(--10)$ never occurs.
Can check that $\overline{D C_{2}} D_{2}=\varnothing=\overline{D C_{2}}\left(x_{1} x_{3}\right)\left(x_{2} \overline{x_{4}}+\overline{x_{2}} x_{4}\right)$
Using $D_{2}=y_{7} y_{8}, \mathrm{f}_{2}$ can be simplified to
$f_{2}=y_{7} y_{8}+y_{5} y_{6}$

Image Computation

- Two methods:

1. Transition relation method
$\square \mathrm{f}: \mathrm{B}^{\mathrm{n}} \rightarrow \mathrm{B}^{r} \Rightarrow \mathrm{~F}: \mathrm{B}^{\mathrm{n}} \times \mathrm{B}^{r} \rightarrow \mathrm{~B}$
(F is the characteristic function of $f!$)

$$
\begin{aligned}
F(x, y) & =\{(x, y) \mid y=f(x)\} \\
& =\prod_{i \leq r}\left(y_{i} \equiv f_{i}(x)\right) \\
& =\prod_{i \leq r}\left(y_{i} f_{i}(x)+\bar{y}_{i} \bar{f}_{i}(x)\right)
\end{aligned}
$$

2. Recursive image computation (omitted)

Image Computation Transition Relation Method

\square Image of set A under $f: f(A)=\exists_{x}(F(x, y) \wedge A(x))$

where $\exists_{x}=\exists_{x_{1}} \cdots \exists_{x_{n}}$ and $\exists_{x_{i}} g=g_{x_{i}}+g_{\bar{x}_{i}}$
\square The existential quantification \exists_{x} is also called "smoothing" Note: The result is a BDD representing the image,
i.e. $f(A)$ is a BDD with the property that
$\operatorname{BDD}(y)=1 \Leftrightarrow \exists x$ such that $f(x)=y$ and $x \in A$.

Node Simplification

Express ODC in terms of variables in $\mathrm{B}^{\mathrm{n}+\mathrm{m}}$

Node Simplification

Complete Flexibility

-Complete flexibility (CF) of a node in a combinational network
■ SDC + ODC + localized XDC
\square Used to minimize one node at a time
\square Not considering compatible flexibilities among multiple nodes
\square Different from CODC, where don't cares at different nodes are compatible and can minimize multiple nodes simultaneously

Complete Flexibility

\square Definition: A flexibility at a node is a relation (between the node's inputs and output) such that any well-defined subrelation used at the node leads to a network that conforms to the external specification
\square Definition: The complete flexibility (CF) is the maximum flexibility possible at a node

Combinational Logic Network

Complete Flexibility

\square Computing complete flexibility

Note: Specification relation $S(X, Z)$ may contain nondeterminism and subsumes XDC. Influence relation $I\left(X, y_{i}, Z\right)$ subsumes ODC.

Complete Flexibility

\square Computing complete flexibility

Complete Flexibility

\square Computing complete flexibility

$C F\left(Y_{i}, y_{i}\right)=\forall X .\left[E\left(X, Y_{i}\right) \Rightarrow \forall Z .\left[I\left(X, y_{i}, Z\right) \Rightarrow S(X, Z)\right]\right]$

$$
=\forall X, Z \cdot\left[\overline{E\left(X, Y_{i}\right) \cdot I\left(X, y_{i}, Z\right) \cdot \overline{S(X, Z)}}\right]
$$

Note: The same computation works for multiple $y_{i}{ }^{\prime} \mathrm{s}$

Window and Don't Care Compuation

- Definition: A window for a node in the network is the context in which the don'tcares are computedA window includes
- n levels of the TFI
- m levels of the TFO
- all re-convergent paths captured in this scope
- Window with its PIs and POs can be considered as a separate network
\square Optimizing a window is more computationally affordable than optimizing an entire network

Boolean network

Window POs

SAT-based Don't Care Computation

"Miter" constructed for the window POs

window

SAT-based Don't Care Computation

Compute the care set

- Simulation
\square Simulate the miter using random patterns
\square Collect x minterms, for which the output of miter is 1
\square This is a subset of a care set
- Satisfiability
- Derive set of network clauses
\square Add the negation of the current care set
\square Assert the output of miter to be 1
- Enumerate through the SAT assignments
\square Add these assignments to the care set

Resubstitution for Circuit Minimization

Resubstitution considers a node in a Boolean network and expresses it using a different set of fanins

X

X

Resubstitution with Don't Cares

\square Consider all or some nodes in Boolean network

■ Create window

- Select possible fanin nodes (divisors)

■ For each candidate subset of divisors
\square Rule out some subsets using simulation
\square Check resubstitution feasibility using SAT
\square Compute resubstitution function using interpolation

- A low-cost by-product of completed SAT proofs

■ Update the network if there is an improvement

Resubstitution with Don't Cares

\square Given:

- node function $F(x)$ to be replaced
- care set $C(x)$ for the node
- candidate set of divisors $\left\{g_{j}(x)\right\}$ for re-expressing $\mathrm{F}(\mathrm{x})$

- Find:
- A resubstitution function $h(y)$ such that $F(x)=h(g(x))$ on the care set
- Necessary and sufficient condition: For any minterms a and $b, F(a) \neq$ $F(b)$ implies $g_{i}(a) \neq g_{i}(b)$ for some g_{i}

Resubstitution

\square Example

Given:

$F(x)=\left(x_{1} \oplus x_{2}\right)\left(x_{2} \vee x_{3}\right)$
Two candidate sets:
$\left\{g_{1}=x_{1}{ }^{\prime} x_{2}, g_{2}=x_{1} x_{2}{ }^{\prime} x_{3}\right\}$,
$\left\{g_{3}=x_{1} \vee x_{2}, g_{4}=x_{2} x_{3}\right\}$
Set $\left\{g_{2}, g_{4}\right\}$ cannot be used for resubstitution while set $\left\{g_{1}, g_{2}\right\}$ can.

x	$F(x)$	$g_{1}(x)$	$g_{2}(x)$	$g_{3}(x)$	$g_{4}(x)$
000	0	0	0	0	0
001	0	0	0	0	0
010	1	1	0	1	0
011	1	1	0	1	1
100	0	0	0	1	0
101	1	0	1	1	0
110	0	0	0	1	0
111	0	0	0	1	1

SAT-based Resubstitution

Miter for resubstitution check

Resubstitution function exists if and only if SAT problem is unsatisfiable Note: Care set is used to enhance resubstitution check

SAT-based Resubstitution

\square Computing dependency function h by interpolation

- Consider two sets of clauses, $A(x, y)$ and $B(y, z)$, such that $A(x, y) \wedge B(y, z)=0$
■ y are the only variables common to A and B
- An interpolant of the pair ($A(x, y), B(y, z)$) is a function $\mathrm{h}(\mathrm{y})$ depending only on the common variables y such that $A(x, y) \Rightarrow h(y) \Rightarrow \neg B(y, z)$

Boolean space (x, y, z)

SAT-based Resubstitution

Problem: Find function $h(y)$, such that $C(x) \Rightarrow[h(g(x)) \equiv F(x)]$, i.e. $F(x)$ is expressed in terms of $\left\{g_{i}\right\}$

- Solution:
- Prove the corresponding SAT problem "unsatisfiable"
- Derive unsatisfiability resolution proof [Goldberg/Novikov, DATE'03]
- Divide clauses into A clauses and B clauses
- Derive interpolant from the unsatisfiability proof [McMillan, CAV'03]
- Use interpolant as the dependency function, $\mathrm{h}(\mathrm{g})$
- Replace $F(x)$ by $h(g)$ if cost function improved

