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Node Minimization

Problem:

M Given a Boolean network, optimize it by
minimizing each node as much as possible

Note:

B Assume initial network structure is given
OTypically obtained after the global optimization, e.g.
division and resubstitution
B We minimize the function associated with each
node

Permissible Functions of a Node

O In a Boolean network, we may represent a node
using the primary inputs {X,,..., X .} the
intermediate variables {y;,..., Y}, as long as the
network is acyclic

Definition:
A function g;, whose input variables are a subset
of {Xq,... xn, Yises Yk 1S at a
node j if
M the variables of g; do not intersect with TFO,
OTFO; = {node i: i = j or 3 path from j to i}

¥ the replacement of the function associated
with j, say f;, by g; does not change the
functlonallty of thé network




Permissible Functions of a2 Node

O The set of /1) : :
functions at j provides the solution space of the
local optimization at node |j

TFOj = {node i: i = j or 3 path from j to i}

Prime and Irredundant Boolean
Network

O Consider a sum- of -products expression F; associated with a
node j

O Definition: F; is prime (in a multi-level sense) if for all cubes
ce F, no of ¢ can be removed without changing the
functionality of the network

O Definition: F; is irredundant if for any cube ¢ € F;, the
removal of ¢ from F; changes the functionality 01J the
network

O Definition: A Boolean network is prime and irredundant if F;
is prime and irredundant for all j

Node Minimization

Goals:
O Given a Boolean network:
1.make the network prime and irredundant
2.for a given node of the network, find a SOP
expression among the implementable functions at the

node

Note:
B Goal 2 implies Goal 1

B There are many expressions that are prime and
irredundant, just like in two-level minimization. We seek
the

Taxonomy of Don’t Cares

O External don't cares -

B The set of don’'t care minterms (in terms of primary
input variables) given for each primary output is
denoted XDC,, k=1,...,p

O Internal don't cares - derived from the network structure
B Satisfiability don't cares -
B Observability don't cares -

O Complete Flexibility -
B CF is a superset of SDC, ODC, and localized XDC




Satisfiability Don't Cares

O We may represent a node using the n primary
inputs plus the m intermediate variables

B Boolean space is B*m

O However, intermediate variables depend on the
primary inputs

O Thus not all the minterms of B"*™ can occur:

B use the non-occuring minterms as don’t cares
to optimize the node function

B we get internal don’t cares even when no
external don'’t cares exist

Satisfiability Don't Cares

O Example

Y, = F ==X
Yi = F =YX

B Since y; = =Xy, Y; ® —x; never
occurs. So we may include these
points to represent F;

= Don't Cares
B SDC = (Y1 @ —x)+(Y{® y1X;)

In general, m I

SDC:Z(ijj+ijj)
j=1

Note: SDC ¢ Bn+m :
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Observability Don’t Cares

yJ = X1 X, + Xy X5
Z, = Xy X, + yJ —X5 + ﬁy] —X3

O Any minterm of x; X, + =X, =X3 + X, X3
determines z, independent of y;

O The ODC of y; w.r.t. z, is the set of minterms
of the primary inputs for which the value
of y; is not observable at z,

ODCj ={xeB" | (X |,,-o=2(X) |, 2}

This means that the two Boolean networks,
H one with y; forced to O and
H one with y; forced to 1
compute the same value for z, when x € ODC;,
O The ODC of y; w.r.t. all primary outputs is ODC; = n, ODC;,
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Observability Don’t Cares

ODC, ={x<B" | 2,(9|, 4=2,09}, .}

o,
denote ODC, =—
j

1o/4
where =7 (x)], , ®z,(91, .}
i
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Observability Don't Cares

CO0The ODCs of node i and node j in a
Boolean network may not be compatible
B Modifying the function of node i using ODC,

may invalidate ODC;

M It brings up the issue of compatibility ODC
(CODC)

B Computing CODC is too expensive to be
practical

OPractical approaches to node minimization often
consider one node at a time rather than multiple
nodes simultaneously
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External Don’t Cares

O The XDC global for an entire Boolean network is
often given

O The XDC local for a specified window in a Boolean
network can be computed

0 Question:
B How do we represent XDC?

B How do we translate XDC into local don’t care?
OXDC is originally in Pl variables
OTranslate XDC in terms of input variables of a node
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External Don’t Cares

CORepresenting XDC

XDC  fi,=Yio¥n1 z (output)

ODC,=y, o £ =ViYa + Vi ¥e + Vs Ys

/N e

y & Yo
Y10 Yu1 Ff lfW
/X /\ & &y5 Ye & ®
— X, X, X3 X, X, Xg Xp Xg

Yio = X X3 Y11 = X2Xa
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Don't Cares of a Node

OThe don’t cares of a node j can be
computed by

. p
DC; = Z (yiFi+yiFi)+H(ODCjk+XDCk)
k-1

i2TFO;
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Don’t Cares of a Node

O Theorem: The function §; = (F-DC;, DC;, —(F;+DCy)) is the
complete set of implementable functions at node |

O Corollary: F; is prime and irredundant (in the multi-level
sense) iff it'is prime and irredundant cover of §;

O A least-cost expression at node j can be obtained by
minimizing §;

O A prime and irredundant Boolean network can be obtained
by using only 2-level logic minimization for each node j with
the don't care DC;
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Mapping Don't Cares to Local Space
COHow can be used for
optimizing a node j?
B ODC and XDC are in terms of the primary

input variables
COONeed to convert to the input variables of node j

. /yj\\
Yi Yr
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Mapping Don'’t Cares to Local Space

O Definition: The local space B"of node j is the
Boolean space spanned by the fanin variables of
node j (plus maybe some other variables chosen
selectively)

B A don't care set D(y"™) computed in local space spanned
by y™ is called a local don’t care set. (The “+” stands for
additional variables.)

B Solution: Map DC(x) = ODC(x) + XDC(x) to local space
of the node to find local don't cares, i.e.,

D(y")=IMG, (DC(x))
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Mapping Don't Cares to Local Space

OO0 Computation in two steps:
1. Find DC(x) in terms of primary inputs

2. Find D, the local don't care set, by image
computation and complementation

//yj\\
D(y")=IMG, (DC(x)) % 4

2

X, X, X

n

20




Mapping Don't Cares to Local Space
Global Function of a Node

J

{fj(ykmyl)

9;(X,-+,X,) global function

Yj
B - % B n y|// \\yr

o

X X3 Xn
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Mapping Don't Cares to Local Space
Don't Cares in Primary Inputs

CO0BDD based computation

B Build BDD’s representing global functions at
each node

Oin both the primary network and the don't care
network, g;(Xy,...,X,)
Ouse BDD_compose

B Replace all the intermediate variables in
(ODC+XDC) with their global BDDs
h(x,y) = DC(xy) = h(x) = DC(x)

h(x,y)=h(x,g(x)) = h(x)
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Mapping Don'’t Cares to Local Space

Z (output)
O Example
XDC  fo=Yio¥11 ODC,=y, 5 £ =YY + Y. Y + YsYe
’_f i
/y12\ v, & Yo
: A Az Ao
Y10 Y11 Y3 Ya Y7 Vs
X, Xy X3 X4 X, X3 Xp Xq
X1 X3 Xy X
Yio = XX Yn :;2;4 ODC.~ y1
) 0, X Xz Xa Xe
XDC,™ V. DC.=0DC.* XDC.
057 XaXe Xs X DC:= X Xo Xs Xe* Xa Xo Xa Xe
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Mapping Don't Cares to Local Space
Image Computation

O Local don't cares are the set of minterms in the local space of y,
that cannot be reached under any input combination in the
of y; (in terms of the input variables).

O Local don't care set: D. = IMAGE [care set]
i (91.92.+.9r)

i.e. those patterns of (y,,..., y,) that never appear as images of
input cares.

image of care set under
mapping y,....Y;

local Y, B

space W oo

gi yi gr yr

| \ DC;=XDC+0DC,
care set 24




Mapping Don't Cares to Local Space

Image Computation

, Z (output) T T
0 Example (cont'd) ) O Two methods:
XDC  f1,=Yi0¥11 1. Transition relation method
/ Of:B >B =F:B"xB - B
(F is the characteristic function of f!)
FOGy) ={(xy)ly=f(x)}
:H(yi = (X))
N % % x Rk R ST (00+Y, T, 00)
' 73 : Note that D, is given in this space Y, Vg, Y7, Ys- isr
8D€2:y1 Thus in the space (- - 10) never occurs. ) ) ) ]
D'g Xix Cixxxx Ccancheckthat DC,D, == DC, (X,X;)(X, X, + X,X,) 2. Recursive image computation (omitted)
WZZ+Y+X§+ZX Using D.=VY,Y, , f,can be simplified to
D.= MVB f 2 y7 yg+ y5 ys 25 26
Image Computation
Transition Relation Method Node Simplification

O Image of set A under f: f(A) = 3, (F(X,y) A A(X))

f
R —
X

y
where 3, =3, -3, and 3,g=09, +0,

O The existential quantification 3, is also called “smoothing”
Note: The result is a BDD representing the image,

i.e. ng) is a BDD with the property that
BDD(y) = 1 < 3x such that f(xX) =y and x € A.
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XDC

M1

Express ODC in terms of variables in Bmm

tttt

outputs

m intermediate
nodes

inputs € Bn
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Node Simplification

BHHN

DC &

ODC+XDC— DC
compose cares

cares

Minimize fj with don'’t care D

f

Complete Flexibility

O Complete flexibility (CF) of a node in a
combinational network
B SDC + ODC + localized XDC

B Used to minimize one node at a time
OONot considering compatible flexibilities among
multiple nodes

ODifferent from CODC, where don’t cares at different
nodes are compatible and can minimize multiple
nodes simultaneously

local
Question: Where does SDC come into playing? space B
Complete Flexibility Complete Flexibility
O Definition: A at a node is a relation (between the

node’s inputs and output) such that any well-defined sub-
relation used at the node leads to a network that conforms
to the external specification

O Definition: The is the maximum
flexibility possible at a node

Combinational
Logic Network

by courtesy of Robert Brayton 31

OO0 Computing complete flexibility

- Yio [ 1(X,y;,2)
X — &= —7

R(X.y) =VZ.[I(X,Y,.Z) = S(X,Z)]

Note: Specification relation S(X,Z) may contain non-
determinism and subsumes XDC. Influence relation 1(X,y;,Z)

subsumes ODC.
by courtesy of Robert Brayton 32




Complete Flexibility

O Computing complete flexibility
) i —

X — — 7 Note: Environment relation E(X,Y;)
) — subsumes SDC.

CE(Y,,y;) = VX.[E(X,Y,) = R(X, ))]
=VX.[E(X,Y,) = VZ.[I(X,y,,Z)= S(X,Z)]]
=VX,Z-HE(X,Y;)AI(X,y,,Z) A=S(X,Z)]

by courtesy of Robert Brayton 33

Complete Flexibility

0 Computing complete flexibility

—>
JEEN 1 L
— —»

X — Z
— —»
— —>
—

y“

CE(Y,,y,) = VX.[E(X,Y,) = VZ.[I(X,y,.Z) = S(X, Z)]]
=X, Z.[E(X,Y,)-1(X,Y,,2)-S(X,2Z)]

Note: The same computation works for multiple y;'s
by courtesy of Robert Brayton 34

Window and Don'’t Care Compuation

O Definition: A for a
node in the network is the Boolean network
context in which the don't- window POs
cares are computed

O A window includes

® n levels of the TFI

[ ] levels of the TFO

® all re-convergent paths
captured in this scope

O Window with its Pls and POs
can be considered as a
separate network

O Optimizing a window is
more computationally
affordable than optimizing
an entire network

Window Pls

by courtesy of Alan Mishchenko 35

SAT-based Don't Care Computation

“Miter” constructed for the window POs

e
0

XNXSXXX “S“\

M\H‘l [ 11

same window
with inverter
by courtesy of Alan Mishchenko 36

window




SAT-based Don’t Care Computation

O Compute the care set
B Simulation
O Simulate the miter using random
patterns
O Collect x minterms, for which the
output of miter is 1 T
O This is a subset of a care set 111 [

O Derive set of network clauses

m Satisfiability Eﬁ %
X X

0 Add the negation of the current care T T T T T TT T 177
set

O Assert the output of miter to be 1

O Enumerate through the SAT
assignments

O Add these assignments to the care
set

by courtesy of Alan Mishchenko 37

Resubstitution for Circuit Minimization

O Resubstitution considers a node in a Boolean network and
expresses it using a different set of fanins

i

by courtesy of Alan Mishchenko 38

Resubstitution with Don’t Cares

CConsider all or some nodes in Boolean
network
M Create window
M Select possible fanin nodes (divisors)

B For each candidate subset of divisors
ORule out some subsets using simulation
OCheck resubstitution feasibility using SAT
OCompute resubstitution function using interpolation
= A low-cost by-product of completed SAT proofs

B Update the network if there is an improvement

by courtesy of Alan Mishchenko 39

Resubstitution with Don’t Cares

O Given:
B node function F(x) to be replaced
B care set C(x) for the node
B candidate set of divisors {g;(x)} for
re-expressing F(x) C)/KMX)\ [ 91A9:\ 93

O Find:
B A resubstitution function h(y) such = F(X)
that F(x) = h(g(x)) on the care set
B Necessary and sufficient condition: “
For any minterms a and b, F(a) = »’ \
F(b) implies g;(a) = g;(b) for some g; ‘@

AWA

by courtesy of Alan Mishchenko 40




Resubstitution

O Example
X FOO | 9.0 | 9.(x)

Given: 000 0 0 0 0 0
F(X) = (X,:® X5) (X, v X3)

001 0 0 0 0 0
Two ca}ndldate sets:’ 010 1 1 0 1 0
{91= X1'X5, 95 = X3 X,'X3},

011 1 1 0 1 1

AN o | o M|/

Set cannot be w 5 7 U U
used for resubstitution
while set {g,, g,} can. 110 0] 0 0 1 0

111 0 0 0 1 1

by courtesy of Alan Mishchenko 41

SAT-based Resubstitution

Miter for resubstitution check

N
(|
|
|
1
|
|
1
1
|

tt+ftr ettt ottt
X1 X2

Resubstitution function exists if and only if SAT problem is unsatisfiable

Note:

Care set is used to enhance resubstitution check

by courtesy of Alan Mishchenko 42

SAT-based Resubstitution

O Computing dependency function h by
interpolation
B Consider two sets of clauses, A(x, y) and B(y, z), such
that A(x, y) A B(y,z) =0
My are the only variables common to A and B

B An interpolant of the pair (A(x, v), B(y, z)) is a function
h(y) depending only on the common variables y such
that A(x,y) = h(y) = —B(y, 2)

Boolean space (x,v,z)

h(y)

by courtesy of Alan Mishchenko 43

SAT-based Resubstitution

O Problem: Find function h(y), such that C(x) = [h(g(x)) = F(xX)], i.e.
F(x) is expressed in terms of {0}

O Solution:

Prove the corresponding SAT problem “unsatisfiable”

Derive unsatisfiability resolution proof [Goldberg/Novikov, DATE'03]
Divide clauses into A clauses and B clauses

Derive interpolant from the unsatisfiability proof [McMillan, CAV'03]
Use interpolant as the dependency function, h(g)

Replace F(x) by h(g) if cost function improved

by courtesy of Alan Mishchenko 44
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