Logic Synthesis and Verification

Technology Mapping

Jie－Hong Roland Jiang江介宏

Department of Electrical Engineering National Taiwan University

Fall 2014

Reading：
Logic Synthesis in a Nutshell Section 4

Technology Independent Optimization

\square Example

$t_{1}=a+b c$
$t_{2}=d+e$
$t_{3}=a b+d$
$t_{4}=t_{1} t_{2}+f g$
$t_{5}=t_{4} h+t_{2} t_{3}$
$\mathrm{F}=\mathrm{t}_{5}$ ，

An unoptimized set of logic equations consisting of 17 literals

Technology Independent Optimization
\square Example（cont＇d）

$$
\begin{aligned}
& t_{1}=d+e \\
& t_{2}=b+h \\
& t_{3}=a t_{2}+c \\
& t_{4}=t_{1} t_{3}+f g h \\
& F=t_{4}^{\prime}
\end{aligned}
$$

An optimized set of logic equations consisting of 13 literals

Technology Mapping

\square Implement an optimized Boolean network using a set of pre-designed and pre-characterized gates from a library

- Each gate has a cost (e.g. area, delay, power, etc.)
library of primitive gates

Technology Mapping

Two approaches:

1. Rule based: LSS
2. Algorithmic: DAGON
\square Represent the netlist to be mapped in terms of a selected set of base functions, e.g., \{NAND2, INV\}

- Base functions from a functionally complete set
- Such a netlist is called the subject graph
\square Each gate in the library is likewise represented using the base functions
- Represent each gate in all possible ways
" This generates pattern graphs

Algorithmic Technology Mapping

Subject Graph

\square A cover is a collection of pattern graphs such that
\square every node of the subject graph is contained in one (or more) pattern graphs

- each input required by a pattern graph is actually an output of some other pattern graph (i.e. the inputs of one gate must exist as outputs of other gates)
\square For area minimization, the cost of the cover is the sum of the areas of the gates in the coverTechnology mapping problem:
Find a minimum cost covering of the subject graph by choosing from the collection of pattern graphs for all the gates in the library
\square Example
$t_{1}=d+e$
$t_{2}=b+h$
$t_{3}=a t_{2}+c$
$\mathrm{t}_{4}=\mathrm{t}_{1} \mathrm{t}_{3}+\mathrm{fgh}$
$\mathrm{F}=\mathrm{t}_{4}$,

Pattern Graphs

\square Example

- (IWLS library)

Subject Graph Covering (1)

10

Subject Graph Covering (2)
\square Example
$t_{1}=d+e$
$t_{2}=b+h$
$t_{3}=a t_{2}+c$
$t_{4}=t_{1} t_{3}+f g h$

Total cost $=18$

Subject Graph Covering (3)

\square Example

Total cost $=15$
$t_{1}=d+e$
$t_{2}=b+h$
$t_{4}=t_{1} t_{3}+f g h$

DAG Covering

I nput:- Logic network after technology independent optimization
- A library of gates with their costsOutput:
A netlist of gates (from library) which minimizes total cost
\square General Approach:
- Construct a subject DAG (directed acyclic graph) for the network
- Represent each gate in the target library by pattern DAG's
- Find an optimal-cost covering of subject DAG using the collection of pattern DAG's

DAG Covering

Complexity- NP-hard
\square Remains NP-hard even when the nodes have out-degree ≤ 2
■ If subject DAG and pattern DAG's are trees, efficient algorithms exist

DAG Covering Binate Covering Approach

\square Compute all possible matches $\left\{m_{k}\right\}$ of pattern graphs for each node in the subject graph

- Using a variable m_{i} for each match of a pattern graph in the subject graph, ($m_{i}=1$ if match is chosen)
\square Write a clause for each node of the subject graph indicating which matches cover this node (each node has to be covered)
- e.g., if a subject node is covered by matches $\left\{m_{2}, m_{5}\right.$, $\left.m_{10}\right\}$, then the clause would be $\left(m_{2}+m_{5}+m_{10}\right)$
\square Repeat for each subject node and take the product over all subject nodes (CNF)

DAG Covering
 Binate Covering Approach

\square Any satisfying assignment guarantees that all subject nodes are covered, but does not guarantee that other matches chosen create outputs needed as inputs for a given match

\square Resolve this problem by adding additional clauses

DAG Covering
 Binate Covering Approach

\square Let match m_{j} have subject nodes $v_{i 1}, \ldots, v_{i n}$ as its n inputs. If m_{i} is chosen, one of the matches that realizes $v_{i j}$ must also be chosen for each input j (if j not a primary input).
\square Let $S_{i j}$ be the disjunctive expression in the variables m_{k} giving the possible matches which realize $v_{i j}$ as an output node. Selecting match m_{i} implies satisfying each of the expressions $S_{i j}$ for $\mathrm{j}=1 \ldots \mathrm{n}$. This can be written
$\left(m_{i} \Rightarrow\left(S_{i 1} \ldots S_{i n}\right)\right) \Leftrightarrow\left(\bar{m}_{i}+\left(S_{i 1} \ldots S_{i n}\right)\right) \Leftrightarrow\left(\left(\bar{m}_{i}+S_{i 1}\right) \ldots\left(\bar{m}_{i}+S_{i n}\right)\right)$

DAG Covering

Binate Covering Approach
\square Also, one of the matches for each primary output of the circuit must be selected
\square An assignment to variables $m_{;}$that satisfies the above covering expression is a legal graph cover
\square For area optimization, each match m_{i} has a cost c_{i} that is the area of the gate the match represents
\square The goal is a satisfying assignment with the least total cost
\square Find a least-cost prime:
Dif a variable $m_{i}=0$ its cost is 0 , else its cost in c_{i}
$\square m_{i}=0$ means that match i is not chosen

DAG Covering

Binate Covering Approach
\square Binate covering is more general than unate covering
\square Unlike unate covering, variables are present in both their true and complemented forms in the covering expression

- The covering expression is a binate function, and the problem is referred to as the binatecovering problem

DAG Covering
Binate Covering Approach

\square Example	Match	Gate	Cost	Inputs	Root	Covers
	m_{1}	inv	1	b	g_{1}	g_{1}
	m_{2}	inv	1	a	g_{2}	g_{2}
	m_{3}	nand2	2	$\mathrm{g}_{1}, \mathrm{~g}_{2}$	g_{3}	g_{3}
	m_{4}	nand2	2	a, b	g_{4}	g_{4}
	m_{5}	nand2	2	$\mathrm{g}_{3}, \mathrm{~g}_{4}$	g_{5}	g_{5}
	m_{6}	inv	1	g_{4}	g_{6}	g_{6}
	m_{7}	nand2	2	$\mathrm{g}_{6}, \mathrm{c}$	g_{7}	g_{7}
	m_{8}	inv	1	g_{7}	g_{8}	g_{8}
	m_{9}	nand2	2	g_{8}, d	g_{9}	g_{9}
	m_{10}	nand3	3	$\mathrm{g}_{6}, \mathrm{c}, \mathrm{d}$	g_{9}	$\mathrm{g}_{7}, \mathrm{~g}_{8}, \mathrm{~g}_{9}$
	m_{11}	nand3	3	a,b,c	g_{7}	$\mathrm{g}_{4}, \mathrm{~g}_{6}, \mathrm{~g}_{7}$
	m_{12}	xnor2	5	a,b	g_{5}	$\mathrm{g}_{1}, \mathrm{~g}_{2}, g_{3}, \mathrm{~g}_{4}, \mathrm{~g}_{5}$
	m_{13}	nand4	4	a, b, c, d	g_{9}	$\mathrm{g}_{4}, \mathrm{~g}_{6}, \mathrm{~g}_{7}, \mathrm{~g}_{8}, \mathrm{~g}_{9}$
	m_{14}	oai21	3	a, b, g_{4}	g_{5}	$\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{~g}_{3}, \mathrm{~g}_{5}$

DAG Covering
 Binate Covering Approach

DAG Covering

Binate Covering Approach

\square Example (cont'd)

- Generate constraints that each node g_{i} be covered by some match

\square Example (cont'd)

$\left(m_{1}+m_{12}+m_{14}\right)\left(m_{2}+m_{12}+m_{14}\right)\left(m_{3}+m_{12}+m_{14}\right)$
\square The primary output nodes g_{5} and g_{9} must be realized as an output of some match
-The matches which realize g_{5} as an output are m_{5}, $\mathrm{m}_{12}, \mathrm{~m}_{14}$

- The matches which realize g_{9} as an output are m_{9}, $\mathrm{m}_{10}, \mathrm{~m}_{13}$
- Note:
\square A match which requires a primary input as an input is satisfied trivially
- Matches $m_{1}, m_{2}, m_{4}, m_{11}, m_{12}, m_{13}$ are driven only by primary inputs and do not require additional clauses

DAG Covering
 Binate Covering Approach

\square Example (cont'd)

- Finally, we get
$\left(\bar{m}_{3}+m_{1}\right)\left(\underline{m}_{3}+m_{2}\right)\left(m_{3}+\bar{m}_{5}\right)\left(\bar{m}_{5}+m_{4}\right)\left(\bar{m}_{6}+m_{4}\right)$
$\left(m_{7}+m_{6}\right)\left(m_{8}+m_{7}\right)\left(m_{8}+m_{9}\right)\left(m_{10}+m_{6}\right)$
$\left(m_{14}+m_{4}\right)\left(m_{5}+m_{12}+m_{14}\right)\left(m_{9}+m_{10}+m_{13}\right)$
- The covering expression has 58 implicants
- The least cost prime implicant is

$$
\mathrm{m}_{3} \mathrm{~m}_{5} \mathrm{~m}_{6} \mathrm{~m}_{7} \mathrm{~m}_{8} \mathrm{~m}_{9} \mathrm{~m}_{10} \mathrm{~m}_{12} \mathrm{~m}_{13} \overline{\mathrm{~m}}_{14}
$$

- This uses two gates for a cost of 9 gate units. This corresponds to a cover which selects matches m_{12} (xor2) and m_{13} (nand4).

DAG Covering
 Binate Covering Approach

ㅁ Example (cont'd)
$m_{3} \bar{m}_{5} \bar{m}_{6} \bar{m}_{7} \bar{m}_{8} \bar{m}_{9} \bar{m}_{10} m_{12} m_{13} \bar{m}_{14}$

Note: g_{4} is covered by both matches

DAG Covering
 Binate Covering Approach

\square Complexity

■ DAG-covering: covering + implication constraints

- More general than unate covering
\square Finding least cost prime of a binate function
- Even finding a feasible solution is NP-complete (SAT)
- For unate covering, finding a feasible solution is easy
- Given a subject graph, the binate covering provides the exact solution to the technology-mapping problem
- However, better results may be obtained with a different initial decomposition into 2-input NANDs and inverters
- Methods to solve the binate covering formulation: \square Branch and bound, BDD-based \square Expensive even for moderate-size networks

Tree Covering

\square When the subject graph and pattern graphs are trees, an efficient algorithm to find the best cover exists
\square Solvable with dynamic programming

Tree Covering

1. Partition subject graph into forest of trees
2. Cover each tree optimally using dynamic programming

- Given:
\square Subject trees (networks to be mapped)
\square Forest of patterns (gate library)
- For each node N of a subject tree
- Recursive Assumption: for all children of N , a best cost match (which implements the node) is known
- Compute cost of each pattern tree which matches at N , Cost $=$ SUM of best costs of implementing each
input of pattern plus the cost of the pattern - Cost of a leaf of the tree is 0
\square Choose least cost matching pattern for implementing N

Tree Covering

```
\square Algorithm OPTIMAL_AREA_COVER(node) {
    foreach input of node {
        OPTIMAL_AREA_COVER(input);//satisfies recur. assumption
    |
    // Using these, find the best cover at node
    node->area = INFINITY;
    node->match = 0
    foreach match at node {
        area = match }->\mathrm{ area;
            foreach pin of match {
            area = area + pin->area;
            }
            if (area < node->area) {
            node->area = area;
            node }->\mathrm{ match = match
        }
}
}
```


Tree Covering

- Example

Library: nand2 $=3$ inv $=2$ nand3 $=4$ nand $4=5$ $\begin{aligned} & \text { and2 } \\ & \text { aoi21 }\end{aligned}=4$ aoi21 $=4$
oai21 $=4$

nand4

Tree Covering

\square Complexity
■ Complexity is controlled by finding all subtrees of the subject graph which are isomorphic to a pattern tree

- Linear complexity in both size of subject tree and size of collection of pattern trees

Tree Covering

\square Partition subject DAG into trees

- Trivial partition: break the graph at all multiple-fanout points
\square no duplication or overlap in the resulting trees \square drawback - sometimes results in many small trees

Tree Covering

\square Partition subject DAG into trees

- Single-cone partition: from a single output, form a large tree back to the primary inputs
- map successive outputs until they hit match output formed from mapping previous primary outputs
- Duplicates some logic (where trees overlap)
- Produces much larger trees, potentially better area results

Min-Delay Technology Mapping

- For trees:
- identical to min-area covering
- use optimal delay values within the dynamic programming paradigm
\square For DAGs:
- if delay does not depend on number of fanouts: use dynamic programming as presented for trees
- leads to optimal solution in polynomial time \square Assume logic replication is okay
\square Combined objective
- e.g. apply delay as first criteria, then area as second
- combine with static timing analysis to focus on critical paths

Decomposition and Technology
 Mapping

Common Approach:

■ Phase 1: Technology independent optimization \square commit to a particular Boolean network \square algebraic decomposition used

- Phase 2: AND2/INV decomposition
- commit to a particular decomposition of a general Boolean network using 2 -input ANDs and inverters
- Phase 3: Technology mapping (tree-mapping)

Drawbacks:
Procedures in each phase are disconnected:
■ Phase 1 and Phase 2 make critical decisions without
knowing much about constraints and library

- Phase 3 knows about constraints and library, but solution space is restricted by decisions made earlier

Combined Decomposition and Technology Mapping

\square Incorporate technology independent procedures
(Phase 1 and Phase 2) into technology mappingLehman-Watanabe Algorithm:Key Idea:

- Efficiently encode a set of AND2/INV decompositions into a single structure called a mapping graph
- Apply a modified tree-based technology mapper while dynamically performing algebraic logic decomposition on the mapping graph

Combined Decomposition and Technology Mapping

Outline

- Mapping Graph
-Encodes a set of AND2/INV decompositions
- Tree-mapping on a mapping graph: graph-
mapping
- Λ-mapping:
\square without dynamic logic decomposition
■solution space: Phase 3 + Phase 2
$\square \Delta$-mapping:
\square with dynamic logic decomposition
\square solution space: Phase $3+$ Phase $2+$ Algebraic decomposition (Phase 1)

Combined Decomposition and Technology Mapping
\square AND2/INV decomposition
E.g., $\mathrm{f}=\mathrm{abc}$ can be represented in various ways

Combined Decomposition and Technology Mapping
-Combine different AND2/INV
decompositions with a choice node

Combined Decomposition and Technology Mapping

- The previous AND2/INV decompositions can be represented more compactly as:
This representation encodes even more decompositions, e.g.,

Combined Decomposition and Technology Mapping

- Mapping graph is a Boolean network containing the following our modifications.
- Choice node: choices on different
decompositions
- Cyclic: functions written in terms of each other, e.g. inverter chain
with an arbitrary length
mith arbirary leng
with same function. No two AND2s with same fanin.
- Ugates: just for efficient implementation - do not explicitly represent choice nodes and inverters
For CHT
- For CHT benchmark (MCNC'91), there are are encoded with only 40 Uugatites
containing 599 AND2s in total.

Combined Decomposition and Technology Mapping

\square Graph-Mapping on Trees*: Apply dynamic programming
from primary inputs:

- find matches at each AND2 and INV, and
- retain the cost of a best cover at each node a match may contain choice nodes the cost at a choice node is the minimum of fanin costs
fixed-point iteration on each cycle, until costs of all the nodes in the cycle become stable
\square Run-time is typically linear in the size of the mapping graph
* mapping graph may not be a tree, but any multiple fanout node just represents several copies of same function.

Combined Decomposition and Technology Mapping

- Example

- Graph mapping on trees for min delay
\square best choice if c is later than a and b.

Combined Decomposition and Technology Mapping

\square Graph mapping
Graph-mapping(μ) $=\min _{\theta \in \mu}\{$ tree-mapping(θ) $\}$
μ : mapping graph
θ : AND2/INV decomposition encoded in μ

- Graph-mapping finds an optimal tree implementation for each primary output over all AND2/INV decompositions encoded in μ
■ Graph-mapping is as powerful as applying tree-mapping exhaustively, but is typically exponentially faster

Combined Decomposition and Technology Mapping

\square - -mapping
Given a Boolean network η,

- Generate a mapping graph μ :

■ For each node of η,
-encode all AND2 decompositions for each product term

- E.g., abc $\Rightarrow 3$ AND2 decompositions: $a(b c), c(a b), b(c a)$

Dencode all AND2/INV decompositions for the sum term

- E.g., $p+q+r \Rightarrow 3$ AND2/INV decompositions:
$p+(q+r), r+(p+q), q+(r+p)$
QIn practice, η is preprocessed so each node has at most 10 product terms and each term has at most 10 literals

■ Apply graph-mapping on μ

Combined Decomposition and Technology Mapping

Combined Decomposition and Technology Mapping

$\square \Lambda$-mapping
For the mapping graph μ generated for a Boolean network η, let

- L_{n} be the set of AND2/INV decompositions encoded in μ
- Λ be the closure of the set of AND2/INV decompositions of η under the associative and inverter transformations:

\square Theorem: $\Lambda \eta=L \eta$

-Dynamic logic decomposition

■ During graph-mapping, dynamically modify the mapping graph: find D-patterns and add Fpatterns

Combined Decomposition and
Technology Mapping
\square Dynamic logic decomposition

Note: Adding F-patterns may introduce new D-patterns which may imply new F-patterns

Combined Decomposition and Technology Mapping

ㅁ Δ-mapping
Given a Boolean network η,

- Generate a mapping graph μ
- Iteratively apply graph mapping on μ, while performing
dynamic logic decomposition until nothing changes in μ
\square Before finding matches at an AND2 in μ, check if D-pattern matches at the AND2. If so, add the corresponding F-pattern \square In practice, terminate the procedure when a feasible solution is

Combined Decomposition and Technology Mapping

$\square \Delta$-mapping

For the mapping graph μ generated for a Boolean network η, let

- D be the set of AND2/INV decompositions encoded in the resulting mapping graph.
- \triangle be the closure of Λ_{η} under the distributive transformation:

\square Theorem: $\Delta_{\eta}=D_{\eta}$

Combined Decomposition and Technology Mapping

Theorem: If1. η^{*} is an arbitrary Boolean network obtained from η by algebraic decomposition, and
2. θ is an arbitrary AND2/INV decomposition of η^{*}
then $\theta \in D_{n}$
\square The resulting mapping graph encodes all the AND2/INV decompositions of all algebraic decompositions of η

Combined Decomposition and Technology Mapping

$\square \Lambda$-mapping captures all AND2/INV decompositions of η :
Phase 2 (subject graph generation) is subsumed
$\square \Delta$-mapping captures all algebraic decompositions:
Phase 2 and Phase 1 are subsumed

Combined Decomposition and Technology Mapping

\square Summary

- Logic decomposition during technology mapping -Efficiently encode a set on AND2/INV decompositions - Dynamically perform logic decomposition

■ Two mapping procedures

- Λ-mapping: optimal over all AND2/INV decompositions (associative rule)
- Δ-mapping: optimal over all algebraic decompositions (distributive rule)
- Was implemented and used for commercial design projects (in DEC/Compac alpha)
- Extended for sequential circuits:
\square considers all retiming possibilities (implicitly) and algebraic factors across latches

