
1

Logic Synthesis and
Verification

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Fall 2014

2

Timing Analysis &
Optimization

Reading:
Logic Synthesis in a Nutshell

Sections 5 & 6

part of the following slides are by
courtesy of Andreas Kuehlmann

3

Delay Models
 Model 1

Ak = arrival time = max{A1,A2,A3} + Dk, where Dk is the delay at
node k, parameterized according to function fk and fanout node k

 Model 2

Can also have different times for rise time and fall time

Dk

A1
A2

A3

Ak

A1
A2

A3

Ak 0

A1 A2 A3

Ak

Dk1 Dk2
Dk3

Ak = max{A1+Dk1,

A2+Dk2,A3+Dk3}

4

Gate Delay
 The delay of a gate

depends on its circuit
context, and in particular:
1. Output Load

 Capacitive loading the
charges that a gate must
move to swing the output
voltage

 Due to interconnect and
logic fanout

2. Input Slew
 Slew = transition time
 Slower transistor

switching → longer delay,
longer output slew

e.g. output 1→0

1

0

Vin

Tslew

= ReffCload

CloadCload
Reff

An inverter

5

Rising and Falling Edges
 Driving strengths of pull-up and pull-down

networks may not be equivalent
 Rising and falling outputs may have

different delays

 Idea: maintain the latest/earliest arrival time of rising and falling
transitions independently
 Unateness of each input/output pair is encoded in the library

 Positively unate inputs: only trigger output transitions in the same direction
(e.g. an AND gate)

 Negatively unate inputs: only trigger output transitions in the opposite
direction (e.g. a NOR gate)

 A transition on a binate input could trigger either direction on an output (e.g.
an XOR gate)

 Only considers local functionality, but allows a less conservative
analysis

Cload Cload
Rdown

Rup

6

Timing Library
 Timing library contains all relevant

information about each standard cell
 E.g., pin direction, clock, pin

capacitance, etc.

 Delay (fastest, slowest, and often
typical) and output slew are encoded
for each input-to-output path and
each pair of transition directions

 Values typically represented as 2
dimensional look-up tables (of output
load and input slew)
 Interpolation is used Output load (nF)

In
pu

t s
le

w
 (n

s) 1.0 2.0 4.0 10.0

0.1 2.1 2.6 3.4 6.1

0.5 2.4 2.9 3.9 7.2

1.0 2.6 3.4 4.0 8.1

2.0 2.8 3.7 4.9 10.3

“delay_table_1”

Path(
inputPorts(A),
outputPorts(Z),
inputTransition(01),
outputTransition(10),
“delay_table_1”,
“output_slew_table_1”

);

A

B

Z

01

10

7

Sequential Circuit
 Arrival times known at l1, l2, and l5 (PIs and latch outputs)
 Required times known at l3, l4, and l5 (Pos and latch inputs)
 Delay analysis gives arrival and required times (hence

slacks) for C1, C2, C3, C4

C3

C1
C2

C4

l1

l2 l3

l4

l5

8

Arrival Time Calculation
// level of PI nodes initialized to 0,
// the others are set to -1.
// Invoke LEVEL from PO
Algorithm LEVEL(k) { // levelize nodes

if(k.level != -1)
return(k.level)

else
k.level = 1+max{LEVEL(ki)|ki fanin(k)}

return(k.level)
}

// Compute arrival times:
// Given arrival times on PI’s
Algorithm ARRIVAL() {

for L = 1 to MAXLEVEL
for {k|k.level = L}
Ak = MAX{Aki} + Dk}

9

Required Time Calculation
 Required time:

 Given required times on primary outputs
 Traverse in reverse topological order (i.e.

from POs to PIs)
 If (ki , k) is an edge between ki and k, the

required time of this edge is Rki,k
= Rk - Dk

 The required time of output of node k is Rk =
min { Rk,kj

| kj fanout(k) }

// Compute required times:
// Given required times on PO’s
Algorithm REQUIRED() {

for L = MAXLEVEL-1 to 0
for {k|k.level = L}

Rk = MIN{Rk,ki}}

k

ki2

j

Rki2

Rk Rj

ki1

10

Slack
 Slack:

 Slack at the output of node k is
Sk = Rk-Ak
Since Rj,k = Rk – Dk
Sj,k = Rj,k – Aj
Sj,k + Aj = Rk - Dk = Sk + Ak – Dk
Since Ak = max {Ai , Aj} + Dk
Sj,k = Sk + max {Afanin(k)} - Aj
Sj = min{Sj,fanout(j)}

 Note:
 Each edge of a circuit graph has a slack and required

time
 Negative slack is bad

k

j

l

Sj

Sk Sj

i

Sj,k Sj,l

11

Static Timing Analysis
 A static critical path of a Boolean network is a

path P = {n1, n2,…, np }, where Sni, ni+1
< 0

 Note:
If a node n is on a static critical path, then at least one of

the fanin edges of n is critical. Hence, all critical paths
reach from an input to an output.

There may be several critical paths

 Timing optimization is a min-max problem:
minimize max{-Si , 0}

12

Static Timing Analysis
 Example

2 1

2 2 1

21

R2=5R1=5

A8=0 A9=0
98

0

0
1

0-1

-1
-1

-1
10

-1

-1

5

76

3

1 2

4

1

4

2

34

56

node ID

arrival time
slack

A10=2
10

1

A1 = 6 R1 = 5
A2 = 5 R2 = 5

S1= -1 R3 = 3
S2= 0 R7 = 1
S3,1= -1 R9 = -1
S4,1 = -1
S4,2 = 0
S5,2 = 1
S6,3 = 0
S7,3 = -1
S7,4 = -1
S7,5 = 1
S8,6 = 0
S9,7 = -1

critical path edges

Ski,k = Sk + max{Akj } - Aki , kj,ki fanin(k)
Sk = min{Sk,kj }, kj fanout(k)

13

Static Timing Analysis
 Problems

 We want to determine the true critical paths of a circuit
in order to:
determine the minimum cycle time that a circuit will

function correctly
 identify critical paths for performance optimization - don’t

want to try to optimize wrong (non-critical) paths
 Implications:

Don’t want false paths (produced by static delay analysis)
Delay model is a worst case model

 Need to ensure correctness for case where ith gate delay
Di

Max

14

Functional Timing Analysis

Functional timing analysis estimates when
the output of a given circuit gets stable

clock

CombinationalCombinational
blockblock

00

00

T0

15

Functional Timing Analysis

Motivation
 Timing verification

Verifies whether a design meets a given timing
constraint
 E.g., cycle-time constraint

 Timing optimization
Needs to identify critical portion of a design for

further optimization
Critical path identification

 In both applications, accurate analysis is
desirable

16

Gate-Level Timing Analysis
 Naïve approach - Simulate all input vectors with

SPICE
Accurate, but too expensive

 Gate-level timing analysis (our focus)
 Less accurate than SPICE due to the level of

abstraction, but much more efficient
Scenario:

Gate/wire delays are pre-characterized (accuracy loss)
Perform timing analysis of a gate-level circuit

assuming the gate/wire delays

17

Gate-Level Timing Analysis
 A naive approach is

topological analysis
 Easy longest-path problem
 Linear in the size of a

network
 Not all paths can propagate

signal events
 False paths
 If all longest paths are false,

topological analysis gives
delay over-estimation

 Functional timing analysis =
false-path-aware timing
analysis
 Compute false-path-aware

arrival time

arr(x1)=0 arr(x2)=0

False path aware
arr(z)?

z

x1 x2

1

1

18

Gate-Level Timing Analysis
 Example

 2-bit carry-skip adder

c_in

a0
b0

a1
b1

s0

s1

c_out

mux

Length 5
Length 1

ripple carry adder

1
0

19

False Path Analysis
 Is a path responsible for circuit delay?

 If the answer is no, can ignore the path for delay computation

 Check the falsity of long paths until we find the longest true
path
 How can we determine whether a path is a false path?

 Delay under-estimation is unacceptable
 Can lead to overlooking timing violation

 Delay over-estimation is acceptable, but not desirable
 Topological analysis may yield over-estimation, but never

under-estimation

20

False Path Analysis

Controlling and non-controlling values

0 0 1

Controlling value of AND

Controlled value of AND

1 1

Controlling value of OR

Controlled value of OR

Non-controlling value of AND

0

Non-controlling value of OR

1 1 0

21

False Path Analysis
Static Sensitization
 Static sensitization

 A path is statically-sensitizable if there exists an input
vector such that all the side-inputs to the path are of
non-controlling values
This is independent of gate delays

1
0

Controlling value!

These paths are not
statically-sensitizable

The longest true path is of length 2?

t=0
t=0

t=0

1
0

22

False Path Analysis
Static Sensitization
 Example

 The (dashed) path is responsible for delay!
 Delay under-estimation by static sensitization (delay = 2

when true delay = 3)
incorrect condition

0

0
1

2

1

2 3

00

23

False Path Analysis
Static Sensitization

Problem: The idea of forcing non-
controlling values to side inputs is okay,
but timing was ignored
 The same signal can have a controlling value

at one time and a non-controlling value at
another time

How about timing simulation as a correct
method?

24

False Path Analysis
Timing Simulation

22

11

44

11

11

0

0

2

1

4

2 3

Implies delay = 0 under input vector (0,1)
BUT!

0 4

25

False Path Analysis
Timing Simulation

22

11

4422

11

11

0

0 2

2

1

2 3

3 4

Implies delay = 4 under the same input (0,1) as before

2

26

False Path Analysis
Timing Simulation

Problem: If gate delays are reduced, delay
estimates can increase

Not acceptable since
Gate delays are just upper-bounds, actual

delay is in [0,d]
Delay uncertainty due to manufacturing

We are implicitly analyzing a family of circuits
where gate delays are within the upper-bounds

27

False Path Analysis
Timing Simulation

Definition: Given a circuit C and a delay
estimation method delay_estimate, if
C* is obtained from C by reducing some gate

delays, and
 delay_estimate(C*) delay_estimate(C),
then delay_estimate has monotone
speedup property

Timing simulation does not have such a
property

28

False Path Analysis
Timing Simulation

2

1

4

1

1

0

0

2

1

4

3

4

4

means that the rising signalmeans that the rising signal
occurs anywhere between occurs anywhere between
t = t = -- and t = 4.and t = 4.

X-valued simulation
40

4

29

False Path Analysis
Timing Simulation

Timed 3-valued (0,1,X) simulation
 called X-valued simulation
monotone speedup property is satisfied

Underlying model of
 floating mode condition

Applies to “simple gate” networks only
 viability

Applies to general Boolean networks

30

False Path Analysis
Timing Simulation
 Checking the falsity of every path explicitly is

too expensive due to the exponential number of
paths

 Modern approach:
1. Start:

L = Ltop = topological longest path delay
Lold = 0

2. Binary search:
if (Delay(L)) (*) Ld = |L – Lold|/2, Lold = L, L = L + Ld
else Ld = |L – Lold|/2, Lold = L, L = L – Ld
if (L > Ltop or Ld < threshold) L = Lold, done

(*) Delay(L) = 1 if there is an input vector under which an output
gets stable only at time t where L t ?
 Can be reduced to a SAT or timed-ATPG problem

31

SAT-Based False Path Analysis
 Decision problem:

Is there an input vector under which the output
gets stable only after t = T ?

 Idea:
1. Characterize the set of all input vectors S(T) that make

the output stable no later than t = T
2. Check if S(T) contains S (all possible input vectors)
Can be solved as a SAT problem:
Is S \ S(T) empty? - set difference + emptiness checking

 Let F and F(T) be the characteristic functions of S and S(T)
 Is F F(T) satisfiable?

32

SAT-Based False Path Analysis
 Example

a

b

c

d

e f

g

Assume all the PIs arrive at t = 0, all gate delays = 1
Is the output stable time t > 2?

33

SAT-Based False Path Analysis
 Example

 g(1,t=2) : the set of input vectors under which g gets stable
to value = 1 no later than t =2

 g(1,t=2) = d(1,t=1) f(1,t=1) = (a(0,t=0) b(0,t=0))
(c(1,t=0) e(1,t=0)) = a b (c) = a b c = S1(t=2)

 g(1,t=) = onset = a b c = g(1,t=2) = S1

a

b

c

d

e f

g

Onset:
stabilized by t=2?

34

SAT-Based False Path Analysis
 Example

 g(0,t=2) : the set of input vectors under which g gets stable
to value = 0 no later than t=2

 g(0,t=2) = d(0,t=1) f(0,t=1) = (a(1,t=0) b(1,t=0))
(c(0,t=0) e(0,t=0)) = (a+b) + (c) = a+b = S0(t=2)

 g(0,t=) = offset = a+b+c = S0

a

b

c

d

e f

g

35

SAT-Based False Path Analysis
 Example

 g(0,t=2) : the set of input vectors under which g gets stable
to 0 no later than t=2

 g(0,t=2) = a+b
 g(0,t=) = offset = a+b+c
 g(0,t=) \ g(0,t=2) = (a+b+c) (a+b) = abc satisfiable

a

b

c

d

e f

g

Offset:
NOT stabilized by t=2
under abc=000

36

Timing Analysis

Summary
 False-path-aware arrival time analysis is well-

understood
Practical algorithms exist

Remaining problems
Incremental analysis (make it so that a small change

in the circuit does not make the analysis start all over)
Integration with logic optimization
Clock domain crossing issues

37

Timing Optimization
Several factors affecting circuit delay:
 Technology

 Design type (e.g. domino, static CMOS, etc.)
 Gate type
 Gate size

 Circuit structure
 Length of computation paths
 False paths
 Buffering

 Electrical parasitics
 Wire loads
 Layout

38

Timing Optimization
 Problem statement

Given:
 Initial circuit function description
 Library of primitive functions
 Performance constraints (arrival/required times)

Generate:
 An implementation of the circuit using the primitive

functions, such that:
performance constraints are met
circuit area is minimized

39

Timing Optimization

Design flow
Behavior optimization
(scheduling)

RTL synthesis

Logic synthesis
•Technology independent
•Technology mapping

Timing-driven place and route

Behavioral description

Logic and latches

Logic equations

Gate netlist

Layout

•Gate library
•Timing constraints
•Delay models

40

Timing Optimization
 Buffered circuit structure

function tree

buffer tree

41

Timing Optimization
 Circuit restructuring

 Reschedule operations to reduce computation time

 Timing-driven technology mapping
 Selection of gates from library

Minimum delay
 Similar to area minimization under the load independent

model
Minimize delay and area

 Implementation of buffer trees

 Gate/wire sizing

 Constant delay synthesis

42

Timing Optimization

Circuit restructuring
Global: Reduce depth of entire circuit

Partial collapsing
Boolean simplification

 Local: Mimic optimization techniques in adders
Carry lookahead (THR tree-height reduction)
Conditional sum (GST transformation)
Carry bypass (GBX transformation)

43

Timing Optimization

Circuit restructuring
 Performance measured by logic levels,

sensitisable paths, technology-dependent
delays

 Level-based optimization
Tree height reduction
Partial collapsing and simplification
Generalized select transform

Sensitisable path based optimization
Generalized bypass transform

44

Timing Optimization

Tree height reduction

n

l m

i j

h

k
3

6

5 5

1 4

1

0 0 0 0 2 0 0
a b c d e f g

i
1

0 0
a b

m

j

h

k
3

4
1

0 0 2 0 0
c d e f g

n’
duplicated
logic

1
200

5critical region
collapsed

critical region

45

Timing Optimization

Tree height reduction

i
1

0 0
a b

m

j

h

k
3

4
1

0 0 2 0 0
c d e f g

n’
Duplicated
logic

1
200

5

i
1

0 0
a b

m

j

h

k
3

4
1

0 0 2 0 0
c d e f g

1
2

0

3
5

n’

2

1

0

4

Collapsed
Critical region

New delay = 5

46

Timing Optimization
 Generalized bypass transform

 Make critical path false to bypass critical logic and speed
up circuit

fm=f fm+1 fn=g…

fm =f fm+1 fn=g… 0

1
g’

dg
__
df

Boolean difference s-a-0 redundant

47

Timing Optimization
 False path removal by logic duplication

fm+1 fm+2 fn…fm+k fm+k+1

f’m+1 f’m+2 f’m+k

fm+1 fm+2 fn…fm+k fm+k+10

… delay not increased

fm+k is the last node on the false path that fans out

controlling value of fm+1 48

c d e f g

c d e f g

c d e f g

Timing Optimization
 Generalized select transform

 Late signal feeds multiplexor

a

b

out

b

b

a=0

a=1

out
0

1

a

49

Timing Optimization

Summary
 There are various methods for delay

optimization at different synthesis stages
No single technique dominates
Most techniques (except false path removal by logic

duplication) ignore false paths when assessing the delay
and critical regions

