
1

Logic Synthesis and
Verification

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Fall 2014

2

Sequential Synthesis

part of the following slides are by
courtesy of Andreas Kuehlmann

3

Motivation

Pure combinational optimization can be
suboptimal since relations across register
boundaries are disregarded

4

Overview of Circuit Optimization

Combinational Optimization

Clock Skew Scheduling

Retiming

Architectural Restructuring

System-Level Optimization

O
p

ti
m

iz
at

io
n

 S
p

ac
e

D
is

ta
n

ce
 f

ro
m

 P
h

ys
ic

al
 Im

p
le

m
en

ta
ti

o
n

V
er

if
ic

at
io

n
 C

h
al

le
n

g
e

N
ec

es
si

ty
 o

f
In

te
g

ra
te

d
 S

o
lu

ti
o

n

5

Sequential Optimization Techniques

 Clock skew scheduling
 balance path delays by adjusting the relative clocking

schedule of individual registers

 Retiming
 balance path delays by moving registers within circuit

topology
 can be interleaved with combinational optimization

techniques

 Architectural restructuring
 add sequential redundancy

 fixed: does not change input/output behavior
 flexible: change input output behavior

 System-level optimization

6

Integration in Design Flow

Optimization space
 significantly more optimization freedom at a higher level

for improving performance, power, area, etc.
 Distance from physical implementation

 difficult to accurately model impacts on final
implementation

 difficult to mathematically characterize optimization
space

 Verification challenge
 departure from combinational comparison model would

impede formal equivalence checking
 different simulation behaviors cause acceptance

problems
 Necessity of tight tool integration!

7

Sequential Timing Constraints

Minimum clock period
 tclk(min) = max{tp, tx} + tc + tsu, where tx

is the time after the active clock edge at
which the X inputs are stable

Active edge
of clock

Q
Outputs
stable

D
Inputs
stable

Next active
Edge of clock

Minimum clock period (tclk)

FF propagation
delay (tp)

Combinational
circuit delay

(tc)

Setup time (tsu)

Comb.
logic

DQ

X

clk

8

Sequential Timing Constraints

 Setup-time constraint
 Cp tp + tc

max + tsu Combinational
logic (tc)

Launching
flip-flop

Capturing
flip-flop

FFjFFi

tjti

CLK

satisfied

tsu tp

tj
ti

tj+Cp
ti+Cp

tc

CLK=0 CLK=1

violated

tsu tp

tj
ti

tj+Cp
ti+Cp

tc

CLK=0 CLK=1

Cp: clock period

9

Sequential Timing Constraints

 Hold-time constraint
 tp + tc

min th

violated

th

tp

tj
ti

tj+Cp
ti+Cp

tc

CLK=0 CLK=1

satisfied

th

tp

tj
ti

tj+Cp
ti+Cp

CLK=0 CLK=1

tc

10

Clock Skew Scheduling

4

2

5

3r1

r2

r3

r4

Dmax=0 Dmax=14

Dmin=5Dmin=0

Dmax=0

Dmin=0
Skew =0
Tcycle=14

r1, r2, r3
r4

D’max=5 D’max=9

D’min=0D’min=5

Dmax=0

Dmin=0
Skew =5
Tcycle=9

r1, r2, r3
r4

Tcycle – Tsetup+ skew Dmax

Thold+skew Dmin

0 |skew| < Tcycle

0–5

11

Clock Skew Scheduling

 By controlling clock delays on registers, clock
frequency may be increased
 Do not change transition and output functions (not the

case in retiming)
Good for functional verification

 May require sophisticated timing verification

 Clock skew: clock signal arrives at different
registers at different times
 Positive skew: the sending register gets the clock earlier

than the receiving register
 Negative skew: the receiving register gets the clock

earlier than the sending register

12

Clock Skew Scheduling

 Pros
 Inexpensive “post synthesis” technique to further reduce

clock period
 Combinational design model is preserved

 Cons
 Setup and hold time constraints must be obeyed

 including hold time constraints from scan chain

 Interleaving with combinational optimizations impossible
 Replication of clocking tree required

13

Retiming

4

2

5

3r1

r2

r3

r4

Dmax=6 Dmax=8

Dmin=3Dmin=2

Dmax=0

Dmin=0

Skew =0
Tcycle=8

r’1 r4

4

2

5

3r’1 r4

Skew = 1
Tcycle= 7()

14

Retiming

Optimize sequential
circuits by
repositioning registers
 Move registers so that

clock cycle decreases or
register count
decreases

 Input-output behavior
is preserved; however,
transition and output
functions are changed
due to the register
movement

s1
s2 s3

x

t1 t2 t4
x

t3

15

Retiming

 Pros
 Only setup time constraint (0 clock skew)
 Simple integration with other logical (e.g. combinational)

or physical optimizations
E.g., iterative retiming and resynthesis

 Easy combination with clock skew scheduling to obtain
global optimum

 Cons
 Change combinational model of design

Severe impact on verification methodology
 Inaccurate delay model
 Computation of equivalent reset state required

16

Architectural Retiming

2

2 2r2

r2

r3

r4

r1

.

{ 20

2

2 2

r2

r3

r4

.

{ 10{ 10

r’1

r’4

17

Architectural Retiming

 Pros
 Smooth extension of regular retiming
 Potential to alleviate global performance bottlenecks by

adding sequential redundancy and pipelining

 Cons
 Significant change of design structure

substantial impact on verification methodology

 Flexible architectural restructuring changes I/O behavior
existing RTL specification methods not always applicable

18

Verification Issues

 Timing verification unchanged
 Functional verification affected

 Except for clock skew scheduling, sequential
optimization does change register (transition) functions

 Traditional combinational equivalence checking not
applicable

 Simulation runs not recognizable by designers -
acceptance problems

 Solution:
preserve retime function (mapping function) from synthesis

for:
 reducing sequential EC problem back to combinational case

 no false positives possible!
 modifying simulation model to reproduce original simulation

output

19

Retiming Circuits

Objectives:
 Reduce clock cycle time
 Reduce register count (area)
 Reduce power, etc.

 Input: A netlist of gates and registers

Inputs

Outputs

20

Retiming Circuits

 Circuit represented as retiming graph G(V, E)
[Leiserson and Saxe 1983, 1991]
 V: vertex set representing logic gates
 E: edge set representing connections
 d(v) = delay of gate/vertex v, (d(v)0)
 w(e) = number of registers on edge e, (w(e)0)

21

Retiming Circuits
 Example

 Synchronous circuit assumption: every cycle of a circuit has at
least one register, i.e., no combinational loop

Circuit

Operation delay

 3

+ 7

0

3 3

0

0
0

0
2

Retiming Graph

7
+

Host

The host node represents the
environment that interacts with the
circuit via the primary inputs and
outputs

22

Retiming Circuits

 For a path p :

 Path delay

 Path weight

Minimum clock cycle

1

0

0

)()(

)()(

k

i
i

k

i
i

ewpw

vdpd endpoints) (includes

: () 0
max { ()}

p w p
c d p

0 11

0 1 1

ke ee

k kv v v v

c = 13

Path with

w(p)=00

3 3

0

0
0

0
2

7

23

Retiming Circuits

Atomic operation
Move registers across a gate in a forward or

backward direction

Does not affect gate functionality, but timing

Retime by 1

Retime by -1
(delayed by -1 cycle)

(delayed by 1 cycle)

24

Retiming Circuits
 Retiming can be formalized with a retime function

r: V Z, where Z is the set of integers
 I.e., a retime function performs integer labeling on

vertices

 Weight update after retiming with r
 wr(e) = w(e) + r(v) - r(u), for edge e= (u,v)
 wr(p) = w(p) + r(t) - r(s), for path p from s to t

 A retiming with some r is legal if wr(e) 0, eE

vu
0

3 3

0

0
0

0
2

7

vu
0

3 3

0

1
1

0
1

7

r(u) = -1, r(v) = -1

u v
3

+2+1

wr(u,v) = 3 + 2 – 1 = 4

25

Min-Cycle Retiming
 Problem Statement: (minimum cycle retiming)

Given G(V, E) with delay function d and weight function w,
find a legal retiming r so that

is minimized

 Retiming: two important matrices
 Register weight matrix

 Delay matrix

: () 0
max { ()}

rp w p
c d p

(,) min{ () : }p

p
W u v w p u v

(,) max{ () : , () (,)}p

p
D u v d p u v w p W u v

26

Min-Cycle Retiming

 Example

For some constant , minimum clock cycle
c p, if d(p) then w(p) 1

0

3 3

0

0
0

0
2

7

W = register path weight matrix
(minimum # registers on all paths
between u and v)
D = path delay matrix
(maximum delay on the paths
between u and v with w(p)=W(u,v))

v1
v2

v3

v0

Don’t count paths passing through the host!

W
V0 V1 V2 V3

V0
V1
V2
V3

0 2 2 2
0 0 0 0
0 0 0
0 0

D
V0 V1 V2 V3

V0
V1
V2
V3

0 3 6 13
13 3 6 13
10 3 10
7 7

27

Min-Cycle Retiming
 Assume that we are asked to check if a retiming exists for a clock

cycle
 Legal retiming: wr(e) 0 for all e. Hence

wr(e) = w(e) + r(v) - r(u) 0, or
r (u) - r (v) w (e)

 For all paths p: u v such that d(p) , we require wr(p) 1.
Thus

 Take the least w(p) (tightest constraint) r(u)-r(v) W(u,v)-1
 Note: This is independent of the path from u to v, so we just need to

apply it to u, v such that D(u,v)

1

0

1

1
0

0

1 () ()

[(

() () (

) () ()]

() ()

)

()

k

r r i
i

k

i i i
i

k

w p w e

w e r v

w p r

r v

w p r v v

r u

r

v

28

Min-Cycle Retiming

 Example
Assume = 7

Legality:
r(u)-r(v)w(e)

0)()(

0)()(

0)()(

0)()(

2)()(

03

32

31

21

10

vrvr

vrvr

vrvr

vrvr

vrvr

1)()(

1)()(

1)()(

1)()(

1)()(

32

02

31

01

30

vrvr

vrvr

vrvr

vrvr

vrvr

D>7:
r(u)-r(v)W(u,v)-1

v1

v0 0

3

0

0
0

0
2

7

3

v2

v3

W
V0 V1 V2 V3

V0
V1
V2
V3

0 2 2 2
0 0 0 0

0 0 0

0 0

D
V0 V1 V2 V3

V0
V1
V2
V3

0 3 6 13
13 3 6 13
10 3 10
7 7

All constraints are in the difference-of-2-variable
form and closely related to shortest path problem

29

Min-Cycle Retiming

 Example

A solution is r(v0) = r(v3) = 0,
r(v1) = r(v2) = -1

r(v1)r(v0)

r(v3)r(v2)

0

0

1

-1

-1

-1

0,-1

0,-1

0

0
-1

2

Constraint graph

0

0

0

0

0

Legality:
r(u)-r(v)w(e)

0)()(

0)()(

0)()(

0)()(

2)()(

03

32

31

21

10

vrvr

vrvr

vrvr

vrvr

vrvr

1)()(

1)()(

1)()(

1)()(

1)()(

32

02

31

01

30

vrvr

vrvr

vrvr

vrvr

vrvr

D>7:
r(u)-r(v)W(u,v)-1

Search shortest path on constraint graph:
Bellman-Ford algorithm O(|V||E|) or O(|V|3)

A solution exists if and only if there exists no
negative weighted cycle

30

Min-Cycle Retiming
 To find the minimum cycle time, do a binary search among

the entries of the D matrix O(VE logV)

RetimeRetime

Clock cycle
= 3+3+7=13 Clock cycle = 7

V2v1

v0 0

3 3

0

0
0

0
2

7

+

Host

+

Host

r(v0) = r(v3) = 0,
r(v1) = r(v2) = -1

V2v1

v0 0

3 3

0

1
1

0
1

7
v3 v3

31

Min-Cycle Retiming

 Theorem: r is a legal retiming on G such that the
clock cycle c for some constant if and only
if
1. r(vh)=0

2. r(u)-r(v) w(e) for every edge e(u,v)

3. r(u)-r(v) W(u,v)-1 (i.e. register count > 1) for every (u,
v) with D(u,v) >

 Solve the integer linear programming problem
 Bellman-Ford method O(|V |3)

32

Min-Cycle Retiming

Algorithm of optimal retiming:
1. Compute W and D

2. Binary search the minimum achievable clock
period by applying Bellman-Ford algorithm to
check the satisfication of the prior Theorem

3. Derive r(v) under the minimum achievable
clock period found in Step 2

Complexity O(|V |3 lg|V |)

33

Min-Cycle Retiming

 Two more algorithms:
1. Relaxation based:

 Repeatedly find critical path
 Retime vertex at end of path by +1 (O(VElogV))

2. Also, Mixed Integer Linear Program formulation

+1

u
Critical path

v

34

Min-Area Retiming
 Goal: minimize number of registers used

where av is a constant

:

:

min ()

(() () ())

() (() ())

(() ())

()(# () # ()

()

r r
e E

e u v

e E e u v

u v

v V

V
v V

N w e

w e r v r u

w e r v r u

N r v r u

N r v fanin v fanout v

N a r v

35

Min-Area Retiming

Minimize:

Subject to:
wr(e) = w(e) + r(v) - r(u) 0

Note: It is reducible to a flow problem

()v
v V

a r v

36

Retiming Issues

 Computation of equivalent initial states
 Equivalent initial states may not always exist

 General solution requires replication of logic for
initialization

 Timing models
 Too far away from actual implementation

1

0 ?

?

37

Retiming + Clock Scheduling

Mathematical formulation
 s: ER, a real edge labeling
 s(e) denotes the clock signal delay of all registers of e

 In addition to the register weight matrix and
delay matrix for the maximum delay, we also
need the minimum paths delays

min (,) min{ () : , () (,)}p

p
D u v d p u v w p w u v

(,) min{ () : }p

p
W u v w p u v

(,) max{ () : , () (,)}p

p
D u v d p u v w p w u v

38

Retiming + Clock Scheduling

 A valid retiming and clock skew schedule is an
assignment to r and s such that:

 Solution Mixed Integer Linear Program (MILP)

min

(1) 0

(2) (',), (, ') :

 (',) 0 (, ') 0 (,) 0

 (,) (',) (, ')

 (,) (',) (, ')

r

hold

clock setup

w

u u v v

w u u w v v W u v

D u v s u u s v v T

D u v s u u s v v T T

39

Retiming & Resynthesis

Combine retiming and combinational
optimization
Retime registers such that the circuit has a

large combinational logic block for optimization

Resynthesize the combinational logic block
with combinational logic minimization
techniques

Retiming and resynthesis can be iterated
Can achieve any state re-encoding

40

Retiming & Resynthesis

 Example

g1

g3

d
f

g2

a

b

c

e

(a)

g1

g3

d
f

g2

a

b

c

e

(b)

-1

g3

d
f

g2
a
b

c

e

(c)

-1

g3

d
f

g2
a
b

c

e

(d)

