
1

Logic Synthesis and
Verification

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Fall 2014

2

Equivalence and Property
Checking

part of the following slides are by
courtesy of Andreas Kuehlmann

3

Equivalence Checking in
Microprocessor Design

Architectural Specification
(informal)

RTL Specification
(Verilog, VHDL)

Circuit Implementation
(Schematic)

Layout Implementation
(GDS II)

Cycle Simulation

Equivalence
Checking

Circuit Simulation

Test Programs

Property Checking

4

Equivalence Checking in ASIC Design
RTL

Specification

Cell-Based
Synthesis

Standard Cell
Implementation

Engineering
Changes (ECOs)

Equivalence
Checking

Final
Implementation

Equivalence
Checking

Property Checking

5

Finite State Machine Model
 M(X,Y,S,S0,,):

 X: Inputs
 Y: Outputs
 S: Current State
 S0: Initial State(s)
 : X S S

(next-state function)
 : X S Y

(output function)

X=(x1,x2,…,xn) Y=(y1,y2,…,yk)

S=(s1,s2,…,sm) S’=(s’1,s’2,…,s’m)

D

6

Sequential Equivalence Checking
 Definition: Two FSMs M1 and M2 are functionally equivalent iff the

product machine M1 M2 produces a constant 0 sequence for all
valid input sequences {X(1),…,X(t)}

D

D

{X(1),X(2),…,X(t)} {0,0,...,0}

y1

y2

Product Machine M1 M2:

M1

M2

(x,(s1,s2)) =
(x,s1), (x,s2))

(x,(s1,s2)) =
(x,s1) (x,s2)

7

General Approach to SEC

bad states
i.e. x.(x,s) 0
good states
i.e. x.(x,s) = 0

Product state space S = S1 S2

initial state S0

R: states s with r(s) = 1

Inductive proof of equivalence:
Find subset R S with characteristic function r: S {0,1} such that:
1. r(s0) = 1 (initial state is in R)
2. (r(s) = 1) r((x,s)) = 1 (all R states cannot go to R’ states)
3. (r(s) = 1) (x,s) = 0 (all R states are good states)

R’= S\R: states s with r(s) = 0

8

Sequential Equivalence Checking
 Proving sequential equivalence under state set R

1. Check (by SAT) that initial state S0 is contained in R, i.e. r(s0)
= 1

2. Check (by SAT) that
 states in R are good states:

x. r(s) (x,s), i.e., r(s) (x,s) unsatisfiable
 all states from R lead only to states in R:

x. r(s) r((x,s)), i.e., r(s) r((x,s)) unsatisfiable

D

r

r

0?

0?

x

s

9

Soundness and Completeness
With a candidate state set R we can
 prove equivalence

that means the method is “sound”
we will not produce “false positives”

 but not disprove equivalence
that means the method is “incomplete”
we may produce “false negatives”

10

Inductive State Set Derivation
 Reachability analysis:

 state traversal until no more states can be explored
 forward vs. backward
explicit vs. implicit (symbolic)

 Relying on the design methodology to provide R:
 equivalent state encoding in both machines
 synthesis tool provides hint for R from sequential

optimization
manual register correspondence
automatic register correspondence

 Combination of them

11

Combinational EC
 Industrial equivalence checkers almost exclusively use a

combinational EC paradigm
 sequential EC is too complex, can only be applied to design

with a few hundred state bits
 combinational methods scale linearly with the design size for a

given fixed size and “functional complexity” of the individual
cones

 Still, pure BDDs and plain SAT solver cannot handle all cones
 BDDs can be built for about 80% of the cones of high-speed

designs
 less for complex ASICs
 plain SAT blows up on a “miter” structure

 Contemporary method highly exploit structural similarity of
designs to be compared

12

Combinational EC
 Basic methods:

 random simulation, good for finding mis-compares
 BDD-based with modifications
 structural SAT-based with modifications

x 0?

Miter structure

13

Combinational EC
 Memory statistics of BDD-based EC on a PowerPC processor

design

14

Combinational EC
 Runtime statistics of BDD-based EC on a PowerPC

processor design

15

Combinational EC
 Evidence of vast existence of structure similarities

Fu
nc

tio
na

l E
qu

iv
al

en
t N

et
s

(%
)

Circuit Size 16

Structure and Verification
 Structure-independent techniques

 Exhaustive simulation
 Decision diagrams

 Structure-dependent techniques
 Graph hashing
 SAT based cutpoint identification

Struture-
independent
techniques

Structure-dependent
techniques

Combined
methods

Degree of
Structural
Difference

Size

17

Constrained EC
 Input constraints:

 Non-occurring input values (don’t cares)
 Unreachable states
 Candidate for R

x 0?MAP

0?

c

x’

x

1. Input Mapping:

2. Output Masking:

Characteristic function for constraint
18

Cutpoint-Based EC
 Cutpoints are used to partition the miter

0?

f1

f2

f3

v1

v2

0?

0?

f1

f2

f3

v2

v1

x

Cutpoint guessing:
• Compute net signature with random
simulator
• Sort signatures + select cutpoints
• Verify and refine cutpoints iteratively
• Verify outputs

19

Cutpoint-Based EC
 False negatives

 Outputs may miscompare for invalid cutpoint values

x

y
z v

v

out

00 10 11 01
00
01
11
10

vz
xy

1
1

1
1

1 1
11

00 10 11 01
00
01
11
10

vz
xy

1
1

1 1
11

00 10 11 01
00
01
11
10

vz
xy

1
1

1
1

1 1

11

Constraint:
c = (v y+z)

What can we do about false negatives:
• constrain input space to c = (v y+z)
• if v in SUPPORT(out), then out = compose(out, v, fv) 20

Cutpoint-Based EC
 Permissible cutpoints

 Apply ATPG:
test for s-a-0 at output

checks for permissible
functions

test for s-a-1 at output
checks for inverse
permissible functions

 Merge permissible
cutpoints successively
from inputs to outputs

Testable for s-a-0 or s-a-1?

x

0?x

21

Sequential EC
 If combinational verification paradigm fails (e.g.

we have no name matching)
 Two options:
Run general sequential verification based on

state traversal
Very expensive but most general

 Try to match registers automatically
Structural register correspondence
Functional register correspondence

22

Register Correspondence
 Find registers in product machine that implement identical

or complemented function
 These are matching registers in the two FSMs under

comparison
 BUT: might be more, we may have redundant registers

 Definition: A register correspondence RC ss is an
equivalence relation in the set of registers s
 Can be extended to also include complemented functions
 A register correspondence can be used as a candidate for R:

RC s s
(,)

() ()
i j

i j

s s RC

r s s s

23

Register Correspondence
 Algorithm REGISTER_CORRESPONDENCE {
RC’ = {(si,sj) | si0 = sj0}
//start with registers with identical initial values
do {

RC = RC’
r(s) = (si,sj)RC (si sj)
RC’ = {(si,sj) | (si,sj)RC i(x,s)=j(x,s) r(s)}
//i is the transition function of si

} while (RC’ != RC)
return RC

}

 In essence
 The algorithm starts with an initial partitioning with two equivalence classes, one

for each initial value
 The algorithm computes iteratively the next-state function, assuming that the RC

is correct
 if yes, fixed point is reached and RC returned
 if no, split equivalence classes along the mis-compares

24

Register Correspondence
 Example

Result:
{s1,s4}
{s2,s3,s5}

s1

1 11

1 1

s2 s3

s4
s5

x

s1=1 s2=1
s3=1 s4=1

s5=1
v

s1= x v
s4= x v

v1

s2= v
s3= v
s5= v

v2

s1= x v1

s4= x v1

v1

s2= v1v2)
s3= v1v2)
s5= v1v2)

v2

Instead of using
constraint, use
fresh variable for
each class

25

Register Correspondence

Potential problems:
 In case of mis-comparing designs

Effect of mis-compared cone may ripple through
entire algorithm and split all equivalence classes until
they contain only single registers

Difficult to debug since no hint of error location
Solution:

 Relax equivalence criteria
 E.g. structural register correspondence algorithm

based on support set of registers
 Combine with name mapping, functional/structural

criteria

26

Sequential EC
 In case that combinational EC model fails:
Use generalized register correspondence to

also consider retiming
In essence, use all internal nets as candidates for

possible matches

Worst case: general sequential verification
 Prove that the output of the product machine

is not satisfiable (sequentially)
Special case of general property checking

27

Sequential EC
 State traversal

 Forward
 Start from initial state(s)
 Traverse forward to check whether

"bad" state(s) is reachable
 Backward

 Start from bad state(s)
 Traverse backward to check whether

initial state(s) can reach them
 Hybrid

 Compute over-approximation of
reachable states by forward traversal

 For all bad states in over-
approximation, start backward
traversal to see whether initial state
can reach them

S0

S0

S0

28

Sequential EC
 Transition relation

 Example

Transition Relation t(s,s’):
1 if there is a transition from s to s'

(, ')
0 otherwise

(, ') .(' (,))

t s s

t s s x s x s

0 1

X=0

X=1

0,1

(,) ' ' (,) (, ') .(' (,))
0 0 1 0 0 0
1 0 1 0 0 0
0 1 0 0 1 1
1 1 1 0 0 1
0 0 1 1 1 1
1 0 1 1 1 1
0 1 0 1 0 1
1 1 1 1 1 1

x s x s s s x s t s s x s x s

.x

29

Sequential EC
 Image and pre-image of states

 Example

Image of a set of states r(s):

(,) .(() (, '))IMG t r s r s t s s

Pre-Image of a set of states r(s):

(,) '.((') (, '))PREIMG t r s r s t s s

0 2

1 3
4

r(s) Img(t,r(s))

r(s) = (s 0) (s 1) {0,1}

t(s,s’) = (s 0) (s’ 2) {(0,2),
(s 0) (s’ 3) (0,3),
(s 1) (s’ 3) (1,3),
(s 2) (s’ 4) (2,4)}

t r = (s 0) (s’ 2) {(0,2),
(s 0) (s’ 3) (0,3),
(s 1) (s’ 3) (1,3)}

s.(r t) = (s’ 2) (s’ 3) {2,3}
30

Sequential EC
 Forward state traversal
Algorithm TRAVERSE_FORWARD(t, ,S0) {

reached =
current = S0 // start from init
while (reached (reached current)) { // fixed point
reached = reached current // add new states
next = IMG(t,current) // one step transition
current = next // rename variable

}
return x.((x,s) reached)

}

 Example

0 1

3 2

4

5 6

Iteration: 1 2 3
Reached: {0} {0,1,2} {0,1,2,3}
Current: {0} {1,2} {1,2,3}
Next: {1,2} {1,2,3} {0,1,2,3}

31

Sequential EC
 Forward state traversal
Algorithm TRAVERSE_BACKWARD(t, ,S0) {

reached =
current = x.((x,s)=1) // start from bad
while (reached (reached current)) { // fixed point
reached = reached current // add new states
previous = PRE_IMG(t,current) // one step transition
current = previous // rename variable

}
return (S0 reached)

}

 Example

0 1

3 2

4

5 6

Iteration: 1 2 3
Reached: {6} {4,6} {4,5,6}
Current: {6} {4} {4,5}
Previous: {4} {4,5} {4,5,6}

32

Sequential EC
 Explicit reachability analysis

 Represent states explicitly (e.g. as bit string) => limited
capacity

 Use hashtable to find quickly whether state was reached
before

 Image operation: simple simulation
 Preimage operation: SAT run

 Symbolic reachability analysis
 Represent states and transition relation symbolically

E.g. BDDs, circuits, DNF, etc.
 Use BDD operations to perform image and preimage

operation (simple AND or AND_EXIST)
 Lots of heuristic improvements to keep BDD size under

control

33

Sequential EC
 Let R(s) be the characteristic function of the set

of reachable states of the product FSM M12
obtained from forward reachability analysis. Then
FSMs M1 and M2 are equivalent if and only if

12(x,s) R(s)
is constant 0 for all valuations on input variables
x and state variables s
 This can be checked in constant time for BDD

34

Sequential EC
 Example

 To check: The equivalence of M1 and M2

35

Sequential EC
 Example (cont’d)

 Construct product FSM of M1 and M2

36

Sequential EC
 Example (cont’d)

 Forward reachability analysis based on image
computation '(,) [, . (, , ') ()]s sImg C T x s T x s s C s

s1
t2

s0
t3

s1
t1

s0
t0

R0

R1

R2
R3

37

Sequential EC
 Example (cont’d)

 Backward reachability analysis based on pre-image
computation '(,) [, '. (, , ') (')]s sPreImg C T x s T x s s C s

s0
t1

s1
t0

s1
t3

R0
R1

s0
t2 s0

t0
s1

t2

0/0

1/0

0/0 1/0

s1

t1

s0

t30/0

1/0

0/01/0

s1

t0

0/1

1/1

0/1

1/1

s0

t1

s0

t2
0/1 1/1

s1

t3

1/10/1

38

Sequential EC
 Alternative approach beyond reachability analysis

 Based on state equivalence
Two FSMs are equivalent if and only if their initial states

are equivalent
 Two states of an FSM are equivalent if starting these two

states the FSM behaves indistinguishably

 Explicit algorithm (based on state transition graph
enumeration) is known
Used in state minimization where equivalent states must

be identified

 How about implicit algorithm (based on Boolean
manipulation) ?

39

Sequential EC
 State partitioning based sequential EC

 Construct and multiplexed FSM (disjoint union of the
state graphs)

 Example

aux

0

1

M1

M2
0

1

0

1

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1

40

Sequential EC
 State partitioning over multiplexed FSM

 Using BDD-based functional decomposition

 Example (cont’d)

41

Sequential EC

State partitioning based sequential EC
BDD-based functional decomposition

Bound set variables (top): state variables
Free set variables (bottom): others
Cutset: free-set nodes with incoming edges from

bound-set nodes
 Paths leading to a node in the cutset form an

equivalence class of states (for an iteration)
 Iterate functional decomposition over

composed functions

42

Sequential EC

Example (cont’d)
State partitioning

s0

s1t0

t2t1

t3

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1

43

Sequential EC

Connection between reachability based
SEC and state partitioning based SEC
Backward reachability analysis can be

considered as state partitioning in the product
state space

44

Sequential EC
 Summary

 Industrial EC checkers almost exclusively use an
combinational EC paradigm even for sequential EC
Sequential EC is too complex and can only be applied to

design with a few hundred state bits
Structure similarity should be identified to simplify

sequential EC

 Besides sequential equivalence checking, reachability
analysis is useful in sequential circuit optimization
Recall in sequential optimization that unreachable states

can be used as sequential don’t cares to optimize a
sequential circuits

45

Model Checking

A model checking problem is defined by

M |=

“implementation”
(system model)

“specification”
(system property)

“satisfies”, “implements”, “refines”
(satisfaction relation)

more detailed more abstract

46

Model Checking
M |=

 Check if system model M satisfies a system property

 System model M is described with a state transition
system
 finite state or infinite state

 Temporal property can be described with three
orthogonal choices:

1.operational vs. declarative: automata vs. logic
2.may vs. must: branching vs. linear time
3.prohibiting bad vs. desiring good behavior: safety vs.

liveness

Different choices lead to different model checking
problems.

47

Property Checking
 Assertion-based verification

 Properties are expressed as RTL annotations in terms or assertions
(“This statement must hold true”)

 E.g. AG(x=y) “For all paths from the initial state and all successor
states x=y”

 Formal verification methods:
 Exhaustive, do not require simulation vectors

 Main methods:
 Theorem proving
 Model Checking

 Liveness property checking
 Safety property checking

 Refinement checking
 Equivalence checking
 Bounded property checking

E
xp

re
ss

iv
ne

ss

C
ap

ac
ity

/
D

eg
re

e
of

 A
ut

om
at

io
n

48

Property Checking
 Safety property:

Something “bad” will never
happen
 Safety property violation

always has a finite witness
 if something bad happens

on an infinite run, then it
happens already on some
finite prefix

 Example
 Two processes cannot be

in their critical sections
simultaneously

 Liveness property:
Something “good” will
eventually happen
 Liveness property violation

never has a finite witness
 no matter what happens

along a finite run,
something good could still
happen later

 Example
Whenever process P1

wants to enter the critical
section, provided process
P2 never stays in the
critical section forever, P1
gets to enter eventually

For finite state systems, liveness can be converted to safety!

49

Safety Property Checking

Safety property checking can be
formulated as a reachability problem
Are bad states reachable from good states?

Sequential equivalence checking can be
considered as one kind of safety property
checking
M : product machine
 : all states reachable from initial states has

output 0

50

Safety Property Checking
 Concept:

 Counter example has finite length
 Specification in terms of “bad behavior” that should not happen
 E.g. specify a state with a bad property or a bad output condition
 Handles 95% of practical properties

 Basic approach:
 Express property as formula on state and inputs
 Single reachability analysis sufficient to decide about correctness

Bad state (overflow)

Good state (no overflow)Initial state

Property:
AG(^overflow)
“The history buffer never overflows”

51

Liveness Property Checking
 Concept:

 Counter example has infinite length
 Specification in terms of “good behavior” that should always happen
 E.g. AG(req=>AF ack)

 Basic approach:
 Nested reachability analysis according to formula

req

ack

M1 M2 Property:
AG(req=> AF ack)
“A request from M1 will always
be acknowledged by M2”

52

Model Checking
Data structure evolution in model

checking
State graph (late 70s-80s)

Problem size ~104 states
BDD (late 80s-90s) – symbolic model checking

Problem size ~1020 states
Critical resource: memory

SAT (late 90s-) – bounded/unbounded model
checking
GRASP, SATO, chaff, berkmin
Problem size ~10100 (?) states
Critical resource: CPU time

53

Bounded Model Checking
 Bounded Model Checking (Biere, et al., TACAS

1999):
 Property checking method based on finite unfolding of

transition relation interleaved with checks of the
property
Sound: in its pure form no false positives are possible
Incomplete: cannot guarantee correctness of property

 Basic method:
CNF-based:

 Use CNF-based SAT solver to represent unfolding and proof
UNSAT for correctness of property

Circuit-based:
 Use ATPG-like reasoning to show untestability

Hybrid:
 Use circuit rewriting and SAT checking interleaved

 e.g. based on AND/INV graphs

54

Bounded Model Checking
Notation
Variables for current and next state: s, s’
 Predicate for transition relation: t(s,s’)

t(s,s’)=1 iff there is a transition from s to s’
 Predicate for initial states: i(s)

i(s)=1 iff s is an initial state
 Predicate for property: p(s)

p(s)=1 iff s satisfies property p
 Predicate for all paths of length k:

tk(s0,sk) = 0i<k t(si,si+1)
tk(s0,sk)=1 iff there is a transition path of length k

from s0 to sk

55

Bounded Model Checking
BMC for length k

BMCk = i(s0) tk(s0,sk) p(sk)

BMC loop
Algorithm BMC(max_length){
forall 0 k < max_length do {
if(SAT(BMCk)) return FAIL

}
return SUCCESS;

}

56

Bounded Model Checking

BMC unfolding
 Time-frame expansion

0()I s

PP P P

1 0 1(,)T s s
2 1 2(,)T s s

1(,)i i iT s s
…

Comments:
• Any SAT technique can be used for checking frames
• Combination with random simulation, parallel runs etc.

57

Unbounded Model Checking
 K-step induction [Sheeran, FMCAD 2000]

 Assert correctness of properties proven for previous frames

 Simple path constraint
 No state visited twice

 K-step inductiveness
 In addition to BMCk check also

 Interpolation [McMillan, CAV 2003]

 SAT-based model checking without unrolling [Bradley,
VMCAI 2011]

invk tpk (s0 ,sk) p(sk)

tpsimple

k (s0 ,sk)
0 ik

p(si) t(si ,si1)
0 i jk

si sj

tpk (s0 ,sk)

0 ik
p(si) t(si ,si1)

58

Model Checking
 Summary

 Temporal logic is a variation of mathematical logic and is
concerned with temporal reasoning
Developed since 1970’s

 Model checking is concerned with algorithmic verification
of temporal properties
Developed since 1980’s
Hardware model checking techniques are being applied in

the software domain

 Reference
K. McMillan. Symbolic Model Checking. Kluwer Academic

Publishers, 1993
M. Clarke, O. Grumberg, and D. Peled. Model Checking.

MIT Press, 1999

