
Logic Synthesis & Verification, Fall 2014
National Taiwan University

Programming Assignment 1

Due on 2014/10/15 before lecture

1 [Using ABC]

(10%)

(a) Use BLIF manual
(http://www.eecs.berkeley.edu/∼alanmi/publications/other/blif.pdf)
to create a BLIF file representing a four-bit adder.

(b) Perform the following steps to practice using ABC
(http://www.eecs.berkeley.edu/∼alanmi/abc/):
1. read the BLIF file into ABC (command “read”)

2. check statistics (command “print stats”)

3. visualize the network structure (command “show”)

4. convert to AIG (command “strash”)

5. visualize the AIG (command “show”)

6. convert to BDD (command “collapse”)

7. visualize the BDD (command “show bdd”; note that show bdd only shows
the first PO; command “cone” can be applied in combination to show
other POs)

Items to turn in:

1. The BLIF file.

2. Screenshot of your ABC execution steps.

3. Results of “show” and “show bdd”.

Comment 1: For commands “show” and ”show bdd” to work, please download
the binary of software “dot” from GraphViz webpage
(http://www.graphviz.org) and put it in the same directory as the ABC
binary or anywhere else in the path.

Comment 2: Make sure GSview and Ghostscript are installed on your com-
puter. (http://pages.cs.wisc.edu/∼ghost/gsview/) A proper path of
gsview32.exe needs to be specified in “\src\base\abc\abcShow.c.”
For Windows 7, the path is likely to be
C:\Program Files (x86)\Ghostgum\gsview\gsview32.exe.

2 Programming Assignment 1

2 [ABC Boolean Function Representations]

(10%) In ABC there are different ways to represent Boolean functions.

(a) Please compare the following differences.
1. logic network in AIG (by command “aig”) vs. structurally hashed AIG

(by command “srtash”)
2. logic network in BDD (by command “bdd”) vs. collapsed BDD (by com-

mand “collapse”)
(b) Given a structurally hashed AIG, please find a sequence of ABC commands

to covert it to a logic network in SOP.

3 [Programming ABC]

(80%) Write a procedure in ABC environment to perform bit-wise simulation
over a given AIG with respect to a given set of input simulation patterns. (Please
refer to the code of command “strash” to convert a logic network into an AIG.)
Integrate your AIG simulation procedure into ABC, so that running command
“print aigsim” would invoke your code, and print the simulation patterns for
each output.

The input pattern file, say C17.pni for circuit C17.blif, is of the following
format:

.model C17

.patterns 128

.input 1GAT(0)

3DEF63A5B4ACF7E3A4CD4251EC625EC2

.input 2GAT(1)

59C23D0F66A5B484F763AACD4B11EB5D

...

.end

The expected output pattern file, say C17.pno for circuit C17.blif, is of the
following format:

.model C17

.patterns 128

.output 22GAT(10)

0123456789ABCDEFFEDCBA9876543210

.output 23GAT(9)

...

.end

In the files, .model is followed by the circuit name, .patterns is followed by
the number of patterns (in bits), .input is followed by an input name and the
following line list the patterns in hexadecimal numbers, .output is followed by
an output name and the following line list the patterns in hexadecimal numbers,

Logic Synthesis & Verification, Fall 2014 National Taiwan University 3

and .end signifies the end of the file.

Programming help:

Example of code to iterate over the objects

void Abc NtkCleanCopy(Abc Ntk t * pNtk)

{
Abc Obj t * pObj;

int i;

Abc NtkForEachObj(pNtk, pObj, i)

pObj->pCopy = NULL;

}

Example of code to create new command “print aigsim”
Call the new procedure (say, Abc AigSim) from Abc CommandAigSim() in file
\src\base\abci\abc.c

int Abc CommandAigSim(Abc Frame t * pAbc, int argc, char ** argv)

{
...

Abc AigSim(...);
...

}

Items to turn in:

1. Your code of Abc CommandAigSim and other function calls if there is any.

