Reducing Memory Requirement

- Akers’s Observations (1967)
 - Adjacent labels for \(k \) are either \(k-1 \) or \(k+1 \).
 - Want a labeling scheme such that each label has its preceding label different from its succeeding label.
- Way 1: coding sequence 1, 2, 3, 1, 2, 3, ...; states: 1, 2, 3, empty, blocked (3 bits required)
- Way 2: coding sequence 1, 1, 2, 2, 1, 1, 2, 2, ...; states: 1, 2, empty, blocked (need only 2 bits)

Reducing Running Time

- Starting point selection: Choose the point farthest from the center of the grid as the starting point.
- Double fan-out: Propagate waves from both the source and the target cells.
- Framing: Search inside a rectangle area 10–20% larger than the bounding box containing the source and target.
 - Need to enlarge the rectangle and redo if the search fails.

Hadlock’s Algorithm

- Uses detour number (instead of labeling wavefront in Lee’s router)
 - Detour number, \(d(P) \): # of grid cells directed away from its target on path \(P \).
 - \(MD(S, T) \): the Manhattan distance between \(S \) and \(T \).
 - Path length of \(P \), \(l(P) \): \(l(P) = MD(S, T) + 2d(P) \).
 - \(MD(S, T) \) fixed! \(\Rightarrow \) Minimize \(d(P) \) to find the shortest path.
 - For any cell labeled \(i \), label its adjacent unblocked cells away from \(T \) + 1; label \(i \) otherwise.
- Time and space complexities: \(O(MN) \), but substantially reduces the # of searched cells.
- Finds the shortest path between \(S \) and \(T \).
Soukup's Algorithm

- Soukup, "Fast maze router," DAC-78.
- Combined breadth-first and depth-first search.
 - Depth-first (line) search is first directed toward target T until an obstacle or T is reached.
 - Breadth-first (Lee-type) search is used to "bubble" around an obstacle if an obstacle is reached.
- Time and space complexities: $O(MN)$, but 10~50 times faster than Lee's algorithm.
- Find a path between S and T, but may not be the shortest!

Mikami-Tabuchi's Algorithm

- Every grid point is an escape point.

Hightower's Algorithm

- A single escape point on each line segment.
- If a line parallels to the blocked cells, the escape point is placed just past the endpoint of the segment.

Global Routing Graph

- Each cell is represented by a vertex.
- Two vertices are joined by an edge if the corresponding cells are adjacent to each other.
Global-Routing Problem

- Given a netlist \(N = \{N_1, N_2, ..., N_n\} \), a routing graph \(G = (V, E) \), find a Steiner tree \(T_i \) for each net \(N_i, 1 \leq i \leq n \), such that \(U(e_j) \leq c(e_j), \forall e_j \in E \) and \(\sum_i L(T_i) \) is minimized, where
 - \(c(e_j) \): capacity of edge \(e_j \)
 - \(x_{ij} = 1 \) if \(e_j \) is in \(T_i \); \(x_{ij} = 0 \) otherwise
 - \(U(e_j) = \sum_i x_{ij} \): # of wires that pass through the channel corresponding to edge \(e_j \)
 - \(L(T_i) \): total wirelength of Steiner tree \(T_i \)
- For high performance, the maximum wirelength \(\max_i L(T_i) \) is minimized (or the longest path between two points in \(T_i \) is minimized).

Classification of Global-Routing Algorithms

- Sequential approach:
 - Select a net order and route nets sequentially in the order
 - Earlier routed nets might block the routing of subsequent nets
 - Routing quality heavily depends on net ordering
 - Strategy: Heuristic net ordering + rip-up and rerouting

- Concurrent approach:
 - All nets are considered simultaneously
 - E.g., 0-1 integer linear programming (0-1 ILP)

Net Ordering

- Net ordering greatly affects routing solutions.
- In the example, we should route net \(b \) before net \(a \).

Net Ordering (cont’d)

- Order the nets in the ascending order of the # of pins within their bounding boxes.
- Order the nets in the ascending (descending) order of their lengths if routability (timing) is the most critical metric.
- Order the nets based on their timing criticality.
Rip-Up and Re-routing

- Rip-up and re-routing is required if a global or detailed router fails in routing all nets.
- Approaches: the manual approach? the automatic procedure?
- Two steps in rip-up and re-routing
 1. Identify bottleneck regions, rip off some already routed nets.
 2. Route the blocked connections, and re-route the ripped-up connections.
- Repeat the above steps until all connections are routed or a time limit is exceeded.

Top-down Hierarchical Global Routing

- Recursively divides routing regions into successively smaller super cells, and nets at each hierarchical level are routed sequentially or concurrently.

Bottom-up Hierarchical Global Routing

- At each hierarchical level, routing is restrained within each super cell individually.
- When the routing at the current level is finished, every four super cells are merged to form a new larger super cell at the next higher level.

Hybrid Hierarchical Global Routing

- (1) neighboring propagation, (2) preference partitioning, and (3) bounded routing
The Routing-Tree Problem

- **Problem:** Given a set of pins of a net, interconnect the pins by a "routing tree."

- **Minimum Rectilinear Steiner Tree (MRST) Problem:** Given \(n \) points in the plane, find a minimum-length tree of rectilinear edges which connects the points.

\[\text{MRST}(P) = \text{MST}(P \cup S), \] where \(P \) and \(S \) are the sets of original points and Steiner points, respectively.

Theoretical Results for the MRST Problem

- **Hanan’s Thm:** There exists an MRST with all Steiner points (set \(S \)) chosen from the intersection points of horizontal and vertical lines drawn points of \(P \).

- **Hwang’s Theorem:** For any point set \(P \), \(\frac{\text{Cost}(\text{MRST}(P))}{\text{Cost}(\text{MST}(P))} \leq \frac{3}{2} \)

 - Best existing approximation algorithm: Performance bound \(\frac{61}{48} \) by Foessmeier *et al.*

Coping with the MRST Problem

- Ho, Vijayan, Wong, "New algorithms for the rectilinear Steiner problem,"
 1. Construct an MRST from an MST.
 2. Each edge is straight or L-shaped.
 3. Maximize overlaps by dynamic programming.

- About 8% smaller than \(\text{Cost}(\text{MST}) \).

Iterated 1-Steiner Heuristic for MRST

\[
\text{Algorithm: Iterated}_1\text{-Steiner}(P) \quad \text{P: set of n points.}
1 \text{ begin}
2 \quad S \leftarrow \emptyset; \quad /* H(P \cup S): set of Hanan points */
3 \quad \Delta \text{MST}(A, B) = \text{Cost}(\text{MST}(A)) - \text{Cost}(\text{MST}(A \cup B)) + 1
4 \quad \text{while} \quad (\text{Cand} \leftarrow \{ x \in H(P \cup S) \mid \Delta \text{MST}(P \cup S, \{x\}) > 0 \}) \neq \emptyset \quad \text{do}
5 \quad \text{find} \quad x \in \text{Cand} \quad \text{which maximizes} \quad \Delta \text{MST}(P \cup S, \{x\});
6 \quad S \leftarrow S \cup \{x\};
7 \quad \text{return} \quad \text{MST}(P \cup S);
8 \text{ end}
\]
Outline
- Partitioning
- Floorplanning
- Placement
- Routing
 - Global routing
 - Detailed routing
- Compaction

Channel Routing
- In earlier process technologies, channel routing was pervasively used since most wires were routed in the free space \((i.e., \text{routing channel})\) between a pair of logic blocks (cell rows)

Routing Region Decomposition
- There are often various ways to decompose a routing region.
- The order of routing regions significantly affects the channel-routing process.

Routing Models
- **Grid-based model:**
 - A grid is super-imposed on the routing region.
 - Wires follow paths along the grid lines.
 - **Pitch:** distance between two gridded lines
- **Gridless model:**
 - Any model that does not follow this "gridded" approach.
Models for Multi-Layer Routing

- **Unreserved layer model**: Any net segment is allowed to be placed in any layer.

- **Reserved layer model**: Certain type of segments are restricted to particular layer(s).
 - Two-layer: HV (Horizontal-Vertical), VH
 - Three-layer: HVH, VHV

Terminology for Channel Routing

- **Local density at column** i, $d(i)$: total # of nets that crosses column i.

- **Channel density**: maximum local density
 - # of horizontal tracks required \geq channel density.

Channel Routing Problem

- Assignments of horizontal segments of nets to tracks
- Assignments of vertical segments to connect the following:
 - horizontal segments of the same net in different tracks, and
 - terminals of the net to horizontal segments of the net.
- Horizontal and vertical constraints must not be violated
 - Horizontal constraints between two nets: the horizontal span of two nets overlaps each other.
 - Vertical constraints between two nets: there exists a column such that the terminal on top of the column belongs to one net and the terminal on bottom of the column belongs to another net.
- Objective: Channel height is minimized (i.e., channel area is minimized).

Horizontal Constraint Graph (HCG)

- **HCG $G = (V, E)$** is undirected graph where
 - $V = \{ v_i \mid v_i$ represents a net $n_i \}$
 - $E = \{(v_i, v_j) \mid$ a horizontal constraint exists between n_i and n_j\}.

- For graph G: vertices \Leftrightarrow nets; edge $(i, j) \Leftrightarrow$ net i overlaps net j.

A routing problem and its HCG.
Vertical Constraint Graph (VCG)

- VCG \(G = (V, E) \) is directed graph where
 - \(V = \{ v_i \mid v_i \) represents a net \(n_i \}\)
 - \(E = \{ (v_i, v_j) \mid \) a vertical constraint exists between \(n_i \) and \(n_j \}\).
- For graph \(G \): vertices ⇔ nets; edge \(i \rightarrow j \) ⇔ net \(i \) must be above net \(j \).

2-L Channel Routing: Basic Left-Edge Algorithm

- Hashimoto & Stevens, "Wire routing by optimizing channel assignment within large apertures," DAC-71.
- No vertical constraint.
- HV-layer model is used.
- Doglegs are not allowed.
- Treat each net as an interval.
- Intervals are sorted according to their left-end \(x \)-coordinates.
- Intervals (nets) are routed one-by-one according to the order.
- For a net, tracks are scanned from top to bottom, and the first track that can accommodate the net is assigned to the net.
- Optimality: produces a routing solution with the minimum # of tracks (if no vertical constraint).

Basic Left-Edge Algorithm

Algorithm: Basic_Left-Edge(\(U, \) track[\(j \)])

\(U \): set of unassigned intervals (nets) \(I_1, ..., I_N \);
\(I_j = (s_j, e_j) \): interval \(j \) with left-end \(x \)-coordinate \(s_j \) and right-end \(e_j \);
track[\(j \)]: track to which net \(j \) is assigned.

1 begin
2 \(U \leftarrow \{ I_1, I_2, ..., I_N \} \);
3 \(t \leftarrow 0 \);
4 while (\(U \neq \emptyset \)) do
5 \(t \leftarrow t + 1 \);
6 watermark \leftarrow 0 \);
7 while (there is an \(I_j \in U \) s.t. \(s_j > \) watermark) do
8 Pick the interval \(I_j \in U \) with \(s_j > \) watermark,
9 nearest watermark;
10 track[\(j \)] \leftarrow t;
11 watermark \leftarrow e_j;
12 \(U \leftarrow U - \{ I_j \} \);
13 end

Basic Left-Edge Example

- \(U = \{ I_1, I_2, ..., I_6 \} \); \(I_1 = [1, 3] \), \(I_2 = [2, 6] \), \(I_3 = [4, 8] \), \(I_4 = [5, 10] \), \(I_5 = [7, 11] \), \(I_6 = [9, 12] \).
- \(t = 1 \):
 - Route \(I_1 \): watermark = 3;
 - Route \(I_3 \): watermark = 8;
 - Route \(I_5 \): watermark = 12;
- \(t = 2 \):
 - Route \(I_2 \): watermark = 6;
 - Route \(I_6 \): watermark = 11;
- \(t = 3 \): Route \(I_4 \)
Basic Left-Edge Algorithm

- If there is no vertical constraint, the basic left-edge algorithm is optimal.
- If there is any vertical constraint, the algorithm no longer guarantees optimal solution.

Constrained Left-Edge Algorithm

Algorithm: Constrained_Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I1, ..., In;
Ij=[sj, ej]: interval j with left-end x-coordinate sj and right-end ej;
track[j]: track to which net j is assigned.

```
begin
U ← \{ I1, I2, ..., In\};
t ← 0;
while (U ≠ \ø) do
    t ← t + 1;
    watermark ← \ø;
    while (there is an unconstrained Ij ∈ U s.t. sj > watermark) do
        Pick the interval Ij ∈ U that is unconstrained,
        with sj > watermark, nearest watermark;
        track[j] ← t;
        watermark ← ej;
    end
    U ← U - {Ij};
end
```

Constrained Left-Edge Example

- I1 = [1, 3], I2 = [1, 5], I3 = [6, 8], I4 = [10, 11], I5 = [2, 6], I6 = [7, 9].
- Track 1: Route I1 (cannot route I3); Route I6; Route I4.
- Track 2: Route I2;
- Track 3: Route I5.
- Track 4: Route I3.

Dogleg Channel Router

- Drawback of Left-Edge: cannot handle the cases with constraint cycles.
- Drawback of Left-Edge: the entire net is on a single track.
 - Doglegs are used to place parts of a net on different tracks to minimize channel height.
 - Might incur penalty for additional vias.
Dogleg Channel Router

- Each multi-pin net is broken into a set of 2-pin nets.
- Modified Left-Edge Algorithm is applied to each subnet.

Modern Routing Considerations

- Signal/power Integrity
 - Capacitive crosstalk
 - Inductive crosstalk
 - IR drop
- Manufacturability
 - Process variation
 - Optical proximity correction (OPC)
 - Chemical mechanical polishing (CMP)
 - Phase-Shift Mask (PSM)
- Reliability
 - Double via insertion
 - Process antenna effect
 - Electromigration (EM)
 - Electrostatic discharge (ESD)

Outline

- Partitioning
- Floorplanning
- Placement
- Routing
- Compaction
Layout Compaction

- Course contents
 - Design rules
 - Symbolic layout
 - Constraint-graph compaction

Design Rules

- **Design rules**: restrictions on the mask patterns to increase the probability of successful fabrication.
- Patterns and design rules are often expressed in λ rules.
- Most common design rules:
 - Minimum-width rules (valid for a mask pattern of a specific layer): (a).
 - Minimum-separation rules (between mask patterns of the same layer or different layers): (b), (c).
 - Minimum-overlap rules (mask patterns in different layers): (e).

CMOS Inverter Layout Example

- **Symbolic layout**: Geometric (mask) layout: coordinates of the layout patterns (rectangles) are absolute (or in multiples of λ).
- **Symbolic (topological) layout**: only relations between layout elements (below, left to, etc) are known.
 - Symbols are used to represent elements located in several layers, e.g. transistors, contact cuts.
 - The length, width or layer of a wire or other layout element might be left unspecified.
 - Mask layers not directly related to the functionality of the circuit do not need to be specified, e.g. n-well, p-well.
- The symbolic layout can work with a technology file that contains all design rule information for the target technology to produce the geometric layout.
Compaction and Its Applications

- A **compaction program** or **compactor** generates layout at the mask level. It attempts to make the layout as dense as possible.
- Applications of compaction:
 - **Area minimization**: remove redundant space in layout at the mask level.
 - **Layout compilation**: generate mask-level layout from symbolic layout.
 - **Redesign**: automatically remove design-rule violations.
 - **Rescaling**: convert mask-level layout from one technology to another.

Aspects of Compaction

- **Dimension**:
 - 1-dimensional (1D) compaction: layout elements only are moved or shrunk in one dimension (x or y direction).
 - Is often performed first in the x-dimension and then in the y-dimension (or vice versa).
 - 2-dimensional (2D) compaction: layout elements are moved and shrunk simultaneously in two dimensions.
- **Complexity**:
 - 1D compaction can be done in polynomial time.
 - 2D compaction is NP-hard.

1D Compaction: X Followed By Y

- Each square is $2\lambda \times 2\lambda$, minimum separation is 1λ.
- Initially, the layout is $11\lambda \times 11\lambda$.
- After compacting along the x direction, then the y direction, we have the layout size of $8\lambda \times 11\lambda$.

1D Compaction: Y Followed By X

- Each square is $2\lambda \times 2\lambda$, minimum separation is 1λ.
- Initially, the layout is $11\lambda \times 11\lambda$.
- After compacting along the y direction, then the x direction, we have the layout size of $11\lambda \times 8\lambda$.
2D Compaction

- Each square is $2 \lambda \times 2 \lambda$, minimum separation is 1λ.
- Initially, the layout is $11 \lambda \times 11 \lambda$.
- After 2D compaction, the layout size is only $8 \lambda \times 8 \lambda$.

- Since 2D compaction is NP-complete, most compactors are based on repeated 1D compaction.

Inequalities for Distance Constraints

- Minimum-distance design rules can be expressed as inequalities.
 \[x_j - x_i \geq d_{ij}. \]

- For example, if the minimum width is a and the minimum separation is b, then
 \[x_2 - x_1 \geq a \]
 \[x_3 - x_2 \geq b \]
 \[x_3 - x_6 \geq b \]

The Constraint Graph

- The inequalities can be used to construct a constraint graph $G(V, E)$:
 - There is a vertex v_i for each variable x_i.
 - For each inequality $x_j - x_i \geq d_{ij}$ there is an edge (v_i, v_j) with weight d_{ij}.
 - There is an extra source vertex, v_0; it is located at $x = 0$; all other vertices are at its right.
- If all the inequalities express minimum-distance constraints, the graph is acyclic (DAG).
- The longest path in a constraint graph determines the layout dimension.

Maximum-Distance Constraints

- Sometimes the distance of layout elements is bounded by a maximum, e.g., when the user wants a maximum wire width, maintains a wire connecting to a via, etc.
 - A maximum distance constraint gives an inequality of the form: $x_i - x_j \leq c_{ij}$ or $x_j - x_i \leq -c_{ij}$
 - Consequence for the constraint graph: backward edge (v_j, v_i) with weight $d_{ij} = -c_{ij}$, the graph is not acyclic anymore.
- The longest path in a constraint graph determines the layout dimension.
Longest-Paths in Cyclic Graphs

- Constraint-graph compaction with maximum-distance constraints requires solving the longest-path problem in cyclic graphs.
- Two cases are distinguished:
 - There are positive cycles: No feasible solution for longest paths. We shall detect the cycles.
 - All cycles are negative: Polynomial-time algorithms exist.

Longest and Shortest Paths

- Longest paths become shortest paths and vice versa when edge weights are multiplied by -1.
- Situation in DAGs: both the longest and shortest path problems can be solved in linear time.
- Situation in cyclic directed graphs:
 - All weights are positive: shortest-path problem in P (Dijkstra), no feasible solution for the longest-path problem.
 - All weights are negative: longest-path problem in P (Dijkstra), no feasible solution for the shortest-path problem.
 - No positive cycles: longest-path problem is in P.
 - No negative cycles: shortest-path problem is in P.

Remarks on Constraint-Graph Compaction

- Noncritical layout elements: Every element outside the critical paths has freedom on its best position => may use this freedom to optimize some cost function.
- Automatic jog insertion: The quality of the layout can further be improved by automatic jog insertion.
- Hierarchy: A method to reduce complexity is hierarchical compaction, e.g., consider cells only.

Constraint Generation

- The set of constraints should be irredundant and generated efficiently.
- An edge (v_i, v_j) is redundant if edges (v_i, v_k) and (v_k, v_j) exist and $w((v_k, v_j)) \leq w((v_i, v_k)) + w((v_i, v_j))$.
 - The minimum-distance constraints for (A, B) and (B, C) make that for (A, C) redundant.
- Doenhardt and Lengauer have proposed a method for irredundant constraint generation with complexity $O(n \log n)$.