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Model of ComputationModel of Computation
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M d l f C mp t tiModel of Computation
 I  t  d i  i t d d t  b h i  i  t l t d  In system design, intended system behavior is translated 

into physical implementation
 The physical implementation can be in hardware or software, 

in silicon or non silicon (e g  living cells) in silicon or non-silicon (e.g., living cells) 
 How a system behaves or interacts with its environmental 

stimuli must be specified formally

 Model of computation (MoC) can be seen as the subject of 
devising/selecting effective “data structures” in describing 

t  b h i  i l  d i lsystem behaviors precisely and concisely

 MoC gives a formal way of describing system behaviors g y g y
 It is useful in the specification, synthesis and verification of 

systems

3

M d l f C mp t tiModel of Computation

O tliOutline
 State transition systems

Finite automata / finite state machines/
 Real-time systems

Timed automata 
 Hybrid systems Hybrid systems

Hybrid automata for hybrid systems, which exhibits both 
discrete and continuous dynamic behavior

 Asynchronous systems Asynchronous systems
Petri nets for asynchronous handshaking

 Signal processing systems
Dataflow process network for signal processing applications

(See Wikipedia for more detailed introduction)
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M d li St t Tr itiModeling State Transition
 Fi it  t t  A  (Q   F    ) Finite automata A = (Q, q0, F, , )

 Q: states; q0: initial state; F: accepting states; : input 
alphabet; : QQ transition 
C  b  lt ti l  t d i  t t  di Can be alternatively represented in state diagram

 Finite automata are used as the recognizer of regular 
language
 Example 1

1

0

0
q0 q1

 The finite automaton accepts all binary strings ended in a “1”, i.e., 

0
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 The finite automaton accepts all binary strings ended in a 1 , i.e., 
which form the language: (0*1*)*1 or {0,1}*1

M d li St t Tr iti ( t’d)Modeling State Transition (cont d)
 Finite state machine (FSM) M = (Q  I        ) Finite state machine (FSM) M = (Q, I, , , , )

 Q: states; I: initial states; : input alphabet;  : output alphabet; : 
QQ transition function; : Q (respectively : Q) output 
function for Mealy (respectively Moore) FSM

 C  b  lt ti l  t d i  t t  t iti  h (STG)   Can be alternatively represented in state transition graph (STG) or 
state transition table (STG) 

 E.g., vending machine, traffic light controller, elevator controller, 
Rubik’s cube!, etc.

0  Q    Q’    



 11

0    G    G     go
0    Y     Y     yield
0 R R t 1

1

1

00

0    R     R     stop
1    G     Y     go
1    Y     R     yield
1 R G t
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1    R     G     stop



M d li St t Tr iti ( t’d)Modeling State Transition (cont d)

FSMs are often used as controllers in 
digital systems
 E.g. data flow controller, ALU (arithmetic logic 

unit) controller, etc.

Variants of FSM
Hierarchical FSM
Communicating FSM Co u cat g S
…
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M d li R l Tim S t mModeling Real-Time Systems

 Ti d t t Timed automata
 Example

push | x  2 | x:=0 y:=0

light switch controller

action

gard

resetpush |  x  2  |  x:=0, y:=0

qoff q push | x  2 | x:=0

reset

click | y  9 | x:=0

qoff qon push | x  2  |  x: 0

x and y are clock variablesclick | y  9  |  x:=0 x and y are clock variables

- Switch may be turned on whenever at least 2 time units has elapsed since last turn off
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- Light switches off automatically after 9 time units



M d li H brid S t mModeling Hybrid Systems

 H b id t t Hybrid automata
 Example

temperature control system

T > Thigh

temperature control system

qon qoff

( , )onT f T x ( , )offT f T x

T < Tlow
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M d li A hr S t mModeling Asynchronous Systems
 Petri net P  (G  M ) Petri net P = (G, M0)

 Petri net graph G is a bipartite weighted directed graph:
Two types of nodes: places in circles and transitions in 

boxesboxes
Arcs: arrows labeled with weights indicating how many 

tokens are consumed or produced
Tokens: black dots in placesTokens: black dots in places

 Initial marking M0
Initial token positions

p2

t2

t1p1
p31

1
21

1
1 4

1

10

t3

p4ref: EE249 lecture notes, UC Berkeley



Modeling Asynchronous Systems 
( t’d)(cont d)

 I   P i  h  In a Petri net graph G,
 places: represent distributed state by holding tokens

marking (state) M is an vector (m1, m2 …, m ), where mi is the non-marking (state) M is an vector (m1, m2, …, mn), where mi is the non
negative number of tokens in place pi

 initial marking M0 is initial state

 transitions: represent actions/events transitions: represent actions/events
 enabled transition: enough tokens in predecessors

 firing transition: modifies marking p2

t1p1

p

t2

31
1

2t1p p3

4
1

1

2

4

1

1

11t3

p4 1 4

ref: EE249 lecture notes, UC Berkeley

Modeling Asynchronous Systems 
( t’d)(cont d)

 A ki  i  h d di  t  th  f ll i  l A marking is changed according to the following rules:
 A transition is enabled if there are enough tokens in each input place

 An enabled transition may or may not fire (i.e. non-deterministic)

 The firing of a transition modifies marking by consuming tokens from 
the input places and producing tokens in the output places

2
2

2
2

12ref: EE249 lecture notes, UC Berkeley



Modeling Asynchronous Systems 
( t’d)(cont d)

 Example Example
communication protocol

Send msg Receive msg

P1 P2

Receive Ack

Send Ack

Receive Ack

13source: EE249 lecture notes, UC Berkeley

Modeling Asynchronous Systems 
( t’d)(cont d)

 Example Example
communication protocol

Send msg Receive msg

P1 P2

Receive Ack

Send Ack

Receive Ack

14source: EE249 lecture notes, UC Berkeley



Modeling Asynchronous Systems 
( t’d)(cont d)

 Example Example
communication protocol

Send msg Receive msg

P1 P2

Receive Ack

Send Ack

Receive Ack

15source: EE249 lecture notes, UC Berkeley

Modeling Asynchronous Systems 
( t’d)(cont d)

 Example Example
communication protocol

Send msg Receive msg

P1 P2

Receive Ack

Send Ack

Receive Ack

16source: EE249 lecture notes, UC Berkeley



Modeling Asynchronous Systems 
( t’d)(cont d)

 Example Example
communication protocol

Send msg Receive msg

P1 P2

Receive Ack

Send Ack

Receive Ack

17source: EE249 lecture notes, UC Berkeley

Modeling Asynchronous Systems 
( t’d)(cont d)

 Example Example
communication protocol

Send msg Receive msg

P1 P2

Receive Ack

Send Ack

Receive Ack
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M d li Si l Pr iModeling Signal Processing
 Data flow process network Data-flow process network

 Nodes represent actors; arcs represent FIFO queues
 Firing rules are specified on arcs
 Actors respect firing rules that specify how many tokens must be  Actors respect firing rules that specify how many tokens must be 

available on every input for an actor to fire. When an actor fires, it 
consumes a finite number of tokens and produces also a finite 
number of output tokens. 

1

1

2

2

12 1
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1

ref: http://www.create.ucsb.edu/~xavier/Thesis/html/node38.html

M C i S t m C tr tiMoC in System Construction

 There are many other models of computation  There are many other models of computation 
tailored for specific applications
 Can you devise a new computation model in some 

d i ?domain?

 Hierarchical modeling combined with several  Hierarchical modeling combined with several 
different models of computation is often 
necessary

 By using a proper MoC, a system can be specified 
formally, and further synthesized and verified
 In the sequel of this course, we will be focusing on FSMs 

mainly
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High Level SynthesisHigh Level Synthesis

High-level synthesis

Logic synthesis

Physical design

21
Slides are by Courtesy of Prof. Y.-W. Chang

Hi h L l S th iHigh Level Synthesis

Course contents
Hardware modeling
Data flow
Scheduling/allocation/assignment

Reading
Chapter 5p
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Hi h L l S th iHigh Level Synthesis
 H d d i ti  l  (HDL) th i Hardware-description language (HDL) synthesis

 Starts from a register-transfer level (RTL) description; 
circuit behavior in each clock cycle is fixed

 Uses logic synthesis techniques to optimize the design
 Generates a netlist

 High-level synthesis (HLS)  also called architectural or  High level synthesis (HLS), also called architectural or 
behavioral synthesis
 Starts from an abstract behavioral description
 Gene ates an RTL des iption Generates an RTL description
 It normally has to perform the trade-off between the

number of cycles and the hardware resources to fulfill a 
t ktask
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HL S th i RTL S th iHL Synthesis  vs. RTL Synthesis

 RTL synthesis 
implements all 
functionality within a functionality within a 
single clock cycle

 HL synthesis 
automatically allocates automatically allocates 
the functionality 
across multiple clock 
cycles

24



O tp t f Hi h L l S th iOutput of High Level Synthesis
 B h i l C il  t   d i  th t i t  f   Behavioral Compiler creates a design that consists of a 

datapath, memory I/O and a control FSM

25

B fit f Hi h L l S th i (1)Benefits of High Level Synthesis (1)
 Quick specification and verification Quick specification and verification

 Specify behavioral HDL easily, since it's intuitive and natural to 
write

 Save time -- behavioral HDL code is up to 10 times shorter  Save time behavioral HDL code is up to 10 times shorter 
than equivalent RTL

 Simulate orders of magnitude faster because of the higher 
level of abstraction

d d l b h b Reuse designs more readily by starting with a more abstract 
description

 Reduce design time
 Model hardware and software components of system  Model hardware and software components of system 

concurrently
 Easily implement algorithms in behavioral HDL and generate 

RTL code with a behavioral compilerp
 Verify hardware in system context at various levels of 

abstraction
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B fit f Hi h L l S th i (2)Benefits of High Level Synthesis (2)

 Explore architectural trade offs Explore architectural trade-offs
 Create multiple architectures from a single specification 
 Trade-off throughput and latency using high-level 

t i tconstraints
 Analyze various combinations of technology-specific 

datapath and memory resources
 E l t  t/ f  f i  i l t ti   Evaluate cost/performance of various implementations 

rapidly
 Automatically infer memory and generate FSM

 Specify memory reads and writes
 Schedule memory I/O, resolve conflicts by building 

control FSM
 Trade-off single-ported (separate registers) vs. multi-

ported memories (register files)
 Generate a new FSM

27

H rd r M d l f r HL S th iHardware Models for HL Synthesis
 All HLS t  d t  t i t th  t t h d   All HLS systems need to restrict the target hardware 

 Otherwise search space is too large
 All synthesis systems have their own peculiarities, but most y y p ,

systems generate synchronous hardware and build it with 
functional units:
 A functional unit can perform one or more computations, p p ,

e.g., addition, multiplication, comparison, ALU
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H rd r M d lHardware Models

 Registers: they store 
inputs, intermediate 
results and outputs; results and outputs; 
sometimes several 
registers are taken g
together to form a 
register file

Multiplexers: from 
several inputs, one is 
passed to the output
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H rd r M d l ( t’d)Hardware Models (cont d)

 Buses: a connection 
shared between 
several hardware several hardware 
elements, such that 
only one element can y
write data at a specific 
time

 Tri-state drivers:
control the exclusive 
writing on the bus
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H rd r M d l ( t’d)Hardware Models (cont d)

 P t  d fi i  th  h d  d l f  th   Parameters defining the hardware model for the 
synthesis problem:
Clocking strategy: e g  single or multiple Clocking strategy: e.g. single or multiple 

phase clocks
 Interconnect: e.g. allowing or disallowing g g g

buses
Clocking of functional units: allowing or 

disallowingdisallowing
multicycle operations
operation chaining (multiple operations in operation chaining (multiple operations in 

one cycle)
pipelined units

31

p p

Chaining, Multicycle Operation, 
Pi li iPipelining
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E mpl f HLS H rd r M d lExample of a HLS Hardware Model
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Hardware Concepts: Data Path + 
C t lControl

H d  i  ll  i i d i    Hardware is normally partitioned into two parts:
 Data path: a network of functional units, registers, 

multiplexers and busesu p e e s a d buses
The actual ‘‘computation’’ takes place in the data path

 Control: the part of the hardware that takes care of 
h i  th  d t  t t th  i ht l  t  ifi  having the data present at the right place at a specific 
time, of presenting the right instructions to a 
programmable unit, etc.

 High-level synthesis often concentrates on data-path 
synthesissynthesis
 The control part is then realized as a finite state 

machine or in microcode
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St p f Hi h L l S th iSteps of High Level Synthesis
 Preprocess the design with high level optimization Preprocess the design with high-level optimization

 Code motion
 Common subexpression elimination
 Loop unrollingp g
 Constant propagation
 Modifications taking advantage of associativity and distributivity, etc.

 Transform the optimized design into intermediate format 
(internal representation) which reveals more structural (internal representation) which reveals more structural 
characteristics of the design

 Optimize the intermediate format
 Tree height reductiong
 Behavior retiming

 Allocate the required resources to implement the design
 Also called module selection

 S h d l h i   b  f d  i  i  h  Schedule each operation to be performed at certain time such 
that no precedence constraint is violated

 Assign (bind) each operation to a specific functional unit and 
each variable to a register

35

each variable to a register

HLS Optimiz ti Crit riHLS Optimization Criteria

 Typically, in terms of speed, area, and power 
consumption

Optimization is often constrained
 Optimize area when the minimum speed is given  Optimize area when the minimum speed is given 

time-constrained synthesis
 Optimize speed when a maximum for each resource type p p yp

is given  resource-constrained synthesis
E.g. power-constrained synthesis

 Minimize power dissipation for a given speed and area  Minimize power dissipation for a given speed and area 
requirement  time- and area- constrained synthesis
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I p t F rm tInput Format

 Th  l ith  hi h i  th  i t t   hi h l l  The algorithm, which is the input to a high-level 
synthesis system, is often provided in textual 
form eithero e t e
 in a conventional programming language, such 

as C, C++, SystemC, or
 in a hardware description language (HDL), 

which is more suitable to express the 
parallelism present in hardwareparallelism present in hardware.

 The description has to be parsed and transformed  The description has to be parsed and transformed 
into an internal representation and thus 
conventional compiler techniques can be used.
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E mpl f HL Optimiz tiExample of HL Optimization

 Applying the distributive law to reduce resource   Applying the distributive law to reduce resource  
requirement
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I t r l R pr t tiInternal Representation

M t t   Most systems use 
some form of a data-
flow graph (DFG)o g ap ( G)
 A DFG may or may not 

contain information on 
control flowcontrol flow

 A data-flow graph is 
built from
 vertices (nodes): 

representing ep ese t g
computation, and

 edges: representing 
precedence relations

39

precedence relations

T k Fl i DFGToken Flow in a DFG

 A d  i   DFG fi h  ll t k  t  A node in a DFG fires when all tokens are present 
at its inputs

 The input tokens are consumed and an output  The input tokens are consumed and an output 
token is produced (like in Petri nets)

A token

Firing 
a node

Generate 
a token 
after

40

after 
firing



C diti l D t FlConditional Data Flow

 Conditional data flow by means of two special  Conditional data flow by means of two special 
nodes:
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E pli it It r ti D t FlExplicit Iterative Data Flow

 S l t  d  Selector and 
distributor nodes can 
be used to describe be used to desc be
iteration
 Example

while (a > b)
a  a – b;

 Loops require careful  Loops require careful 
placement of initial 
tokens on edges
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Impli it It r ti D t FlImplicit Iterative Data Flow

 Iteration implied by regular input stream of  Iteration implied by regular input stream of 
tokens

 Initial tokens act as buffers
 Delay elements instead of initial tokens

43

It r ti DFG E mplIterative DFG Example

a second-order filter section
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O ti i ti f I t l R t tiOptimization of Internal Representation

Restructuring data 
and control flow 
graphs prior to the 
actual mapping 
onto hardware
 Examples:

Replacing chain of 
adders by a tree

Behavior retimingBehavior retiming

Tree height reduction

45

Tree height reduction

B h i r R timi (BRT)Behavior Retiming (BRT)

 By moving registers 
through logic and 
hierarchical hierarchical 
boundaries, BRT 
reduces the clock 
period with minimum 
area impact
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Eff ti f B h i r R timiEffectiveness of Behavior Retiming 
S nops s e pSynopsys exp:

 RTL designs have a single clock net and were synthesized into gates using 
Synopsys Design Compiler

 D i  t  d t fl  i li  i ifi t b  f t  t l 
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 Design type: dataflow implies significant number of operators; control 
implies state machine dominated

HLS Subtasks: Allocation, Scheduling, 
A i tAssignment

 Subtasks in high level synthesis Subtasks in high-level synthesis
 Allocation (Module selection): specify the hardware 

resources that will be necessary
 Scheduling: determine for each operation the time at which it  Scheduling: determine for each operation the time at which it 

should be performed such that no precedence constraint is 
violated

 Assignment (Binding): map each operation to a specific 
functional unit and each variable to a registerfunctional unit and each variable to a register

 Remarks:
 Th h th  b bl   t l  i t l t d  th    Though the subproblems are strongly interrelated, they are 

often solved separately. However, to attain a better solution, 
an iterative process executing these three subtasks must be 
performed.

 Most scheduling problems are NP-complete  heuristics are 
used
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E mpl f Hi h L l S th iExample of High Level Synthesis
 Th  f ll i  l  f lid  h   l  f  The following couple of slides shows an example of 

scheduling and binding of a design with given resource 
allocation

 Gi  h  d d  fil  hi h i  fi  d  li Given the second-order filter which is first made acyclic:
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E mpl f S h d liExample of Scheduling

 The schedule and operation assignment with an 
allocation of one adder and one multiplier:
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Bi di f r D t P th G r tiBinding for Data Path Generation
 Th  lti  d t  th ft  i t  i t The resulting data path after register assignment

 The specification of a controller would complete the 
design

Multiplier Adder

51

R r All ti Pr bl mResource Allocation Problem
 Thi  bl  i  l ti l  i l  It i l  d id  th   This problem is relatively simple. It simply decides the 

kinds of hardware resources (hardware implementation for 
certain functional units such as adder, multiplier, etc.)  and 
the quantity of these resourcesthe quantity of these resources.
 For example two adders, one multiplier, 4 32-bit registers, etc. 

for a certain application

 The decision made in this step has a profound influence on 
the scheduling which under the given resource constraints 
decides the time hen an ope ation sho ld be e ec ted b  decides the time when an operation should be executed by 
a functional unit

 This step set an upper bound on the attainable performance.
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Pr bl m F rm l ti f S h d liProblem Formulation of Scheduling
 Input consists of a DFG G(V E) and a library     of resource  Input consists of a DFG G(V, E) and a library     of resource 

types
 There is a fixed mapping from each v V to some r  ;

the execution delay (v) for each operation is therefore the execution delay (v) for each operation is therefore 
known

 The problem is time-constrained; the available execution 
times are in the set

 A schedule :VT maps each operation to its starting time;  A schedule :VT maps each operation to its starting time; 
for each edge (vi, vj)  E, a schedule should respect: (vj) 
(vi) + (vi).

 Given the resource type cost (r) and the requirement yp ( ) q
function Nr(), the cost of a schedule  is given by:
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ASAP S h d liASAP Scheduling

A    ibl  (ASAP) As soon as possible (ASAP) 
scheduling maps an operation to the 
earliest possible starting time not violating earliest possible starting time not violating 
the precedence constraints

Properties:
It i   t  t  b  fi di  th  It is easy to compute by finding the 

longest paths in a directed acyclic graph
It d  t k   tt t t  It does not make any attempt to 

optimize the resource cost
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Gr ph f r ASAP S h d liGraph for ASAP Scheduling
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M bilit B d S h d liMobility Based Scheduling

Comp te both the ASAP nd ALAP (  l te Compute both the ASAP and ALAP (as late 
as possible) schedules S and L

For each v  V, determine the scheduling 
range [S(v) , L(v)]range [S(v) , L(v)]

L(v) - S(v) is called the mobility of vL(v) S(v) is called the mobility of v

Mobility-based scheduling tries to find the Mobility based scheduling tries to find the 
best position within its scheduling range 
for each operation
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Simpl M bilit B d S h d liSimple Mobility Based Scheduling
 A partial schedule        assigns a  A partial schedule        assigns a 

scheduling range to each vV,

 Finding a schedule can be seen as the generation 
of a sequence of partial schedules of a sequence of partial schedules 
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Li t S h d liList Scheduling

 A resource-constrained scheduling method
 Start at time zero and increase time until all 

ti  h  b  h d l doperations have been scheduled
Consider the precedence constraint

 Th  d  li t L t i  ll ti  th t   The ready list Lt contains all operations that can 
start their execution at time t or later

 If more operations are ready than there are  If more operations are ready than there are 
resources available, use some priority function to 
choose, e.g. the longest-path to the output node choose, e.g. the longest path to the output node 
 critical-path list scheduling
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Li t S h d li E mplList Scheduling Example

p1
o1

p2
o2

p3
o3
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A i m t Pr bl mAssignment Problem

Subtasks in assignment:
 operation-to-FU assignment
 value grouping
 value-to-register assignment
 transfer-to-wire assignment
wire to FU-port assignment

In general: task-to-agent assignment
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C mp tibilit d C fli t Gr phCompatibility and Conflict Graphs

Clique partitioning
gives an 

Graph coloring
gives an 

assignment in a 
compatibility graph

assignment in the 
complementary 
conflict graph

61

A i m t Pr bl mAssignment Problem
 A ti  i t  Assumption: assignment 

follows scheduling.
 The claim of a task on an 

 i   i l agent is an interval 
minimum resource 
utilization can be found by 
l ft d l ithleft-edge algorithm.

 In case of iterative 
algorithm, interval graph 
b  i l h becomes circular-arc graph 
 optimization is NP-
complete.
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T d Si r k’ Al rithmTseng and Sieworek s Algorithm
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Cli P rtiti i E mplClique-Partitioning Example
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E mpl f B h i r Optimiz tiExample of Behavior Optimization

65

Behavior Optimization of Arithmetic Circuit (BOA)

Eff ti f BOAEffectiveness of BOA
Synopsys exampley p y p
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