Introduction to Electronic
Design Automation I

Jie-Hong Roland Jiang
ANE

™

Department of Electrical Engineering
National Taiwan University

Spring 2012

Model ot Computation I

Model of Computation

O In system design, intended system behavior is translated
into physical implementation
B The physical implementation can be in hardware or software,
in silicon or non-silicon (e.g., living cells)
B How a system behaves or interacts with its environmental
stimuli must be specified formally

O Model of computation (MoC) can be seen as the subject of
devising/selecting effective “data structures” in describing
system behaviors precisely and concisely

O MoC gives a formal way of describing system behaviors

B It is useful in the specification, synthesis and verification of
systems

Model of Computation

O Outline

B State transition systems

OFinite automata / finite state machines
B Real-time systems

OTimed automata
B Hybrid systems

OHybrid automata for hybrid systems, which exhibits both
discrete and continuous dynamic behavior

B Asynchronous systems
O Petri nets for asynchronous handshaking
B Signal processing systems
O Dataflow process network for signal processing applications

(See Wikipedia for more detailed introduction)

Modeling State Transition

O Finite automata A = (Q, g,, F, X, 8)

B Q: states; q,: initial state; F: accepting states; X>: input
alphabet; &: >xQ—Q transition

B Can be alternatively represented in state diagram

O Finite automata are used as the recognizer of regular

Modeling State Transition (cont'd)

O Finite state machine (FSM) M = (Q, I, 2, Q, §, L)

B Q: states; I: initial states; >.: input alphabet; Q : output alphabet; 3:
2 xQ—Q transition function; A: >xQ—C) (respectively A: Q—Q) output

function for Mealy (respectively Moore) FSM

B Can be alternatively represented in state transition graph (STG) or

state transition table (STG)

B E.g., vending machine, traffic light controller, elevator controller,
Rubik’s cubel, etc.

language 0 L
B Example
1 Q T QlQ @
T — A ——
0 G|G go
0 Y |Y vyied
-~ 0 - 8 0 R|R stop
1 G|Y go
O The finite automaton accepts all binary strings ended in a “1”, i.e., D 0 i \F\(’ Fé)Qteolg
which form the language: (0*1*)*1 or {0,1}*1
6
. . . , . .
Modeling State Transition (cont'd) Modeling Real-Time Systems
[OFSMs are often used as controllers in O Timed automata
digital systems = Example
M E.g. data flow controller, ALU (arithmetic logic light switch controller gard
unit) controller, etc. ion
push | x>2 | x:=0, y:=0 actio \ reset
COVariants of FSM

B Hierarchical FSM

B Communicating FSM
m..

@ @~
push | x>2 | x:=0

'\/

click | y<9 | x:=0

x and y are clock variables

Modeling Hybrid Systems

Modeling Asynchronous Systems

O Hybrid automata O Petri net P = (G, M)
® Example B Petri net graph G is a bipartite weighted directed graph:
OTwo types of nodes: places in circles and transitions in
temperature control system boxes
OArcs: arrows labeled with weights indicating how many
T> Thigh tokens are consumed or produced
OTokens: black dots in places
B Initial marking M,
O Initial token positions
T< Tlow
9 ref: EE249 lecture notes, UC Berkeley
Modeling Asynchronous Systems Modeling Asynchronous Systems
1)
(cont’d) (cont’d)

O In a Petri net graph G,
B places: represent distributed state by holding tokens

O marking (state) M is an vector (m;, m,, ..., m,), where m; is the non-
negative number of tokens in place p;

O initial marking M, is initial state

B transitions: represent actions/events
O enabled transition: enough tokens in predecessors
O firing transition: modifies marking

ref: EE249 lecture notes, UC Berkeley

O A marking is changed according to the following rules:
B A transition is enabled if there are enough tokens in each input place

B An enabled transition fire (i.e. non-deterministic)
B The firing of a transition modifies marking by tokens from
the input places and tokens in the output places
—o . O
2

Pt
e . g

ref: EE249 lecture notes, UC Berkeley 12

LS

Modeling Asynchronous Systems
(cont'd)

Modeling Asynchronous Systems
(cont'd)

O Example O Example
communication protocol communication protocol
Receive mkg Receive mbg
P1 P2 P1 P2
Receive Ack Receive Ack
source: EE249 lecture notes, UC Berkeley 13 source: EE249 lecture notes, UC Berkeley 14
Modeling Asynchronous Systems Modeling Asynchronous Systems
1 1
(cont’'d) (cont’d)
O Example O Example
communication protocol communication protocol
Send msg Receive mbg Receive mgg
P1 P2 P1 P2
Receive Ack Receive Ack
source: EE249 lecture notes, UC Berkeley 15 source: EE249 lecture notes, UC Berkeley 16

Modeling Asynchronous Systems
(cont'd)

O Example

communication protocol

source: EE249 lecture notes, UC Berkeley 17

Modeling Asynchronous Systems
(cont'd)

0 Example

communication protocol

source: EE249 lecture notes, UC Berkeley 18

Modeling Signal Processing

O Data-flow process network

B Nodes represent actors; arcs represent FIFO queues
O Firing rules are specified on arcs
O Actors respect firing rules that specify how many tokens must be
available on every input for an actor to fire. When an actor fires, it
consumes a finite number of tokens and produces also a finite
number of output tokens.

ref: http://www.create.ucsb.edu/~xavier/Thesis/html/node38.html 19

MoC 1n System Construction

O There are many other models of computation
tailored for specific applications

B Can you devise a new computation model in some
domain?

O Hierarchical modeling combined with several
different models of computation is often
necessary

0 By using a proper MoC, a system can be specified
formally, and further synthesized and verified

H In the sequel of this course, we will be focusing on FSMs
mainly

20

High Level Synthesis

O Course contents
High Level Synthesis @ Hardware modeling
H Data flow
B Scheduling/allocation/assignment
CReading
@ B Chapter 5
‘ Logic synthesis ‘
‘ Physical design ‘
Slides are by Courtesy of Prof. Y.-W. Chang
21 22
High Level Synthesis HL Synthesis vs. RTL Synthesis
O Hardware-description language (HDL) synthesis [0 RTL synthesis
B Starts from a register-transfer level (RTL) description; implements all
circuit behavior in each clock cycle is fixed . . o
B Uses logic synthesis technigues to optimize the design fl_JnCtlonaIIty within a Behavioral and RTL Synthesis
B Generates a netlist single clock cycle B -
O High-level synthesis (HLS), also called architectural or . x
behavioral synthesis ; e pr
B Starts from an abstract behavioral description - HLtSynt?.eSIIT I t o
B Generates an RTL description automatically aflocates T
B It normally has to perform the trade-off between the the functlon_allty Ao
number of cycles and the hardware resources to fulfill a across multiple clock
task Lmwere s omm SyoPSys”

23

cycles

24

Output of High Level Synthesis

O Behavioral Compiler creates a design that consists of a
datapath, memory I/0 and a control FSM

Behavioral Code
B c=ralions

Multiple
Architecture
seense Creation

Exl — = . i
E% Target Architecture

T ".
Stabus P star R i
L peR‘?g] . Implementation

i - — e oy o
o AT -
! : m e

et v U

Datapath

25

Benefits of High Level Synthesis (1)

O Quick specification and verification

B Specify behavioral HDL easily, since it's intuitive and natural to
write

B Save time -- behavioral HDL code is up to 10 times shorter
than equivalent RTL

B Simulate orders of magnitude faster because of the higher
level of abstraction

B Reuse designs more readily by starting with a more abstract
description

O Reduce design time

B Model hardware and software components of system
concurrently

B Easily implement algorithms in behavioral HDL and generate
RTL code with a behavioral compiler

m Verify hardware in system context at various levels of
abstraction

26

Benefits of High Level Synthesis (2)

O Explore architectural trade-offs
B Create multiple architectures from a single specification

B Trade-off throughput and latency using high-level
constraints

B Analyze various combinations of technology-specific
datapath and memory resources

B Evaluate cost/performance of various implementations
rapidly
O Automatically infer memory and generate FSM
B Specify memory reads and writes

B Schedule memory 1/0, resolve conflicts by building
control FSM

B Trade-off single-ported (separate registers) vs. multi-
ported memories (register files)

B Generate a new FSM

27

Hardware Models for HL. Synthesis

O All HLS systems need to restrict the target hardware
B Otherwise search space is too large

O All synthesis systems have their own peculiarities, but most
systems generate synchronous hardware and build it with
functional units:

B A functional unit can perform one or more computations,
e.g., addition, multiplication, comparison, ALU

o = fli,i»)

28

Hardware Models

[0 Registers: they store i
inputs, intermediate
results and outputs; —
sometimes several
registers are taken T
together to form a
register file

O Multiplexers: from
several inputs, one is
passed to the output

29

Hardware Models (cont'd)

[0 Buses: a connection

shared between

several hardware i
elements, such that

only one element can @ @
write data at a specific

time

bus

O Tri-state drivers:
control the exclusive
writing on the bus

enable

30

Hardware Models (cont'd)

O Parameters defining the hardware model for the
synthesis problem:

B Clocking strategy: e.g. single or multiple
phase clocks

B Interconnect: e.qg. allowing or disallowing
buses

B Clocking of functional units: allowing or
disallowing

COmulticycle operations

Coperation chaining (multiple operations in
one cycle)

Opipelined units

31

Chaining, Multicycle Operation,
Pipelining

mlticycle
operation

@ ® N\

Cyele -

bonndary @

32

Example of a HLS Hardware Model

< = multiplexer input one or more buses
@® = tristate bus driver

registers
and/or { |$|
register

m
files U

Y

A A

one or
more
FU’'s

Y

3

Hardware Concepts: Data Path +
Control

O Hardware is normally partitioned into two parts:

B Data path: a network of functional units, registers,

multiplexers and buses
OThe actual “computation” takes place in the data path

B Control: the part of the hardware that takes care of
having the data present at the right place at a specific
time, of presenting the right instructions to a
programmable unit, etc.

O High-level synthesis often concentrates on data-path
synthesis

B The control part is then realized as a finite state
machine or in microcode

34

Steps of High Level Synthesis

O Preprocess the design with high-level optimization
B Code motion
B Common subexpression elimination
B Loop unrolling
B Constant propagation
B Modifications taking advantage of associativity and distributivity, etc.
O Transform the optimized design into intermediate format
(internal representation) which reveals more structural
characteristics of the design
O Optimize the intermediate format
B Tree height reduction
B Behavior retiming
O Allocate the required resources to implement the design
B Also called module selection
O Schedule each operation to be performed at certain time such
that no precedence constraint is violated
O Assign (bind) each operation to a specific functional unit and
each variable to a register

35

HLS Optimization Criteria

O Typically, in terms of speed, area, and power
consumption

0 Optimization is often constrained
B Optimize area when the minimum speed is given =
time-constrained synthesis
B Optimize speed when a maximum for each resource type
is given = resource-constrained synthesis
OE.g. power-constrained synthesis

B Minimize power dissipation for a given speed and area
requirement = time- and area- constrained synthesis

36

Input Format

O The algorithm, which is the input to a high-level
synthesis system, is often provided in textual
form either

M in a conventional programming language, such
as C, C++, SystemcC, or

M in a hardware description language (HDL),
which is more suitable to express the
parallelism present in hardware.

O The description has to be parsed and transformed
into an internal representation and thus
conventional compiler techniques can be used.

37

Example of HLL Optimization

O Applying the distributive law to reduce resource
requirement

38

Internal Representation

0 Most systems use
some form of a data-
flow graph (DFG)

B A DFG may or may not a b ¢ d

contain information on
control flow

a * b; vy := c + d;
X + ¥;

3]

O A data-flow graph is X y
built from
B vertices (nodes):

representing
computation, and

B edges: representing 7
precedence relations

39

Token Flow in a DFG

0 A node in a DFG fires when all tokens are present
at its inputs

0 The input tokens are consumed and an output
token is produced (like in Petri nets)

a b c d a b c d a b c d a b c d

° []
A token
Yy y ® ' X y
93 / /
Firing Generate L
a node a token
2 % after Z Z

firing

40

Conditional Data Flow

O Conditional data flow by means of two special
nodes:

vy ¥ R
(T o B)<_ (Td1str1butorF)‘7
v R

41

Explicit Iterative Data Flow

O Selector and
distributor nodes can
be used to describe
iteration

B Example

while (a > b)

a « a-— b;

0 Loops require careful
placement of initial
tokens on edges

42

Implicit Iterative Data Flow

O Iteration implied by regular input stream of
tokens

O Initial tokens act as buffers
O Delay elements instead of initial tokens

a

a b b a b : a b
al0]e all]e e b[1] all]e :
al0] e :
D » :
c1]e :
: c
43

C

Iterative DFG Example

a second-order filter section

a4

Optimization of Internal Representation

CJRestructuring data

and control flow Xg g
graphs prior to the P X7
actual mapping Xg

onto hardware Xq

B Examples: X,

OReplacing chain of
adders by a tree

CBehavior retiming X

O0b0-0-0-5

X4

Tree height reduction

45

Behavior Retiming (BRT)

0 By moving registers
through logic and
hierarchical P
boundaries, BRT
reduces the clock (o)
period with minimum
area impact N

clock period
constraint = 10ns |

Inputs Outputs Inputs

46

Eftfectiveness of Behavior Retiming

Synopsys exp:

Desion TvrE

Contrd | ddns [108t3gates | M08ns [11303gaes | W% dacter 4% morearea

: Contral (2300 | 3 E0Egates 18,505 1575 gstes | 19%faster, 27% more areq)
Contral | 28Bns | 3506 gates Whns) 330 gses | sme-goeed, B% lessares
Datafowd Conmral: | - 1708 25.300-41es - 126ng | 301004 | Bihfaster, 4% moroarea
Dataflowed Cortrol 16ns 7 20-gates 13 8M3gates | 0% faster 8% more-srea
Datafowy . | . 22ns | 4090.qates 18508 o 5100gses | 16%taster, 2% more.aren
Datafew CoBBns W ZGgates L2615 J2032 gates | %-fader 2 more area
Dataflow 2% 2ng 14,361 gates 236ns 13,047 gabes | 10%facter, 4% loss.area
Dataflow 2505 16.798-gates 20.8-ns 15550 gales - | 20%facter, 7% Jess.area

‘ Dataflow s E,?Dﬁ-gataa dns 30.98?{;&!&5 . Ji?%_-{aﬁer,s%-mo're-amﬂ

O RTL designs have a single clock net and were synthesized into gates using
Synopsys Design Compiler

O Design type: dataflow implies significant number of operators; control
implies state machine dominated

47

HLS Subtasks: Allocation, Scheduling,
Assignment

O Subtasks in high-level synthesis

B Allocation (Module selection): specify the hardware
resources that will be necessary

B Scheduling: determine for each operation the time at which it
should be performed such that no precedence constraint is
violated

B Assignment (Binding): map each operation to a specific
functional unit and each variable to a register

O Remarks:

B Though the subproblems are strongly interrelated, they are
often solved separately. However, to attain a better solution,
an iterative process executing these three subtasks must be
performed.

B Most scheduling problems are NP-complete = heuristics are
used

48

Example of High Level Synthesis

O The following couple of slides shows an example of
scheduling and binding of a design with given resource

allocation

O Given the second-order filter which is first made acyclic:

49

Example of Scheduling

0 The schedule and operation assignment with an
allocation of one adder and one multiplier:

50

Binding for Data Path Generation

O The resulting data path after register assignment
B The specification of a controller would complete the

=0

design

ROM

Multiplier

d

51

Resource Allocation Problem

O This problem is relatively simple. It simply decides the
kinds of hardware resources (hardware implementation for
certain functional units such as adder, multiplier, etc.) and
the quantity of these resources.

B For example two adders, one multiplier, 4 32-bit registers, etc.
for a certain application

O The decision made in this step has a profound influence on
the scheduling which under the given resource constraints
decides the time when an operation should be executed by
a functional unit

O This step set an upper bound on the attainable performance.

52

Problem Formulation of Scheduling

O Input consists of a DFG G(V, E) and a library R, of resource
types
O There is a fixed mapping from each v €V to some r € R, ;
}(he execution delay 6(v) for each operation is therefore
nown

O The problem is time-constrained; the available execution
times are in the set
g =1{0,1,...T, — 1}.

O A schedule o:V—>T maps each operation to its starting time;
for each edge (v;, v)) € E, a schedule should respect: o(v)) >
o(v)) + &(vy).

O Given the resource type cost @(r) and the requirement
function N,(o), the cost of a schedule o is given by:

Z (F)N(0).

rek

53

ASAP Scheduling

OAs soon as possible (ASAP)
scheduling maps an operation to the
earliest possible starting time not violating
the precedence constraints

CIProperties:

Mt is easy to compute by finding the
longest paths in a directed acyclic graph

M It does not make any attempt to
optimize the resource cost

54

Graph for ASAP Scheduling

55

Mobility Based Scheduling

O Compute both the ASAP and ALAP (as late
as possible) schedules o5 and o;

COOFor each v € V, determine the scheduling
range [o5(V) , 6.(V)]

0o (V) - os(Vv) is called the mobility of v

O Mobility-based scheduling tries to find the
best position within its scheduling range
for each operation

56

Simple Mobility Based Scheduling

O A partial schedule .y —[7,9]7 assigns a
scheduling range to each vev,

(}(v) = [(}min(V), (}nmx(1")]

O Finding a schedule can be seen as the aeneration
of a sequence of partial schedules ;" ;"

3

“determine & @ by computing o5 and o7,”;
k<« Q;
while (“there are unscheduled operations™) {
v « “one of the nodes with lowest mobility”;
“schedule v at some time that optimizes the current resource utilization”;
“determine &% 1) by updating the scheduling ranges
of the unscheduled nodes™;
ke—k+1
]

57

List Scheduling

O A resource-constrained scheduling method

[0 Start at time zero and increase time until all
operations have been scheduled
B Consider the precedence constraint

O The ready list L, contains all operations that can
start their execution at time t or later

O If more operations are ready than there are
resources available, use some priority function to

choose, e.g. the longest-path to the output node
= critical-path list scheduling

58

List Scheduling Example

59

Assignment Problem

O Subtasks in assignment:
M operation-to-FU assignment
® value grouping
B value-to-register assignment
B transfer-to-wire assignment
B wire to FU-port assignment

O In general: task-to-agent assignment

60

Compatibility and Conflict Graphs

CClique partitioning OGraph coloring

gives an gives an
assignment in a assignment in the
compatibility graph complementary

conflict graph

61

Assignment Problem

O Assumption: assignment
follows scheduling.

O The claim of a task on an
agent is an interval =
minimum resource
utilization can be found by
left-edge algorithm.

O In case of iterative
algorithm, interval graph
becomes circular-arc graph
= optimization is NP-
complete.

Vs

62

Tseng and Sieworek’s Algorithm

k<0
GE(VE, Bf) < Ge(Ve, Ee);
while (EX =) {
“find (v, vj) € Ef with largest set of common neighbors”;
N < “set of common neighbors of v; and v;™;
s < IUj;
k—+1
Vet h e vEU fug)\ (o v
for each (v, v,) € Eﬁ‘
i (ug # vi Avm Fuj Avn # 0 Aty # 1))
k+1 k+1 .
Ee < Ec.T U{(vm, vndks
foreachv, e ¥
B EE U v
k—k+1;

«— @

63

Clique-Partitioning Example

V

1
\’O):4 "5
Vv
7
Vs vy
3 Vg

Vo1

V

V1,2

ﬁ0,1,2,3
1’4 ‘}5,6
V4
°
1’7
1’3

Y012

v Vq Vs67
5.6 . peXs

64

Example of Behavior Optimization

I
@O
[
@ VLY
z |
B
0 > |
by J
!
i ;
three times ?
0
m
.‘
o
n
iy
%+]
>
Behavior Optimization of Arithmetic Circuit (BOA)
65

Effectiveness of BOA

Synopsys example

236N 202 ns 14% faster,
Motion estimation 12783 gates 12215 gates 5% lass area
19.2 ns 17.5 ns 9% faster,
Graphic s intemalation 3,507 gates 2952 gates 16% less area
Color space conversion 16ins 149 ns 7% faster
and sealing 38860 gates 34,307 gates 4% less area
Cmarual CEAimelkementation) "
7.7 ns 31 % faster,
Sum 0T 9 operands 1,418 gates 1,307 gates 2% less area
a2 b+ 116 ns 93 ns 20% faster,
2,577 gates 2,524 gates 2% lessarea
2 a10a aans 30% faster,
(0100000 1000001003 759 gates 449 gates 40 % less area
a*3EIE 5.7 ns 45 ns 19% faster,
00111110001 111103 927 gates 709 gates 23% less area
arhaer 1.0 ns 10.0 ns 9% faster,
2,707 gates 2 588 gates same ared
cbecidesn 14.2 ns 12.8 N3 10% faster,
atbrcrdre~f 7,435 gates 7,110 gates 4% less ares
8.1 ns 6.7 ns 17% mster,
Sum 0T 16 operands 2,836 gates 2,123 gates 25% less area

66

