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Logic Synthesis

High-level synthesis

Logic synthesis

Physical design

Part of the slides are by courtesy of Prof. Andreas Kuehlmann
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Logic Synthesis

Course contents
Overview
Boolean function representation
 Logic optimization
 Technology mapping

Reading
Chapter 6
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High-Level to Logic Synthesis
 Hardware is normally partitioned into two parts:

 Data path: a network of functional units, registers, 
multiplexers and buses. 

 Control: the circuit that takes care of having the data present 
at the right place at a specific time (i.e. FSM), or of presenting 
the right instructions to a programmable unit (i.e. microcode).

 High-level synthesis often focuses on data-path 
optimization
 The control part is then realized as an FSM

 Logic synthesis often focuses on control-logic optimization
 Logic synthesis is widely used in application-specific IC (ASIC) 

design, where standard cell design style is most common
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Standard-Cell Based Design
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Transformation of Logic Synthesis

D

x y


Given: Functional description of finite-state 
machine F(Q,X,Y,,) where:

Q:  Set of internal states
X:  Input alphabet
Y:  Output alphabet
:  X x Q  Q    (next state function)
:  X x Q  Y    (output function)

Target: Circuit C(G, W) where:
G:   set of circuit components g  {gates, FFs, etc.}
W:  set of wires connecting G
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Boolean Function Representation

Logic synthesis translates Boolean 
functions into circuits

We need representations of Boolean 
functions for two reasons:
 to represent and manipulate the actual circuit 

that we are implementing
 to facilitate Boolean reasoning
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Boolean Space
 B = {0,1}
 B2 = {0,1}{0,1} = {00, 01, 10, 11} 

Karnaugh Maps: Boolean Lattices:

BB00

BB11

BB22

BB33

BB44
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Boolean Function
 A Boolean function f over input variables: x1, x2, …, xm, is a 

mapping f: Bm  Y, where B = {0,1} and Y = {0,1,d}
 E.g.
 The output value of f(x1, x2, x3), say, partitions Bm into three sets:

 on-set (f =1)
 E.g. {010, 011, 110, 111}  (characteristic function f1 = x2 )

 off-set (f = 0) 
 E.g. {100, 101}  (characteristic function f0 = x1 x2 )

 don’t-care set (f = d) 
 E.g. {000, 001}  (characteristic function fd = x1 x2 )

 f is an incompletely specified function if the don’t-care set is 
nonempty. Otherwise, f is a completely specified function
 Unless otherwise said, a Boolean function is meant to be completely 

specified
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Boolean Function

 A Boolean function f: Bn  B over variables 
x1,…,xn maps each Boolean valuation (truth 
assignment) in Bn to 0 or 1

Example
f(x1,x2) with f(0,0) = 0, f(0,1) = 1, f(1,0) = 1, 
f(1,1) = 0

0
0
1

1
x2

x1

x1

x2
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Boolean Function
 Onset of f, denoted as f1, is f1= {v  Bn | f(v)=1}

 If f1 = Bn, f is a tautology
 Offset of f, denoted as f0, is f0= {v  Bn | f(v)=0}

 If f0 = Bn, f is unsatisfiable. Otherwise, f is satisfiable.
 f1 and f0 are sets, not functions!
 Boolean functions f and g are equivalent if v Bn. f(v) =

g(v) where v is a truth assignment or Boolean valuation
 A literal is a Boolean variable x or its negation x (or x, x) 

in a Boolean formula

x3

x1

x2

x1

x2

x3

f(x1, x2, x3) = x1 f(x1, x2, x3) = x1
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Boolean Function

 There are 2n vertices in Bn

 There are 22
n

distinct Boolean functions 
 Each subset f1  Bn of vertices in Bn forms a 

distinct Boolean function f with onset f1

x1x2x3 f
0 0 0    1
0 0 1    0
0 1 0    1
0 1 1    0
1 0 0   1
1 0 1    0
1 1 0    1
1 1 1    0

x1

x2

x3



13

Boolean Operations
Given two Boolean functions:

f :  Bn  B
g : Bn  B

 h = f  g from AND operation is defined as
h1 = f1  g1; h0 = Bn \ h1

 h = f  g from OR operation is defined as
h1 = f1  g1; h0 = Bn \ h1

 h = f  from COMPLEMENT operation is defined as
h1 = f0; h0 = f1
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Cofactor and Quantification
Given a Boolean function:

f :  Bn  B, with the input variable (x1,x2,…,xi,…,xn)

 Positive cofactor on variable xi
h = fxi is defined as h = f(x1,x2,…,1,…,xn)

 Negative cofactor on variable xi
h = fxi is defined as h = f(x1,x2,…,0,…,xn)

 Existential quantification over variable xi

h = xi. f  is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

 Universal quantification over variable xi

h = xi. f  is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

 Boolean difference over variable xi
h = f/xi is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)
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Boolean Function Representation
 Some common representations:

 Truth table
 Boolean formula

 SOP (sum-of-products, or called disjunctive normal form, DNF) 
 POS (product-of-sums, or called conjunctive normal form, CNF)

 BDD (binary decision diagram)
 Boolean network (consists of nodes and wires)

 Generic Boolean network
 Network of nodes with generic functional representations or even

subcircuits
 Specialized Boolean network

 Network of nodes with SOPs (PLAs)
 And-Inv Graph (AIG)

 Why different representations?
 Different representations have their own strengths and 

weaknesses (no single data structure is best for all 
applications)
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Boolean Function Representation
Truth Table
 Truth table (function table for multi-valued 

functions):
The truth table of a function f : Bn  B is a 
tabulation of its value at each of the 2n

vertices of Bn. 

In other words the truth table lists all mintems
Example: f = abcd + abcd + abcd + 

abcd + abcd + abcd + 
abcd + abcd

The truth table representation is
- impractical for large n
- canonical
If two functions are the equal, then their 
canonical representations are isomorphic.

abcd f
0 0000 0
1 0001 1
2 0010 0
3 0011 1
4 0100 0
5 0101 1
6 0110 0
7 0111 0

abcd f
8 1000 0
9 1001 1
10 1010 0
11 1011 1
12 1100 0
13 1101 1
14 1110 1
15 1111 1
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Boolean Function Representation
Boolean Formula

 A Boolean formula is defined inductively as an expression 
with the following formation rules (syntax):

formula ::=  ‘(‘ formula ‘)’

|        Boolean constant (true or false)

|        <Boolean variable>

| formula “+” formula (OR operator)

| formula  “” formula (AND operator)

|         formula (complement)

Example

f = (x1  x2) + (x3) + ((x4  (x1)))

typically “” is omitted and ‘(‘, ‘)’ are omitted when the operator priority is 
clear, e.g., f = x1 x2 + x3 + x4 x1
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Boolean Function Representation
Boolean Formula in SOP

 Any function can be represented as a sum-of-
products (SOP), also called sum-of-cubes (a cube
is a product term), or disjunctive normal form 
(DNF)

Example
 = ab + a’c + bc
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Boolean Function Representation
Boolean Formula in POS

 Any function can be represented as a product-of-
sums (POS), also called conjunctive normal form 
(CNF)
 Dual of the SOP representation

Example 
 = (a+b+c) (a+b+c) (a+b+c) (a+b+c)

 Exercise: Any Boolean function in POS can be 
converted to SOP using De Morgan’s law and the 
distributive law, and vice versa
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Boolean Function Representation
Binary Decision Diagram

 BDD – a graph 
representation of Boolean 
functions
 A leaf node represents 

constant 0 or 1
 A non-leaf node

represents a decision node 
(multiplexer) controlled by 
some variable

 Can make a BDD 
representation canonical
by imposing the variable 
ordering and reduction 
criteria (ROBDD)

f = ab+a’c+a’bd

1

0

c

a

b b

c c

d

0 1

c+bd b

root 
node

c+d

d
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Boolean Function Representation
Binary Decision Diagram

 Any Boolean function f can be written in term of 
Shannon expansion 

f = v fv + v fv
 Positive cofactor: fxi = f(x1,…,xi=1,…, xn)
 Negative cofactor: fxi = f(x1,…,xi=0,…, xn)

 BDD is a compressed Shannon cofactor tree:
 The two children of a node with function f controlled by 

variable v represent two sub-functions fv and fv

v
0 1

f

fv fv
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Boolean Function Representation
Binary Decision Diagram

 Reduced and ordered BDD (ROBDD) is a canonical
Boolean function representation
 Ordered:

cofactor variables are in the same order along all paths
xi1

< xi2
< xi3

< … < xin

 Reduced:
any node with two identical children is removed
two nodes with isomorphic BDD’s are merged

These two rules make any node in an ROBDD represent a 
distinct logic function

a

c c

b

0 1

ordered
(a<c<b)

a

b c

c

0 1

not
ordered

b

a

b

0 1

f

b

0 1

f

reduce
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Boolean Function Representation
Binary Decision Diagram

 For a Boolean function, 
 ROBDD is unique with respect to a given variable ordering
 Different orderings may result in different ROBDD structures

a

b b

c c

d

0 1

c+bd b

root node

c+d
c

d

f = ab+a’c+bc’d a

c

d

b

0 1

c+bd

db

b

10

leaf node
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Boolean Function Representation
Boolean Network

 A Boolean network is a directed graph C(G,N) 
where G are the gates and N  GG) are the 
directed edges (nets) connecting the gates.

Some of the vertices are designated:
Inputs: I  G
Outputs: O  G 
I  O = 

Each gate g is assigned a Boolean function fg
which computes the output of the gate in terms 
of its inputs. 
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Boolean Function Representation
Boolean Network

 The fanin FI(g) of a gate g are the predecessor gates of g:
FI(g) = {g’ | (g’,g)  N} (N: the set of nets)

 The fanout FO(g) of a gate g are the successor gates of g:
FO(g) = {g’ | (g,g’)  N}

 The cone CONE(g) of a gate g is the transitive fanin (TFI) of 
g and g itself

 The support SUPPORT(g) of a gate g are all inputs in its 
cone:
SUPPORT(g) = CONE(g)  I
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Boolean Function Representation
Boolean Network

Example

I

O

6

FI(6) = {2,4}

FO(6) = {7,9}

CONE(6) = {1,2,4,6}

SUPPORT(6) = {1,2}

Every node may have its own function

1

5

3

4

7
8

9

2
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Boolean Function Representation
And-Inverter Graph

 AND-INVERTER graphs (AIGs)
vertices: 2-input AND gates 
edges: interconnects with (optional) dots representing INVs

 Hash table to identify and reuse structurally isomorphic 
circuits

f

g g

f
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Boolean Function Representation

 A canonical form of a Boolean function is a 
unique representation of the function
 It can be used for verification purposes

 Example
 Truth table is canonical

It grows exponentially with the number of input variables

 ROBDD is canonical
It is of practical interests because it may represent many 

Boolean functions compactly

 SOP, POS, Boolean networks are NOT canonical 
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Boolean Function Representation
 Truth table

 Canonical
 Useful in representing small functions

 SOP
 Useful in two-level logic optimization, and in representing local node 

functions in a Boolean network
 POS

 Useful in SAT solving and Boolean reasoning 
 Rarely used in circuit synthesis (due to the asymmetric characteristics 

of NMOS and PMOS)
 ROBDD

 Canonical
 Useful in Boolean reasoning

 Boolean network
 Useful in multi-level logic optimization

 AIG
 Useful in multi-level logic optimization and Boolean reasoning
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Logic Optimization

Boolean functions

two-level optimization

multi-level optimization

technology mapping

circuits

two-level netlists

multi-level netlists

minimized two-level netlists

minimized multi-level netlists
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Two-Level Logic Minimization

 Any Boolean function can be realized using PLA in 
two levels: AND-OR (sum of products), NAND-
NAND, etc.
 Direct implementation of two-level logic using PLAs

(programmable logic arrays) is not as popular as in the 
nMOS days

 Classic problem solved by the Quine-McCluskey
algorithm
 Popular cost function: #cubes and #literals in an SOP 

expression
#cubes – #rows in a PLA
#literals – #transistors in a PLA

 The goal is to find a minimal irredundant prime cover
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Two-Level Logic Minimization

Exact algorithm 
Quine-McCluskey’s procedure

Heuristic algorithm
 Espresso
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Two-Level Logic Minimization
Minterms and Cubes

 A minterm is a product of every input variable or 
its negation
 A minterm corresponds to a single point in Bn

 A cube is a product of literals 
 The fewer the number of literals is in the product, 

the bigger the space is covered by the cube
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Two-Level Logic Minimization
Implicant and Cover

 An implicant is a cube whose points are either in 
the on-set or the dc-set.

 A prime implicant is an implicant that is not 
included in any other implicant.

 A set of prime implicants that together cover all 
points in the on-set (and some or all points of the 
dc-set) is called a prime cover.
 A prime cover is irredundant when none of its prime 

implicants can be removed from the cover.
 An irredundant prime cover is minimal when the cover 

has the minimal number of prime implicants.
(c.f. minimum vs. minimal)
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Two-Level Logic Minimization
Cover

 Example
 f = x1 x3 + x2 x3 + x1 x2

 f = x1 x2 + x2 x3 + x1 x3

36

Two-Level Logic Minimization
Cover

Example

local minimal global minimal
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Two-Level Logic Minimization
Quine-McCluskey Procedure

 Given G and D (covers for  = (f,d,r) and d, respectively), 
find a minimum cover G* of primes where: 
f  G*  f+d (G* is a prime cover of )
 f is the onset, d don’t-care set, and r offset

 Q-M Procedure:
1.Generate all primes of , {Pj} (i.e. primes of (f+d) = 

G+D)
2.Generate all minterms {mi} of f = GD
3.Build Boolean matrix B where 

Bij = 1 if mi Pj

= 0 otherwise
4.Solve the minimum column covering problem for B 

(unate covering problem)
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Two-Level Logic Minimization
Quine-McCluskey Procedure
Generating Primes

Tabular method
(based on consensus operation):

 Start with all minterm canonical 
form of F

 Group pairs of adjacent minterms
into cubes 

 Repeat merging cubes until no 
more merging possible; mark ()
+ remove all covered cubes. 

 Result: set of primes of f.

Example

F = x’ y’ + w x y + x’ y z’ + w y’ z

w’ x’ y’ z’ 

w’ x’ y’ z   
w’ x’ y z’ 
w x’ y’ z’ 

w x’ y’ z    
w x’ y z’ 

w x y z’ 
w x y’ z     
w x y z      

w’ x’ y’ 
w’ x’ z’ 
x’ y’ z’ 
x’ y’ z   
x’ y z’ 
w x’ y’ 
w x’ z’ 
w y’ z

w y z’

w x y

w x z

x’ y’

x’ z’

F = x’ y’ + w x y + x’ y z’ + w y’ z

Courtesy: Maciej Ciesielski, UMASS
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 Example

Primes: y + w +xz
Covering Table
Solution: {1,2}  y + w is a minimum prime cover (also w +xz)

dd

ddd

dd

dd

00

1

11

01

Two-Level Logic Minimization
Quine-McCluskey Procedure

F x y z w xy zw x y zw xyzw

D yz xyw x y zw x y w xy z w

   

    

xy xy xy xy

zw

zw

zw

zw

xz

Karnaugh map

010

011

110

101

y w xz

xyz w

x y z w

x yz w

xyzw

(cover of )

(cover of d)

w

y
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Two-Level Logic Minimization
Quine-McCluskey Procedure

Column covering of Boolean matrix

 Definition. An essential prime is a prime that covers an onset 
minterm of f not covered by any other primes.

010

011

110

101
y w xz

xyzw

xyzw

xyzw

xyzw

Primes of f+d

Minterms of f

Essential prime

Row singleton
(essential minterm)
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Two-Level Logic Minimization
Quine-McCluskey Procedure

 Row equality in Boolean matrix:
 In practice, many rows in a covering table are identical. 

That is, there exist minterms that are contained in the 
same set of primes.

 Example

m1 0101101
m2 0101101
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Two-Level Logic Minimization
Quine-McCluskey Procedure

 Row dominance in Boolean matrix:
 A row i1 whose set of primes is contained in the set of 

primes of row i2 is said to dominate i2.

 Example

i1 011010
i2 011110

 i1 dominates i2
Can remove row i2 because have to choose a prime to 

cover i1, and any such prime also covers i2. So i2 is 
automatically covered.
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Two-Level Logic Minimization
Quine-McCluskey Procedure

 Column dominance in Boolean matrix:
 A column j1 whose rows are a superset of another 

column j2 is said to dominate j2.

 Example

 j1 dominates j2
We can remove column j2 since j1 covers all those rows and 

more. We would never choose j2 in a minimum cover since 
it can always be replaced by j1.

j1             j2
1 0
0 0
1 1
0 0
1 1
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Two-Level Logic Minimization
Quine-McCluskey Procedure

Reducing Boolean matrix 
1. Remove all rows covered by essential primes (columns in 

row singletons). Put these primes in the cover G.
2. Group identical rows together and remove dominated rows.
3. Remove dominated columns. For equal columns, keep one 

prime to represent them.
4. Newly formed row singletons define induced essential 

primes.
5. Go to 1 if covering table decreased. 

 The resulting reduced covering table is called the cyclic 
core. This has to be solved (unate covering problem). A 
minimum solution is added to G. The resulting G is a 
minimum cover.
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Two-Level Logic Minimization
Quine-McCluskey Procedure

Example (reducing Boolean matrix)

0001110

0001101

0000110

0001011

0011100

0110000

1100001

1000000

01110

01101

00110

01011

11100

10000

34567

induced essential prime P3
(remove rows 1 and 2) 

and
column dominance

(col. 7 dominated by 4)
G = P1 + P3

111

110

011

101

456

110

011

101

456

essential prime P1 
(remove rows 1 and 2)

and 
column dominance

(col. 2 dominated by 3)
G = P1

row dominance

cyclic 
core

46

Two-Level Logic Minimization
Quine-McCluskey Procedure

Solving cyclic core
 Best known method (for unate covering) is branch and 

bound with some clever bounding heuristics
 Independent Set Heuristic:

 Find a maximum set I of “independent” rows. Two rows Bi1 ,Bi2 
are independent if not j such that Bi1j = Bi2j = 1. (They have 
no column in common.)

Example
A covering matrix B rearranged with independent sets first

Independent set I of rows
11

1111
11

0

A

1

C

B=
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Two-Level Logic Minimization
Quine-McCluskey Procedure

Solving cyclic core

 Heuristic algorithm:
 Let I ={I1, I2, …, Ik} be the 

independent set of rows
1. choose j  Ii such that column j covers 

the most rows of A. Put Pj in G
2. eliminate all rows covered by column j
3. I  I \{Ii}
4. go to 1 if |I |  0
5. If B is empty, then done (in this case 

achieve minimum solution)
6. If B is not empty, choose an 

independent set of B and go to 1

11
1111

11
0

A

1

C
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Two-Level Logic Minimization
Quine-McCluskey Procedure

Summary
Calculate all prime implicants (of the union of 

the onset and don’t care set)
 Find the minimal cover of all minterms in the 

onset by prime implicants
Construct the covering matrix
Simplify the covering matrix by detecting essential 

columns, row and column dominance
What is left is the cyclic core of the covering matrix. 

 The covering problem can then be solved by a 
branch-and-bound algorithm.
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Two-Level Logic Minimization
Exact vs. Heuristic Algorithms

Quine-McCluskey Method:
1.Generate cover of all primes G = p1 + p2 ++p3n/n

2.Make G irredundant (in optimum way)
 Q-M is exact, i.e., it gives an exact minimum

 Heuristic Methods:
1.Generate (somehow) a cover of  using some of 

the primes G = pi1
+ pi2

+  + pik

2.Make G irredundant (maybe not optimally)
3.Keep best result - try again (i.e. go to 1)
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Two-Level Logic Minimization
ESPRESSO

 Heuristic two-level logic minimization

 

ESPRESSO()

{

    (F,D,R)  DECODE()

    F  EXPAND(F,R)

    F  IRREDUNDANT(F,D)

    E  ESSENTIAL_PRIMES(F,D)

    F  F-E;  D  D  E

    do{

        do{

            F  REDUCE(F,D)

            F  EXPAND(F,R)

            F  IRREDUNDANT(F,D)

        }while fewer terms in F

 //LASTGASP

        G REDUCE_GASP(F,D)

        G EXPAND(G,R)

       F IRREDUNDANT(F G,D)

        

       

    }while fewer terms in F        

    F F E;  D D-E

    LOWER_OUTPUT(F,D)

//LASTGASP

    RAISE_INPUTS

  



 

old old

(F,R)

   error (F F) or (F F D)

    return (F,error)

}

   
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Two-Level Logic Minimization
ESPRESSO

Local minimum

Local minimum

REDUCE

EXPAND

IRREDANDANT

52

Logic Minimization

Boolean functions

two-level optimization

multi-level optimization

technology mapping

circuits

two-level netlists

multi-level netlists

minimized two-level netlists

minimized multi-level netlists
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Factor Form
 Factor forms – beyond SOP

 Example: 
(ad+b’c)(c+d’(e+ac’))+(d+e)fg

 Advantages
 good representation reflecting logic complexity (SOP may not be 

representative)
 E.g., f=ad+ae+bd+be+cd+ce has complement in simpler SOP  f’= 

a’b’c’+d’e’; effectively has simple factor form  f=(a+b+c)(d+e)
 in many design styles (e.g. complex gate CMOS design) the 

implementation of a function corresponds directly to its factored form
 good estimator of logic implementation complexity
 doesn’t blow up easily

 Disadvantages
 not as many algorithms available for manipulation

54

Factor From

 Factored forms are useful 
in estimating area and 
delay in multi-level logic
 Note: literal count  

transistor count  area 
 however, area also 

depends on wiring, gate 
size, etc.

 therefore very crude 
measure

d

b

a
c
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Factor From

There are functions whose sizes are 
exponential in the SOP representation, but 
polynomial in the factored form
 Example

Achilles’ heel function

There are n literals in the factored form and 
(n/2)2n/2 literals in the SOP form.

  
(x

2i1
 x

2i
)

i1

in / 2


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Factor Form
 Factored forms can be graphically represented as labeled 

trees, called factoring trees, in which each internal node 
including the root is labeled with either + or , and each 
leaf has a label of either a variable or its complement
 Example: factoring tree of ((a’+b)cd+e)(a+b’)+e’
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Multi-Level Logic Minimization

Basic techniques in Boolean network 
manipulation:
 structural manipulation (change network 

topology)
 node simplification (change node functions)

node minimization using don’t cares
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Multi-Level Logic Minimization
Structural Manipulation
Restructuring Problem: Given initial network, find best network.

Example:
f1 = abcd+abce+ab’cd’+ab’c’d’+a’c+cdf+abc’d’e’+ab’c’df’
f2 = bdg+b’dfg+b’d’g+bd’eg

minimizing,
f1 = bcd+bce+b’d’+a’c+cdf+abc’d’e’+ab’c’df’
f2 = bdg+dfg+b’d’g+d’eg

factoring,
f1 = c(b(d+e)+b’(d’+f)+a’)+ac’(bd’e’+b’df’)
f2 = g(d(b+f)+d’(b’+e))

decompose,
f1 = c(b(d+e)+b’(d’+f)+a’)+ac’x’
f2 = gx
x = d(b+f)+d’(b’+e)

Two problems:
 find good common subfunctions
 effect the division
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Multi-Level Logic Minimization
Structural Manipulation

Basic operations:
1. Decomposition (for a single function)

f = abc+abd+a’c’d’+b’c’d’


f = xy+x’y’ x = ab y = c+d
2. Extraction (for multiple functions)

f = (az+bz’)cd+e g = (az+bz’)e’ h = cde


f = xy+e g = xe’ h = ye    x = az+bz’ y = cd
3. Factoring (series-parallel decomposition)

f = ac+ad+bc+bd+e


f = (a+b)(c+d)+e
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Multi-Level Logic Minimization
Structural Manipulation

Basic operations (cont’d):
4. Substitution

f = a+bc g = a+b


f = g(a+c)    g = a+b
5. Collapsing (also called elimination)

f = ga+g’b g = c+d


f = ac+ad+bc’d’ g = c+d

Note: “division” plays a key role in all these operations
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Multi-Level Logic Minimization
Node Simplification

 Goal: For any node of a given Boolean network, 
find a least-cost SOP expression among the set of 
permissible functions for the node
 Don’t care computation + two-level logic minimization

combinational Boolean network
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Combinational Logic Minimization
 Two-level: minimize #product terms and #literals

 E.g., F = x1’x2’x3’+ x1’x2’x3+ x1x2’x3’+ x1x2’x3+ x1x2x3’  F = 
x2’+ x1x3’

 Multi-level: minimize the # literals (area minimization)
 E.g., equations are optimized using a smaller number of 

literals
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Timing Analysis and Optimization
 Delay model at logic level

 Gate delay model (our focus)
 Constant gate delay, or pin-to-pin gate delay
 Not accurate

 Fanout delay model
 Gate delay considering fanout load (#fanouts)
 Slightly more accurate

 Library delay model
 Tabular delay data given in the cell library

 Determine delay from input slew and output 
load

 Table look-up + interpolation/extrapolation
 Accurate

d
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Timing Analysis and Optimization
Gate Delay

The delay of a gate depends on:

1. Output Load
 Capacitive loading charge 

needed to swing the output 
voltage

 Due to interconnect and 
logic fanout

2. Input Slew
 Slew = transition time
 Slower transistor switching 

 longer delay and longer 
output slew

e.g. output 1→0

1

0

Vin

Tslew

= ReffCload

CloadCload
Reff

An inverter
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Timing Analysis and Optimization
Timing Library

 Timing library contains all 
relevant information about each 
standard cell 
 E.g., pin direction, clock, pin 

capacitance, etc.

 Delay (fastest, slowest, and often 
typical) and output slew are 
encoded for each input-to-output 
path and each pair of transition 
directions

 Values typically represented as 2 
dimensional look-up tables (of 
output load and input slew)
 Interpolation is used

Output load (nF)

In
pu

t s
le

w
 (

ns
)

1.0 2.0 4.0 10.0

0.1 2.1 2.6 3.4 6.1

0.5 2.4 2.9 3.9 7.2

1.0 2.6 3.4 4.0 8.1

2.0 2.8 3.7 4.9 10.3

“delay_table_1”

Path(
inputPorts(A), 
outputPorts(Z), 
inputTransition(01),  
outputTransition(10), 
“delay_table_1”, 
“output_slew_table_1”

);

A

B

Z

01

10
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Static Timing Analysis
 Arrival time: the time signal arrives

 Calculated from input to output in the topological order
 Required time: the time signal must ready (e.g., due to the clock 

cycle constraint)
 Calculated from output to input in the reverse topological order

 Slack = required time – arrival time
 Timing flexibility margin (positive: good; negative: bad)

node k

A(j) R(j)

node j

D(j,k)
r(j,k)

A(k) R(k)

A(j): arrival time of signal j

R(k): required time or for signal k

S(k): slack of signal k

D(j,k): delay of node j from input k

A(j) = maxkFI (j) [A(k) + D(j,k)]

r(j,k) = R(j) - D(j,k)

R(k) = minjFO(k) [r(j,k)]

S(k) = R(k) - A(k)
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Static Timing Analysis
 Arrival times known at register outputs l1, l2, and l5
 Required times known at register inputs l3, l4, and l5
 Delay analysis gives arrival and required times (hence 

slacks) for combinational blocks C1, C2, C3, C4

C3

C1
C2

C4

l1

l2 l3

l4

l5
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Static Timing Analysis

 Arrival time can be computed in the topological 
order from inputs to outputs 
 When a node is visited, its output arrival time is: 

the max of its fanin arrival times + its own gate delay

Required time can be computed in the reverse 
topological order from outputs to inputs
 When a node is visited, its input required time is: 

the min of its fanout required times – its own gate delay
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Static Timing Analysis

 Example

2 1

2 2 1

21

R2=5R1=5

A8=0 A9=0

98
0

0
1

0-1

-1
-1

-1
10

-1

-1

5
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3

1 2

4

1

4

2

34

56

node ID

arrival time
slack

A10=2

10
1

A1 = 6 R1 = 5
A2 = 5 R2 = 5

S1= -1 R3 = 3
S2= 0 R7 = 1
S3,1= -1 R9 = -1
S4,1 = -1
S4,2 = 0
S5,2 = 1
S6,3 = 0
S7,3 = -1
S7,4 = -1
S7,5 = 1
S8,6 = 0
S9,7 = -1

critical path edges

Ski,k = Sk + max{Akj } - Aki , kj,ki  fanin(k)
Sk = min{Sk,kj }, kj  fanout(k)
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Timing Optimization

Identify timing critical regions
Perform timing optimization on the 

selected regions
 E.g., gate sizing, buffer insertion, fanout

optimization, tree height reduction, etc.
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Timing Optimization

Buffer insertion
Divide the fanouts of a gate into critical and 

non-critical parts, and drive the non-critical 
fanouts with a buffer

more
critical less

critical

timing is improved
due to less loading
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Timing Optimization

Fanout optimization
Split the fanouts of a gate into several parts. 

Each part is driven by a copy of the original 
gate.
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Timing Optimization

Tree height reduction

n

l m

i j

h

k

3

6

5 5

1 4

1

0 0 0 0 2 0 0

a b c d e f g

i

1

0 0
a b

m

j

h

k

3

4
1

0 0 2 0 0

c d e f g

n’
duplicated
logic

1
2

00

5critical region
collapsed

critical region 

74

Timing Optimization

Tree height reduction

i

1

0 0

a b

m

j

h

k

3

4
1

0 0 2 0 0

c d e f g

n’
Duplicated
logic

1
2

00

5

i

1

0 0

a b

m

j

h

k

3

4
1

0 0 2 0 0

c d e f g

1
2

0

3
5

n’

2

1

0

4

Collapsed
Critical region

New delay = 5
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Combinational Optimization

From Boolean functions to circuits
Boolean functions

two-level optimization

multi-level optimization

technology mapping

circuits

two-level netlists

multi-level netlists

minimized two-level netlists

minimized multi-level netlists
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Technology Independent vs. Dependent 
Optimization

 Technology independent optimization produces a 
two-level or multi-level netlist where literal 
and/or cube counts are minimized

 Given the optimized netlist, its logic gates are to 
be implemented with library cells

 The process of associating logic gates with library 
cells is technology mapping
 Translation of a technology independent representation 

(e.g. Boolean networks) of a circuit into a circuit for a 
given technology (e.g. standard cells) with optimal cost
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Technology Mapping

 Standard-cell technology mapping: standard cell design
 Map a function to a limited set of pre-designed library cells

 FPGA technology mapping
 Lookup table (LUT) architecture: 

 E.g., Lucent, Xilinx FPGAs
 Each lookup table (LUT) can implement all logic functions with up to k inputs (k = 4, 5, 6)

 Multiplexer-based technology mapping: 
 E.g., Actel FPGA
 Logic modules are constructed with multiplexers
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Standard-Cell Based Design
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Technology Mapping

 Formulation:
 Choose base functions

Ex: 2-input NAND and Inverter
 Represent the (optimized) Boolean network with base 

functions
Subject graph

 Represent library cells with base functions
Pattern graph
Each pattern is associated with a cost depending on the 

optimization criteria, e.g., area, timing, power, etc.

 Goal:
 Find a minimal cost covering of a subject graph using 

pattern graphs
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Technology Mapping

 Technology Mapping: The optimization problem 
of finding a minimum cost covering of the subject 
graph by choosing from a collection of pattern 
graphs of gates in the library.

 A cover is a collection of pattern graphs such that 
every node of the subject graph is contained in 
one (or more) of the pattern graphs.

 The cover is further constrained so that each 
input required by a pattern graph is actually an 
output of some other pattern graph.
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Technology Mapping

Example
Subject graph

t1 = d + e
t2 = b + h
t3 = a t2 + c
t4 = t1 t3 + f g h
F = t4’

f
g
d
e
h
b
a
c

Ft1

t2

t3

t4

82

Technology Mapping

 Example
 Pattern graphs (1/3)

inv (1)

nand2 (2) nor2 (2)

nand3 (3) nor3 (3)

cell name (cost)

and2 (3) or2 (3)

(cost can be area or delay)
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Technology Mapping

 Example
 Pattern graphs (2/3)

nand4 (4)

nor4 (4)

aoi21 (3)
oai21 (3)

aoi22 (4)

oai22 (4)
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Technology Mapping

 Example
 Pattern graphs (3/3)

xor (5) xnor (5)

nand4 (4) nor4 (4)
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Technology Mapping

 Example
 A trivial covering

Mapped into NAND2’s and INV’s
 8 NAND2’s and 7 INV’s at cost of 23

cost = 23
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Technology Mapping

 Example
 A better covering

f
g
d
e
h
b
a
c

F
OR2

OR2

AND2

AOI22

NAND2

NAND2
INV

cost = 18

For a covering to be legal, every input of a pattern 
graph must be the output of another pattern graph!
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Technology Mapping

 Example
 An even better covering

OAI21
OAI21

NAND3

AND2

NAND2
INV

f
g
d
e
h
b
a
c

F

cost = 15

For a covering to be legal, every input of a pattern 
graph must be the output of another pattern graph!
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Technology Mapping

Complexity of covering on directed acyclic 
graphs (DAGs)

NP-complete

 If the subject graph and pattern graphs are 

trees, then an efficient algorithm exists (based 

on dynamic programming)
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Technology Mapping
DAGON Approach

 Partition a subject graph into trees
 Cut the graph at all multiple fanout points

 Optimally cover each tree using dynamic programming approach
 Piece the tree-covers into a cover for the subject graph
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Technology Mapping
DAGON Approach

 Principle of optimality: optimal cover for the tree consists of 
a match at the root plus the optimal cover for the sub-tree 
starting at each input of the match

I1

I3

I2

I4

Match: cost = m

root

C(root) = m + C(I1) + C(I2) + C(I3) + C(I4) 
cost of a leaf (i.e. primary input) = 0
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Technology Mapping
DAGON Approach

 Example
 Library

INV 2 a’

NAND2 3 (ab)’

NAND3 4 (abc)’

NAND4 5 (abcd)’

AOI21 4
(ab+c)’

AOI22 5
(ab+cd)’

library element base-function representation
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Technology Mapping
DAGON Approach

 Example
NAND2(3)

INV(2)

NAND2(8)

INV(2)

NAND2(3) INV(5) NAND2(8)
NAND3(4)

NAND2(13)

INV(15)
AOI21(9)

NAND2(16)
NAND3(18)

AOI21(22)
INV(18)

NAND2(21)
NAND3(17)
NAND4(19)
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Technology Mapping
DAGON Approach

Complexity of DAGON for tree mapping is 
controlled by finding all sub-trees of the 
subject graph isomorphic to pattern trees

Linear complexity in both the size of 
subject tree and the size of the collection 
of pattern trees
Consider library size as constant
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Technology Mapping
DAGON Approach

 Pros:
 Strong algorithmic 

foundation
 Linear time complexity

Efficient approximation 
to graph-covering 
problem

 Give locally optimal 
matches in terms of both 
area and delay cost 
functions

 Easily “portable” to new 
technologies

 Cons:
 With only a local (to the 

tree) notion of timing
Taking load values into 

account can improve 
the results

 Can destroy structures of 
optimized networks
Not desirable for well-

structured circuits
 Inability to handle non-

tree library elements 
(XOR/XNOR)

 Poor inverter allocation
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Technology Mapping
DAGON Approach

DAGON can be improved by
Adding a pair of inverters for each wire in the 

subject graph
Adding a pattern of a wire that matches two 

inverters with zero cost

2 INV
1 AIO21

2 NOR2
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Available Logic Synthesis Tools

 Academic CAD tools: 
 Espresso (heuristic two-level minimization, 1980s)
 MIS (multi-level logic minimization, 1980s) 
 SIS (sequential logic minimization, 1990s) 
 ABC (sequential synthesis and verification system, 

2005-)
http://www.eecs.berkeley.edu/~alanmi/abc/


