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High-Level to Logic Synthesis

O Hardware is normally partitioned into two parts:

B Data path: a network of functional units, registers,
multiplexers and buses.

B Control: the circuit that takes care of having the data present
at the right place at a specific time (i.e. FSM), or of presenting
the right instructions to a programmable unit (i.e. microcode).

O High-level synthesis often focuses on data-path
optimization
B The control part is then realized as an FSM

O Logic synthesis often focuses on control-logic optimization
B Logic synthesis is widely used in application-specific IC (ASIC)
design, where standard cell design style is most common




Standard-Cell Based Design
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Transformation of Logic Synthesis

Given: Functional description of finite-state
X A y machine F(Q,X,Y,3,1) where:

o Q: Set of internal states

X: Input alphabet

Y: Output alphabet

8: XxQ — Q (next state function)

A XxQ—>Y (output function)

: |

Target: Circuit C(G, W) where:
— G: set of circuit components g € {gates, FFs, etc.}
1 W: set of wires connecting G

Boolean Function Representation

ClLogic synthesis translates Boolean
functions into circuits

COWe need representations of Boolean
functions for two reasons:

M to represent and manipulate the actual circuit
that we are implementing

M to facilitate Boolean reasoning

Boolean Space

OoB=4{0,1}
O B® = {0,1}x{0,1} = {00, 01, 10, 11}
Karnaugh Maps: Boolean Lattices:
Bo [ ] [ J
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B T

B4




Boolean Function

Boolean Function

O A Boolean function f over input variables: x;, X5, ..., X.,, IS & 0 A Boolean function f: B — B over variables
mapping f: B™ - Y, where B = {0,1} and Y = £0,1,d} X1,...,X, Maps each Boolean valuation (truth
= Eog. N , assignment) inB"toOor 1
B The output value of f(X;, X,, X3), say, partitions B™ into three sets:
O on-set (f=1)
= E.g. {010, 011, 110, 111} (characteristic function f* = x,) Example
O off-set (f= 0) : — — —
= E.g. {100, 101} (characteristic function f© = x, —x,) f(XI’XZ) Wlth f(0,0) - O! f(o’l) - 11 f(l,O) - 11
O don't-care set (f= d) f(l, 1) =0
= E.g. {000, 001} (characteristic function f4 = —x; —x, )
Xz
O fis an if the don't-care set is —
nonempty. Otherwise, fis a 01 X2
B Unless otherwise said, a Boolean function is meant to be completely x.[[1]0
specified =
1
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Boolean Function Boolean Function

O Onset of f, denoted as f2, is f1={v € B" | f(v)=1}

m If f1 = Bn, fis a tautology
O Offset of f, denoted as f°, is f°= {v € B" | f(v)=0}

m If fO = Bn, f is unsatisfiable. Otherwise, f is satisfiable.
(|

O Boolean functions f and g are equivalent if Vve B". f(v) =
g(v) where v is a truth assignment or Boolean valuation

O A literal is a Boolean variable x or its negation x’ (or X, —X)
in a Boolean formula

f(Xqs X0 Xg) = Xy f(Xy, Xy Xg) = X;

X3 Xs)

/;(2 /;(2
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O There are 2" vertices in B"
n . . -
O There are 22 distinct Boolean functions

B Each subset f1 < B of vertices in B" forms a
distinct Boolean function f with onset ft

X XXg
000
001
010 1
" 100 =1
=
S 101
T, 110 1
111
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Boolean Operations

Cofactor and Quantification

I I
Given two Boolean functions: Given a Izaoolean function: _
f- B> B f: B" — B, with the input variable (X;,X,,...,X;,...,X,)
g:B"> B O Positive cofactor
h = f; is defined as h = f(x,X5,....,1,...,X,)
O h =f A g from AND operation is defined as O Negative cofactor
hti=flng!l; h®=B"\h! h = f_ is defined as h = f(x4,X,,...,0,...,X,)
. . ' O Existential quantification
O h =f v g from OR operation is defined as h = 3x,. f is defined as h = f(X;,Xgs...,0srsX0) ¥ F(XgsXgrerssLrrs i X0)
ht=flugl; ho=Br\h?
O Universal quantification
. . . h = Vx,. f is defined as h = f(x,X,,...,0,...,X,) A f(X{,X5,...,1,...,X
O h = —f from COMPLEMENT operation is defined as ' O n) A 10X n)
hli=1f0; h0=f1 O Boolean difference
h = of/0x; is defined as h = f(X4,X,,...,0,...,X,) @ f(X1,X5,...,1,...,X,)
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Boolean Function Representation
Boolean Function Representation Truth Table
I I
O Some common representations: o Iruth tab)le (function table for multi-valued
unctions):
= Truth table The truth table of a function f : B" > B is a
¥ Boolean formula tabulation of its value at each of the 2"
O SOP (sum-of-products, or called disjunctive normal form, DNF) vertices of B". abcd f abcd f
O POS (product-of-sums, or called conjunctive normal form, CNF) 0 0000 O 8 1000 O
m BDD (binary decision diagram) In other words the truth table lists all mintems 10001 1 9 1001 1
B Boolean network (consists of nodes and wires) Example: f = a'b’c’'d + a’b’cd + a’bc’'d + 2 0010 O 10 1010 O
[ Generic Boolean network ab'c’d + ab’cd + abc'd + 3 0011 1 11 1011 1
= Network of nodes with generic functional representations or even abcd’ + abced 4 0100 O 12 1100 O
subcircuits 5 0101 1 13 1101 1
O Specialized Boolean network P 6 0110 O 14 1110 1
« Network of nodes with SOPs (PLAS) The truth table representation is 2 0111 0 15 1111 1

= And-Inv Graph (AIG)

O Why different representations?

m Different representations have their own strengths and
weaknesses (no single data structure is best for all
applications)

15

If two functions are the equal, then their
canonical representations are isomorphic.

16




Boolean Function Representation
Boolean Formula

O A Boolean formula is defined inductively as an expression
with the following formation rules (syntax):

formula ::= ‘( formula ¥y’
| Boolean constant (true or false)
| <Boolean variable>
| formula “+” formula (OR operator)
| formula “” formula (AND operator)
| — formula (complement)
Example

f= (X1 %) + (Xg) + =(=(%, - (=X%y)))
typically “” is omitted and ‘(‘, ‘)’ are omitted when the operator priority is
clear, e.g., f= X X, + X3+ X, =X,

17

Boolean Function Representation
Boolean Formula in SOP

O Any function can be represented as a
, also called (a cube
is a product term), or

Example
¢ =ab + ac + bc

18

Boolean Function Representation
Boolean Formula in POS

O Any function can be represented as a
, also called

B Dual of the SOP representation

Example
¢ = (a+b’'+c) (a’+b+c) (a+b'+c’) (a+b+c)

O Exercise: Any Boolean function in POS can be
converted to SOP using De Morgan’s law and the
distributive law, and vice versa

19

Boolean Function Representation
Binary Decision Diagram

O BDD - a graph f=ab+a'c+a’bd
representation of Boolean
functions root

node

H A leaf node represents
constant O or 1

B A non-leaf node
represents a decision node
(multiplexer) controlled by
some variable

B Can make a BDD
representation canonical
by imposing the variable
ordering and reduction .
criteria (ROBDD)




Boolean Function Representation
Binary Decision Diagram

O Any Boolean function f can be written in term of
Shannon expansion
f=vf,+-vf,
B Positive cofactor: fi = f(Xq,.... %=1, ..., X))
B Negative cofactor: f = f(Xe,....%=0,..., X))

0 BDD is a compressed Shannon cofactor tree:

B The two children of a node with function f controlled by
variable v represent two sub-functions f, and f_,

21

Boolean Function Representation
Binary Decision Diagram

O Reduced and ordered BDD (ROBDD) is a canonical
Boolean function representation
[ |

O cofactor variables are in the same order along all paths
X < X, < Xi, < ... <X
1 2 3 n

Oany node with two identical children is removed
Otwo nodes with isomorphic BDD's are merged
These two rules make any node in an ROBDD represent a
distinct logic function
A f
& ordered not ~fa f
c c (a<c<b) b‘ c ordered

a O <~\\
A
(9]
%

o
=
ox

2\ 0 1 0
1

X "‘xb> reduce \
b TN ¥
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Boolean Function Representation
Binary Decision Diagram

O For a Boolean function,
B ROBDD is unique with respect to a given variable ordering
m Different orderings may result in different ROBDD structures

<+—— f=ab+a'c+tbc’'d — @3

a
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Boolean Function Representation
Boolean Network

O A Boolean network is a directed graph C(G,N)
where G are the gates and N ¢ (GxG) are the
directed edges (nets) connecting the gates.

Some of the vertices are designated:
|l =G
OcG

1IN0 =Y

Each gate g is assigned a Boolean function f
which computes the output of the gate in terms
of its inputs.

24




Boolean Function Representation
Boolean Network

O The fanin FI(g) of a gate g are the predecessor gates of g:
FI(9) = {9’ | (9',9) € N} (N: the set of nets)

O The fanout FO(Q) of a gate g are the successor gates of g:
FO(9) = {9’ | (9.9) N}

O The cone CONE(Q) of a gate g is the transitive fanin (TFI) of
g and g itself

O The support SUPPORT(g) of a gate g are all inputs in its
cone:

SUPPORT(g) = CONE(g) N I

25

Boolean Function Representation
Boolean Network

Example

FI(6) = {2,4}

FO(6) = {7,9}

CONE(6) = {1,2,4,6}

SUPPORT(6) = {1,2}

Every node may have its own function

26

Boolean Function Representation

And-Inverter Graph

O AND-INVERTER graphs (AIGSs)
vertices: 2-input AND gates
edges: interconnects with (optional) dots representing INVs

O Hash table to identify and reuse structurally isomorphic
circuits

Boolean Function Representation

0 A canonical form of a Boolean function is a
unique representation of the function
B It can be used for verification purposes

OO0 Example
B Truth table is canonical

O 1t grows exponentially with the number of input variables

B ROBDD is canonical

O It is of practical interests because it may represent many

Boolean functions compactly
B SOP, POS, Boolean networks are NOT canonical

28




Boolean Function Representation

Logic Optimization

M Truth table Boolean functions

B Canonical

m Useful in representing small functions /
O sop

®m Useful in two-level logic optimization, and in representing local node two-level optimization

functions in a Boolean network

O POS \ J I

B Useful in SAT solving and Boolean reasoning \

B Rarely used in circuit synthesis (due to the asymmetric characteristics . .

of NMOS and PMOS) multi-level optimization

O ROBDD

B Canonical

B Useful in Boolean reasoning
O Boolean network ]

B Useful in multi-level logic optimization technology mapping
o AIG

m Useful in multi-level logic optimization and Boolean reasoning l

circuits
29 30
Two-Level Logic Minimization Two-Level Logic Minimization
I I

O Any Boolean function can be realized using PLA in
two levels: AND-OR (sum of products), NAND-
NAND, etc.

B Direct implementation of two-level logic using PLAs

(programmable logic arrays) is not as popular as in the
nMOS days

[ Classic problem solved by the Quine-McCluskey
algorithm

B Popular cost function: #cubes and #literals in an SOP
expression
O+#cubes — #rows in a PLA
O +#tliterals — #transistors in a PLA

B The goal is to find a minimal irredundant prime cover

31

CExact algorithm
B Quine-McCluskey’s procedure

O Heuristic algorithm
B Espresso

32




Two-Level Logic Minimization
Minterms and Cubes

O A minterm is a product of every input variable or
its negation

B A minterm corresponds to a single point in B"
O A cube is a product of literals

B The fewer the number of literals is in the product,
the bigger the space is covered by the cube

X
flﬁ
x r
1 . . an
Xlia ,1.3 23

Xlle'S

Two-Level Logic Minimization
Implicant and Cover

OO0 An implicant is a cube whose points are either in
the on-set or the dc-set.

O A prime implicant is an implicant that is not
included in any other implicant.

0 A set of prime implicants that together cover all
points in the on-set (and some or all points of the
dc-set) is called a prime cover.

B A prime cover is irredundant when none of its prime
implicants can be removed from the cover.

B An irredundant prime cover is minimal when the cover
has the minimal humber of prime implicants.

(c.f. minimum vs. minimal)

34

Two-Level Logic Minimization
Cover

O Example
B f =X, X3 + =X, Xg + X3 Xy

B f =X, =X, + X, =Xg + X; X3

35

Two-Level Logic Minimization
Cover

O Example

local minimal global minimal

36




Two-Level Logic Minimization
Quine-McCluskey Procedure

O Given G and D (covers for 3 = (f,d,r) and d, respectively),
find a minimum cover G* of primes where:

fc G*cf+d (G* is a prime cover of 3J)
B fis the onset, d don't-care set, and r offset

O Q-M Procedure:

1.Generate all primes of 3, {P;} (i.e. primes of (f+d) =
G+D)

2.Generate all minterms {m} of f = GA-D
3. Build Boolean matrix B where
B = 1 if me P
= 0 otherwise

4. Solve the minimum column covering problem for B
(unate covering problem)

37

Two-Level Logic Minimization
Quine-McCluskey Procedure

Generating Primes F=Xy+wxy+xXyz+wyz

Tabular method wxyz V|wxy v
(based on consensus operation): wxz v
. . . Xy z v
O Start with all minterm canonical —
form of F wxyz vV [XV? v
O Group pairs of adjacent minterms o , Xyz ‘/
into cubes W Xx'yz \/
O Repeat merging cubes until no wxyz Vo [wxy v
more merging possible; mark () wx 2’ ‘/
+ remove all covered cubes.
O Result: set of primes of f. wx'y z v
wx'yz v
Example
F=XYy +wWXy+XyzZ+wyz wXxyz v
WXy z \4
WXYyz %

Courtesy: Maciej Ciesielski, UMASS
38

Two-Level Logic Minimization
Quine-McCluskey Procedure

o Example Karnaugh map
x 2 Xy Xy Xy Xy y _ _
, P4 y w X
z 1 d] 0 |d /\/ xyzwl 0 1
W Ed 1) d 1]/\\/w w0 1 1
zw dj 1 d | xyzwl 1 0
W i 0 0 d_ xyzw0O 1 0

F = XYyzZW+ XYZW + XY ZW + XyZW (cover of J)

D =yz+XyW+XYZW+ XYW+ Xyzw (cover of d)

Primes: y+w + X z
Covering Table B
Solution: {1,2} = y + w is a minimum prime cover

39
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Two-Level Logic Minimization
Quine-McCluskey Procedure

Column covering of Boolean matrix

Primes of f+d

y W Xz
xyzw 1 0 1
Minterms of f Xy zw O 1 1
xyzw 1 1 O
— Row singleton
xyzw 1 0«—— g

(essential minterm)

!

Essential prime

O Definition. An essential prime is a prime that covers an onset
minterm of f not covered by any other primes.

40




Two-Level Logic Minimization
Quine-McCluskey Procedure

O

B In practice, many rows in a covering table are identical.
That is, there exist minterms that are contained in the
same set of primes.

B Example
m,; 0101101
m, 0101101

41

Two-Level Logic Minimization
Quine-McCluskey Procedure

O
B A row i; whose set of primes is contained in the set of
primes of row i, is said to iy
B Example
I 011010
in 011110

Oi, dominates i,

O Can remove row i, because have to choose a prime to
cover i;, and any such prime also covers i,. So i, is
automatically covered.

42

Two-Level Logic Minimization
Quine-McCluskey Procedure

O
B A column j; whose rows are a superset of another
column j, is said to jo

B Example Ja iz
1 0
o 0
1 1
o 0
1 1

Oj, dominates j,

OWwe can remove column j, since j, covers all those rows and
more. We would never choose j, in a minimum cover since
it can always be replaced by j,.

43

Two-Level Logic Minimization
Quine-McCluskey Procedure

Reducing Boolean matrix

1. Remove all rows covered by essential primes (columns in
row singletons). Put these primes in the cover G.

2. Group identical rows together and remove dominated rows.

3. Remove dominated columns. For equal columns, keep one
prime to represent them.

4. Newly formed row singletons define induced essential
primes.

5. Go to 1 if covering table decreased.

O The resulting reduced covering table is called the
. This has to be solved (unate covering problem). A
minimum solution is added to G. The resulting G is a
minimum cover.

a4




Two-Level Logic Minimization
Quine-McCluskey Procedure

Example (reducing Boolean matrix) 34567

R essential prime P1 10000

1100001 (remove rows 1 and 2) 11100

induced essential prime P3

Two-Level Logic Minimization
Quine-McCluskey Procedure

Solving cyclic core

O Best known method (for unate covering) is branch and
bound with some clever bounding heuristics

m]

— B Find a maximum set | of “independent” rows. Two rows B;; ,B;,
011000( and 01011 (remove rows 1 and 2) are independent if not 3j suchpthat Bi,; = Bi,; = 1. (They have~
column dominance and no column in common.)
001110C . 00110
(col. 2 dominated by 3) column dominance
0001011 G=P1 01101 (col. 7 dominated by 4) Example
000011c¢ 0111 G =P1 +P3 A covering matrix B rearranged with independent sets first
0001101 |
000111C 456
0 Independent set .5 of rows
456 row dominance 101 B:
011 110 A C
110 111 45 46
Two-Level Logic Minimization Two-Level Logic Minimization
Quine-McCluskey Procedure Quine-McCluskey Procedure
Solving cyclic core I:ISummary
O Heuristic algorithm: B Calculate all prime implicants (of the union of
m Let s ={l,, I,, ..., I} be the the onset and don’t care set)
independent set of rows _ 0 ® Find the minimal cover of all minterms in the
1. choose j € I; such that column j covers . . .
the most rows of A. Put Pj in G onset by prime implicants
2. eliminate all rows covered by column j A c OConstruct the covering matrix
3. 9« I\{L} OSimplify the covering matrix by detecting essential
4.gotolif|s]>0 columns, row and column dominance
5. If B is empty, then done OWhat is left is the cyclic core of the covering matrix.
i = The covering problem can then be solved by a
6. If B is not empty, choose an branch-and-bound algorithm.

independent set of B and go to 1

47

48




Two-Level Logic Minimization
Exact vs. Heuristic Algorithms

O Quine-McCluskey Method:
1.Generate cover of all primes G =p,; +p, +--+pgy,

2.Make G irredundant (in optimum way)
B Q-M is exact, i.e., it gives an exact minimum

O Heuristic Methods:

1. Generate (somehow) a cover of 3 using some of
the primes G = Pi, F P, Py

2.Make G irredundant (maybe not optimally)

3.Keep best result - try again (i.e. go to 1)

49

Two-Level Logic Minimization
ESPRESSO

O Heuristic two-level logic minimization
ESPRESSO(3)

{
(F,D,R) «- DECODE(3) I/LASTGASP
F < EXPAND(F,R) G « REDUCE_GASP(F,D)
F < IRREDUNDANT (F,D) G < EXPAND(G,R)
E « ESSENTIAL_PRIMES(F,D) F < IRREDUNDANT(F +G,D)
F«FE D«D+E IILASTGASP
do{ }while fewer terms in F
do{ F«F+E, D«D-E
F < REDUCE(F,D) LOWER_OUTPUT(F,D)
F < EXPAND(FR) RAISE_INPUTS(F,R)

F < IRREDUNDANT(F,D)
Jwhile fewer terms in F

error < (Fy ¢ F)or (Fz F,
return (F,error)

} 50

«+D)

Two-Level Logic Minimization
ESPRESSO

REDUCE

IRREDANDANT

Local minimum

51

Logic Minimization

Boolean functions

/

two-level optimization

e

multi-level optimization

/

technology mapping

l

circuits
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Factor Form

O Factor forms — beyond SOP
B Example:
(ad+b’c)(c+d'(e+ac’))+(d+e)fg

O Advantages

B good representation reflecting logic complexity (SOP may not be
representative)

O E.g., f=ad+ae+bd+be+cd+ce has complement in simpler SOP f=
a'’b'c’+d'e’; effectively has simple factor form f=(a+b+c)(d+e)

B in many design styles (e.g. complex gate CMOS design) the
implementation of a function corresponds directly to its factored form

B good estimator of logic implementation complexity
B doesn’'t blow up easily

O Disadvantages
B not as many algorithms available for manipulation

53

Factor From

O Factored forms are useful X=(a+b)c +d
in estimating area and Vdd
delay in multi-level logic

B Note: literal count =
transistor count ~ area

O however, area also
depends on wiring, gate
size, etc.

O therefore very crude
measure

Gnd

54

Factor From

COThere are functions whose sizes are
exponential in the SOP representation, but
polynomial in the factored form

B Example
Achilles’ heel function
i=n/2
H (X2i—1 + X2i)

i=1
There are n literals in the factored form and
(n/2)x2"2 literals in the SOP form.

55

Factor Form

O Factored forms can be graphically represented as labeled
trees, called factoring trees, in which each internal node
including the root is labeled with either + or x, and each
leaf has a label of either a variable or its complement

B Example: factoring tree of ((a'+b)cd+e)(a+b")+e’

((a’+b)cd+e)(a+b’)+e’

56




Multi-Level Logic Minimization

Multi-Level Logic Minimization
Structural Manipulation

D BaSiC teChniqueS in Boolean network Resg(m;c:quprlig:g Problem: Given initial network, find best network.
H i - f, = abcd+abce+ab’cd’+ab’c’d’+a'c+cdf+abc’'d’e’+ab’c’df’
mampUIatlon - fi = bdg-+b'dfg+b'd'g+bd'eg
B structural manipulation (change network o B
f, = bcd+bce+b’d'+a’c+cdf+abc’'d’e’+ab’c’'df
topology) f, = bdg+dfg+b'd'g+deg
B node simplification (change node functions) f, = c(b(d+e)+b'(d+H+a’)+ac (bd'e+bdf)
Onode minimization using don’t cares f, = g(d(b+f)+d'(b'+e))
f, = c(b(d+e)+b'(d'+f)+a’)+ac'x’
f, = gx
x = d(b+f)+d'(b'+e)
Two problems:
O find good common subfunctions
0O effect the division
57 58
Multi-Level Logic Minimization Multi-Level Logic Minimization
Structural Manipulation Structural Manipulation

Basic operations:
f = abc+abd+a’'c’d'+b’c’d’
U
f=xy+xy" x=ab y=-c+d
f = (az+bz)cd+e g = (az+bz)e’ h =cde
f=xy+e g=xe' h=ye x=az+bz y=cd
f = ac+ad+bc+bd+e

U
f = (a+b)(c+d)+e

59

Basic operations (cont’d):
f=a+bc g=a+b
U
f=g(a+c) g=a+b
f=ga+gb g=c+d
U

f = ac+ad+bc'd g =c+d

Note: “division” plays a key role in all these operations

60




Multi-Level Logic Minimization
Node Simplification

0 Goal: For any node of a given Boolean network,

find a SOP expression among the set of
permissible functions for the node

B Don’'t care computation + two-level logic minimization

combinational Boolean network

RR

61

Combinational Logic Minimization

O Two-level: minimize #product terms and #literals

— v iy y e ! e ! ) , —
B E.g., F = XX, 'X5'+ XX, X5+ X X,'Xg'+ X XX+ X XX = F =
Xy'+ XX’

O Multi-level: minimize the # literals (area minimization)

B E.g., equations are optimized using a smaller number of
literals

g —ar 's. “ logic  t1=d e

B - optimization ;5 _ gy b
Goobrs TUUATI,
(5=id b+ 2 63; M=t 3+fek
F=15;

subject graph for the optimized equations
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Timing Analysis and Optimization

I
O Delay model at logic level
B Gate delay model (our focus)
O Constant gate delay, or pin-to-pin gate delay
O Not accurate /4 T \

B Fanout delay model

O Gate delay considering fanout load (#fanouts)
O Slightly more accurate

B Library delay model

O Tabular delay data given in the cell library

= Determine delay from input slew and output
loa

= Table look-up + interpolation/extrapolation
O Accurate

63

Timing Analysis and Optimization
Gate Delay

I
The delay of a gate depends on: o
O‘ E‘ ‘ = Re1‘fcload

1. Output Load J
O Capacitive loading o« charge | L <ﬂ

needed to swing the output Eload Rett | Coug

voltage = = = =
O Due to interconnect and An inverter e.g. output 1—0

logic fanout

2. Input Slew

[

a

Slew = transition time

= longer delay and longer
output slew

O Slower transistor switching v, /

64




Timing Analysis and Optimization
Timing Library

Static Timing Analysis

I I
O Timing library contains all 01 A O Arrival time: the time signal arrives
relevant information about each I _"-.,. 7 B Calculated from input to output in the topological order
standard cell . % O Required time: the time signal must ready (e.qg., due to the clock
m E.g., pin direction, clock, pin B — cycle constramt)
capacitance, etc. B Calculated from output to input in the reverse topological order
Path( O Slack = required time — arrival time
O Delay (fastest, slowest, and often inputPorts(A), B Timing flexibility margin (positive: good; negative: bad)
. outputPorts(2),
typlcgl)dand outﬁut slew are inpUtTransition(01)
encoded for each input-to-output outputTransition(10), . . N . .
path and each pair of transition “delay_table_1", Al) | RO AQ): arnvz_al t|m_e of 5|gnaIJ_
directions “output_slew_table_1” R(Kk): required time or for signal k
); S(k): slack of signal k
O Values typically represented as 2 “delay_table_1” ) r(j,k) D(j,k): delay of node j from input k
dimensional look-up tables (of Output load (nF node j _ _
output load and input slew) o o o rol00 AK)_| R(K) A@) = maXyp gy [AK) + DK
® Interpolation is used b121 26 laaloa r(j,k) = R(j) - D(j,k)
2libslea oo ol R(K) = min;_eoqq [r(,K)]
5| [t.0o]2.6 [3.4 [4.0[8.1 S(k) = R(K) - A(k)
S| fp.of2.8 [3.7 |49 |10.3
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Static Timing Analysis Static Timing Analysis
I I

O Arrival times known at register outputs I, I,, and Ig
O Required times known at register inputs I, l,, and Ig

O Delay analysis gives arrival and required times
for combinational blocks C,, C,, C;, C,

T
@) ls

14

12 13
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O Arrival time can be computed in the topological
order from inputs to outputs
B When a node is visited, its output arrival time is:
the max of its fanin arrival times + its own gate delay

O Required time can be computed in the reverse
topological order from outputs to inputs
B When a node is visited, its input required time is:
the min of its fanout required times - its own gate delay
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Static Timing Analysis

A =6 R, =5
O Example Al=5 R.=5
R.=5 Ry=5 Si=-1 R;=3
4 S,=0 R,=1
Gt [sllo stk 2. RIh
102 D 2 / arrival time 34,1 = E)l
bt} 42 =
Y 1 /node ID Ssp=1
3(2 2 4 15 73"
v.. - S;4=-1
T 1 1 \ 1 27’5: é
e, v y o=
....... 10 S0
& 6 27 Ap=2 Y
\ . T e critical path edges
i
5 CE .
~ Ag=0 Skik = Sk + max{Ay} - Ay, K k; € fanin(k)
Ae=0 Si = Min{Sy}, k € fanout(k)
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Timing Optimization

O ldentify timing critical regions
OPerform timing optimization on the
selected regions

M E.g., gate sizing, buffer insertion, fanout
optimization, tree height reduction, etc.
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Timing Optimization

O Buffer insertion

M Divide the fanouts of a gate into critical and
non-critical parts, and drive the non-critical
fanouts with a buffer

T i
- jjjbo SuE

i

less
critical
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Timing Optimization

O Fanout optimization

B Split the fanouts of a gate into several parts.
Each part is driven by a copy of the original
gate.

F—

—

o

NI
l
U]
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Timing Optimization

CTree height reduction

J»/

/
o
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Timing Optimization

COTree height reduction

Collapsed 5
Critical region
n’

Combinational Optimization

O From Boolean functions to circuits

Boolean functions

/

two-level optimization

N

/]

multi-level optimization

/

technology mapping

l

circuits
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Technology Independent vs. Dependent
Optimization

0 Technology independent optimization produces a
two-level or multi-level netlist where literal
and/or cube counts are minimized

0 Given the optimized netlist, its logic gates are to
be implemented with library cells

0 The process of associating logic gates with library
cells is technology mapping

B Translation of a technology independent representation
(e.g. Boolean networks) of a circuit into a circuit for a
given technology (e.g. standard cells) with optimal cost
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Technology Mapping

| technology technelogy ﬁ|
| independent dependent

.. | -
original logic optimized technology | | jmi
| optimization n[;.twork mapping 1™ og]t;:jrll]l]zted
|

l logic synthesis

O Standard-cell technology mapping: standard cell design
B Map a function to a limited set of pre-designed library cells
O FPGA technology mapping
B Lookup table (LUT) architecture:
O E.g., Lucent, Xilinx FPGAs
O Each lookup table (LUT) can implement all logic functions with up to k inputs (k = 4, 5, 6)
B Multiplexer-based technology mapping:
O E.g., Actel FPGA
O Logic modules are constructed with multiplexers
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Standard-Cell Based Design

|

Cell © Feedihirangh Cell
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Technology Mapping

O Formulation:
B Choose base functions
OEx: 2-input NAND and Inverter

B Represent the (optimized) Boolean network with base
functions

OSubject graph
B Represent library cells with base functions
OPattern graph

O Each pattern is associated with a cost depending on the
optimization criteria, e.g., area, timing, power, etc.

O Goal:

B Find a minimal cost covering of a subject graph using
pattern graphs
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Technology Mapping

0 Technology Mapping: The optimization problem
of finding a minimum cost covering of the subject
graph by choosing from a collection of pattern
graphs of gates in the library.

0 A cover is a collection of pattern graphs such that
every node of the subject graph is contained in
one (or more) of the pattern graphs.

0 The cover is further constrained so that each
input required by a pattern graph is actually an
output of some other pattern graph.
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Technology Mapping

CExample
M Subject graph

Technology Mapping

O Example
B Pattern graphs (1/3)
nand2 (2) nor2 (2)

cell name (cost)
Y

f o inv (1)
f=d+e g ] u o and2 (3) or2 (3)
=b+h
:g — at+2 +c ﬁ B 1 F (cost can be area or delay) :D_I>O_ m
t4=t1t3+fgh b = "
F=t4 2 a nand3 (3) nor3 (3)
¢ %
Technology Mapping Technology Mapping
O Example OO0 Example
B Pattern graphs (2/3) nor4 (4) B Pattern graphs (3/3)
nand4 (4)
nand4 (4) nor4 (4)
o Tl %
aoi2l (3) caizl 3)
W @& xor (5) xnor (5)

0ai22 (4)
aoi22 (4)

e
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Technology Mapping

O Example
B A trivial covering

OMapped into NAND2's and INV’s
= 8 NAND2's and 7 INV’s at cost of 23

tl=d+e;
2=5b+h;
B3=a 2 +c¢

4=t 3+fgh;
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Technology Mapping

O Example
B A better covering

O VT TD QA -

For a covering to be legal, every input of a pattern
graph must be the output of another pattern graph! 56

Technology Mapping

O Example
B An even better covering

O YT TD® Q@ -

For a covering to be legal, every input of a pattern
graph must be the output of another pattern graph! a7

Technology Mapping

O Complexity of covering on directed acyclic
graphs (DAGS)

B NP-complete

H If the subject graph and pattern graphs are
trees, then an efficient algorithm exists (based
on dynamic programming)
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Technology Mapping
DAGON Approach

O Partition a subject graph into trees

B Cut the graph at all multiple fanout points
O Optimally cover each tree using dynamic programming approach
O Piece the tree-covers into a cover for the subject graph

s
: |

Technology Mapping
DAGON Approach

O Principle of optimality: optimal cover for the tree consists of
a match at the root plus the optimal cover for the sub-tree
starting at each input of the match

Match: cost =m

C(root) =m + C(l,) + C(l,) + C(l5) + C(l,)
cost of a leaf (i.e. primary input) = 0
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Technology Mapping
DAGON Approach

OExample v 2 o @ o
= Library \anp2 3 o (@) o
NANDS 4 D)o (abc) %
NAND4 5 =)

ey %—Do—‘_}
poiz1 a4 Dy @ E o

AOI22 5 jSD (ab+cd)’ E

library element base-function representation
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Technology Mapping
DAGON Approach

I
O Example
NAND2(3)
] NAND2(8)
INV(15) NAND2(16) mﬁm ng%
AND2(13) AO0I21(9) NAND3(18) NANDA4(19)

AOI21(22)
NAND2(8) INV(18)

NAND3(4)
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Technology Mapping
DAGON Approach

0 Complexity of DAGON for tree mapping is
controlled by finding sub-trees of the
subject graph isomorphic to pattern trees

O complexity in both the size of
subject tree and the size of the collection
of pattern trees
M Consider library size as constant
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Technology Mapping
DAGON Approach
O Pros: O Cons:
B Strong algorithmic B With only a local (to the
foundation tree) notion of timing
B Linear time complexity OTaking load values into
O Efficient approximation account can improve
to graph-covering the results
problem B Can destroy structures of
B Give locally optimal optimized networks
matches in terms of both OONot desirable for well-
area and delay cost structured circuits
functions B Inability to handle non-
B Easily “portable” to new tree library elements
technologies (XOR/XNOR)

B Poor inverter allocation
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Technology Mapping
DAGON Approach

CODAGON can be improved by

B Adding a pair of inverters for each wire in the
subject graph

B Adding a pattern of a wire that matches two
inverters with zero cost

oo Boovlow

2 INV

1 Al021 2 NOR2
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Available Logic Synthesis Tools

O Academic CAD tools:
B Espresso (heuristic two-level minimization, 1980s)
B MIS (multi-level logic minimization, 1980s)
B SIS (sequential logic minimization, 1990s)

B ABC (sequential synthesis and verification system,
2005-)

O http://www.eecs.berkeley.edu/—alanmi/abc/
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