Introduction to Electronic
Design Automation

Jie-Hong Roland Jiang
NI

/\\
Department of Electrical Engineering ‘\
National Taiwan University

Spring 2012

Formal Verification

Part of the slides are by courtesy of Prof. Y.-W. Chang, S.-Y. Huang, and A. Kuehlmann




Formal Verification

0 Course contents
M Introduction
M Boolean reasoning engines
B Equivalence checking
M Property checking

CJReadings
M Chapter 9

Outline
Ol Introduction
O Boolean reasoning engines

O Equivalence checking

OProperty checking




(1995/1) Intel announces a pre-tax charge of 475 million dollars against
earnings, ostensibly the total cost associated with replacement of the
flawed processors.

(1996/6) The European Ariane5 rocket
explodes 40 s into its maiden flight due to
a software bug.




- (2008 %o
8/9)
prev
dorentr‘n 3y
S . or compL
|__~°n "[[%grg - | v
. Q’, \/7 . | -- .
r" - ‘ . ‘
' o ety 7
s S| dulge b
» e 1 d Sh eﬁco -.
| d ¢ u;tle il
missi
on to

lfs't




Design vs. Verification

CIVerification may take up to 70% of total
development time of modern systems !
M This ratio is ever increasing

B Some industrial sources show 1:3 head-count
ratio between design and verification engineers

ClVerification plays a key role to reduce
design time and increase productivity

IC Design Flow and Verification

; " b
implement verif. |

netlistm

.

layouitd
ask

10




Scope of Verification

O Design flow

B A series of transformations from abstract specification all the
way to layout

O Verification enters design flow in almost all abstraction
levels
B Design verification
O Functional property verification (main focus)
B Implementation verification
O Functional equivalence verification (main focus)
O Physical verification
O Timing verification
O Power analysis
O Signal integrity check
= Electro-migration, IR-drop, ground bounce, cross-talk, etc.
B Manufacture verification
O Testing

11

Verification

O Design/Implementation Verification
Functional Verification
B Property checking in system level
O PSPACE-complete
B Equivalence checking in RTL and gate level
O PSPACE-complete
Physical Verification

B DRC (design rule check) and LVS (layout vs.
schematic check) in layout level
O Tractable

O Manufacture Verification
B Testing
O NP-complete

O “Verification” often refers to functional
verification

12




Functional Verification

Design Flow Design Verification

Design Validation
(Is what | specified
really what | wanted?)

Abstract Design Specification

High-level synthesis Property Checking
(Does the design

have desired properties?)

Register-Transfer Level Model

Equivalence Checking
(Implementation verification)
(Is what I implemented
really what | specified?)

Logic synthesis

Schematic
(gate-level or transistor-level)

Physical design

Physical verification
(LVS: layout vs. schematic)

Physical verification
(DRC: design rule check)

13

Functional Verification Approaches

O Simulation (software)
B Incomplete (i.e., may fail to catch bugs)

B Time-consuming, especially at lower abstraction levels such as
gate- or transistor-level

B Still the most popular way for design validation
O Emulation (hardware)

B FPGA-based emulation systems, emulation system based on
massively parallel machines (e.g., with 8 boards, 128
processors each), etc.

B 2 to 3 orders of magnitude faster than software simulation
B Costly and may not be easy-to-use
O Formal verification

B a relatively new paradigm for property checking and
equivalence checking

B requires no input stimuli
B perform exhaustive proof through rigorous logical reasoning

14




Informal vs. Formal Verification

0 Informal verification 0 Formal verification
B Functional simulation B Mathematical proof of
aiming at locating bugs design correctness
B Incomplete B Complete
0 Show existence of O Show both existence
bugs, but not absence and absence of bugs
of bugs

We will be focusing on formal verification

15

Outline
O Introduction

C0Boolean reasoning engines
m BDD
B SAT

O Equivalence checking

OProperty checking

16




Binary Decision Diagram (BDD)

] Basic features

= ROBDD
O Proposed by R.E. Bryant in 1986

OO A directed acyclic graph (DAG) representing a Boolean
function f: B"»B

= Each non-terminal node is a decision node associated with a
input variable with two branches: O-branch and 1-branch

= Two terminal nodes: O-terminal and 1-terminal
B Example

e D -

17

Binary-Decision Diagram (BDD)

O Cofactor of Boolean function:
B Positive cofactor w.r.t. x;: fi = F(Xqseoos Xiigy 1, Xipqsees Xp)
B Negative cofactor w.r.t. x;: foi=T(Xph Xiigs 0, Xinqseons X))

B Example
f= XX, X3’ + X" X' Xz + X; X, X5 + X; X5 X5 + X5 Xg
fi = X' X3 + X5 X3 + X, X3
fo = X' X3 + X' X3 + X5 X3

O Shannon expansion: f = x; f; + X" f;
B A complete expansion of a function can be obtained by
successively applying Shannon expansion on all variables until
either of the constant functions ‘O’ or ‘1’ is reached

18




Otdered BDD (OBDD)

0 Complete Shannon expansion can be visualized as a binary tree
B Solid (dashed) lines correspond to the positive (negative) cofactor

f=X, X5 X3+ Xg X5 Xz + X Xp Xz + Xq X5 X3+ Xg Xy Xg + X; Xy Xg

19

Reduced OBDD (ROBDD)

O Reduction rules of ROBDD
B Rule 1: eliminate a node with two identical children
B Rule 2: merge two isomorphic sub-graphs

-] %A

0 Reduction procedure
B Input: An OBDD
B Qutput: An ROBDD

B Traverse the graph from the terminal nodes towards to root
node (i.e., in a bottom-up manner) and apply the above
reduction rules whenever possible

20




ROBDD

0 An OBDD is a directed tree G(V,E)

[0 Each vertex v € V is characterized by an
associated variable ¢(v), a high subtree n(v)
(high(v), the 1-branch) and a low subtree A(V)
(low(v), the O-branch)

J Procedure to reduce an OBDD:

B Merge all identical leaf vertices and appropriately
redirect their incoming edges

M Proceed from bottom to top, process all vertices: if
two vertices u and v are found for which ¢(u) =
o(v), n(u) = n(v), and A(u) = A(v), merge u and v
and redirect incoming edges

M For vertices v for which n(v) = A(v), remove v and
redirect its incoming edges to n(v)

21

ROBDD

0 Example
Bf=xyz + xz
B variable order: x <y <z

Truth table

acm OBDD
000 | O

001 | O QD\
010 | 1 9-7 L
011 | © @

100 | o R

101 | 1 Q Q

110 0 07 \1 o7 \1

111 | 1 |1L| 0| 0|

22




ROBDD

0 Example (cont'd)

23

Canonicity

[0 Canonicity requirements

B A BDD representation is not canonical for a given
Boolean function unless the following constraints are
satisfied:

1.Simple BDD - each variable can appear only once along

each path from the root to a leaf

2.0rdered BDD - Boolean variables are ordered in such a
way that if the node labeled x; has a child labeled Xx,,
then order(x;) < order(x,)

3.Reduced BDD - no two nodes represent the same
function, i.e., redundancies are removed by sharing
iIsomorphic sub-graphs

24




ROBDD Properties

0 ROBDD is a canonical representation for a fixed variable
ordering

0 ROBDD is compact in representing many Boolean functions
used in practice

O Variable ordering greatly affects the size of an ROBDD
B E.g., the parity function of k bits:
k

f =HX2j—1(-BX2]

=t

25

Effects of Variable Ordering

0 BDD size

B Can vary from linear to exponential in the number of the
variables, depending on the ordering

0 Hard-to-build BDD

B Datapath components (e.g., multipliers) cannot be
represented in polynomial space, regardless of the
variable ordering

0 Heuristics of ordering
B (1) Put the variable that influence most on top

B (2) Minimize the distance between strongly related
variables

(e.g., XIx2 + x2x3 + x3x4)
X1l < X2 < X3 < X4 is better than x1 < x4 < x2 < x3

26




BDD Package

0 A BDD package refers to a software program that
supports Boolean manipulation using ROBDDs. It
has the following features:

M It provides convenient APl (application
programming interface)

M It supports the conversion between the
external Boolean function representation and
the internal ROBDD representation

B Multiple Boolean functions are stored in shared
ROBDD

M It can create new functions from existing ones
(e.9.,h =1 Q)

27

BDD Data Structure

O A triplet (¢,m,1) 0 A unique table
uniqguely identifies an (implemented by a
ROBDD vertex hash table) that stores
all triplets already
processed
struct vertex { struct vertex *old_or_new(char *¢, struct vertex *z, *1)
char *¢; {
struct vertex *n, *A; if ("a vertex v = (¢, n, A) exists™)

. return v;
} else {
v < “new vertex pointing at (¢, n, A)”;
return v;
}
}

28




Building ROBDD

struct vertex *robdd_build(struct expr f, int i) ]

{ [0 The procedure directly
S:"“ztt"l‘“;m*;% A builds the compact
siru cnar ¢,

ROBDD structure
if equal(f, 7 07 )) 0 A simple symbolic
return vp; . .
return vy; assumed for the
e‘f;{ " derivation of the
<— ),
n < robdd_build(fs, i + 1); cofactors
it (y = A) variable from the top
return 7;
else
return old_or_new(¢, i, A);
}
} 29
Building ROBDD
0 Example
robdd bui Id(T] - T3 + 13- 13 + 1) - 12, L) 2 obdd_buildiTs + 57 - 13, Y
2 mhdd build{TT - 13+ 12, 2 L rabdd build (73, 3}
I robdd buildi 1, 3) 2 mbdd_buildi~ 07, 43
i) g
2 robdd_buildizs, 3} 2 mhdd_buildi " 17, 43
A mbod buildi 17, 4) 1)
) g = (I3, vg, 1))
- L mhad_build(- 17, 43
i = (13,1, 1) v i1y
v3 = (2.7, vl Ve . 2 mbdd_bmild{ " 17, )
&) B
: V4 - ill

Vz s = (T2, )

gy = (T, v13,15)

30




Recursive BDD Operation

] Construct the ROBDD h = f <op> g from two
existing ROBDDs f and g, where <op> is a binary
Boolean operator (e.g. AND, OR, NAND, NOR)

B A recursive procedure on each variable x
Oh =X-he; +X - h_g
=X - (f <0p> g),=y + X' - (f <0OP> Q)=
=X (fx=1 <Oop= gx=1) + X (fx=0 <Op= gx=0)
= (f <op> 9), = (f, <op> g,) for <op> = AND, OR, NAND,
NOR

31

Recursive BDD Operation

0 Existential quantification @
Let 3x; [f(X1,Y1,Y0)] = 9(Y1,-..¥0)- 0,7 \!
Then g(y,,..., Yy, = 1 iff |_0‘| 1
f(0,y,,....,y,)=1or f(1,y,,....y,)=1
reduction

f= (x1+x2) - x3 I, fF=1F 0+ fyog




ROBDD Manipulation

[0 Separate algorithms could be designed for each operator on
ROBDDs, such as AND, NOR, etc. However, the universal if-then-
else operator ‘ite’ is sufficient.

z = ite(f,g,h), z equals g when f is true and equals h otherwise:
B Example:

z=dte(f,g,h)y =f g+ [ h
z=f-g=lite(f,g,'0")
S+ g=itef,"l', g

O The ite operator is well-suited for a recursive algorithm based on
ROBDDs (¢(v) = x):

v = ite(F,G,H) = (x,ite(F,, Gy, H,), ite(Fy Gy, Hy))

33

ITE Operator

O ITE operator ite(f,g,h) = fg + fh can implement any two variable logic function.
There are 16 such functions corresponding to all subsets of vertices of B2:

0000 0 0 0

0001 AND(f, g) fg ite(f, g, 0)
0010 f>g fg ite(f, ', 0)
0011 f f f

0100 f<g f'g ite(f, 0, g)
0101 g g g

0110 XOR(f, g) feg ite(f, ', 9)
0111 OR(f, 9) f+g ite(f, 1, 9)
1000 NOR(f, g) (f+q) ite(f, 0, g')
1001 XNOR(f, g) fog ite(f, 9, 9")
1010 NOT(g) g’ ite(g, 0, 1)
1011 f>g f+g ite(f, 1, 9")
1100 NOT(f) f ite(f, 0, 1)
1101 f<g f+g ite(f, 9, 1)
1110 NAND(f, g) (fg) ite(f, g', 1)
1111 1 1 1

34




Recursive Formulation of ITE

O Ite(f,g,h)

=fg+fnh

=v(@fg+fh),+v (fg+fh),

\ (fv gv + f,V hv) + V' (fv’ gv’ +f’v’ hv’)
— ite(v, ite(fv’gv’hv)’ ite(fv"gv"hv’))

where v is the top-most variable of BDDs f,
g, h

35
ITE Operator
o |
O Example . P H \\ |
a / a, b, 0 \ a, 0
\ | \ S S
y 0 SEVAYC 1/ bl L / o
{ b C© o 1 O N R b
1/\\0 1/\\0 1/\9 Ny 1/‘\0 5
i 0 i 0 ooon N oo
F,G,H,1,J,B,C,D

ite (F, G, H)

ite (a, ite (F, , G,, H,),ite (F;, G ;, H)))

ite (a, ite (1, C, H), ite(B, 0, H))

ite (a, C, ite (b, ite (B,, 0,,H,),ite (B, 0,,Hy))
ite (a, C, ite(b, ite (1, O, 1), ite (O, 0, D)))

ite (a, C, ite(b, 0, D))

are pointers

=ite (a, C, J)
Check: F=a+b

G =ac
H=b+d

ite(F, G, H) = (a + b)(ac) + a'b’'(b +d) = ac + a’b'd

36




ITE Operator

struct vertex *apply-ite(struct vertex *F, *G, *H,int i)

{

char x;
struct vertex *n, *A;

if (F=1wvy)
return G;
else if (F = vp)
return H;
elseif (G = v| && H = vp)
return F;
else {
x <« a(i);
1 < apply_ite(Fy, Gy, Hy, I +1);
A < applydte(Fr, G He i+ 1);
if(p =A)
return 7;
else
return old_or_new(x, 5, A);

}
}

O ITE algorithm processes

the variables in the order
used in the BDD package
m (i) gives the ith variable
from the top; © “1(X)
gives the index position
of variable x from the
top

Cofactor: Suppose F is the
root vertex of the function
for which F, should be
computed. Then
Fr=m(F) ifx(o(F)) =i
® F, can be calculated
similarly

The time complexity of the
algorithm is O(|F|-|G]|-|H]D)

37

ITE Operator

0 Example

G = ite(G, 0, 1)

apply-ite(vg, vg, v1, 1)
L apply_ite(v7, vg, v1,2)
L apply_ite(vp, vo, v1, 3)
vl
A ;
— apply-ite(v1, g, ¥o, 3)
Y0
vg = (x2, 1, ¥g)

% apply-ite(vy, %9, v1, 2)
L |
vig = (x1, 99, ¥1)

38




ITE Operator

0 Example (cont'd) apply_ite(vg, ¥10, g, 1)
K apply-ite(v3, vg, v7, 2)
e apply-ite(vy, ¥1, vg, 3)
¥l
A .
— apply-ite(vp, v, v1, 3)
e apply-ite(vy, vg, ¥1,4)
4]
A apply-ite(vg, vg, v1, 4)
b1
vq = (x3,vg, 1)
v11 = (X2, 1, v4)

% apply-ite(vs, v1., 19, 2)
U5

H=F&G _
= jte(F, G, G) v1p = (x1, 911, ¥5)

39

BDD Memory Management

1 Ordering
B Finding the best ordering minimizing ROBDD sizes is
intractable
B Optimal ordering may change as ROBDDs are being
manipulated
O0An ROBDD package may reorder the variables at different
moments
01t can move some variable closer to the top or bottom by
remembering the best position, and repeat the procedure
for other variables

0 Garbage collection
B Another important technique, in addition to variable
ordering, for memory management

40




Data Type Conversion

Truth Table

recursive
Shannon
expansion

BDD

translation
using MUXes

incremental
construction
from Pls to POs

Logic Netlist

enumerate each root-to-1
path (each representing
a product term)

enumerate each root-to-1
path (each representing
a product term)

recursive

Shannon

expansion
Boolean
Formula

41

Formula to BDD

Given a Boolean formula
f=x3:(x1+x2)

!

Use variable order: x1<x2<x3

Shannon expansion on x1
f=x1-f,,+x1"-f,,
=x1-x3+x1"-x2-x3

!

Shannon expansion on x2 and x3
f=x1-x3+x1"- (X2 -x3+x2" -0)

a sequence of recursive
Shannon expansions

to a canonical form

Perform reduction on the resulting BDD

42




Net

1st to BDD

Decide a

A 4

the signals

(from PI's towards PO’s)

X2 ! i
X3 : : z2

!

./ more signal’s

Boolean network C

- oBDDtifiﬁta/

A4

each PO’s OBDD

select the based

on the topological order

4

construct the
using its direct OBDD'’s

43

Netlist to BDD

0 Example

X3

Topological order: {x1,x2,x3,z1,z2}
variable order: x1<x2<x3

OBDD(z2) = OBDD(x3) - OBDD(z1)

OBDD(x1)

OBDD(x2) OBDD(x3)

0,°\1 07
/ /
! .'
0,’\1 \
¥ \
0 1
OBDD(z1) OBDD(22)

44




BDD to Netlist

OO0 MUX-based translation
B replace each decision node by a MUX
B replace O-terminal by GND, and 1-terminal by VDD
B reverse the direction of every edge
B specify the root node as the output node

output function

I

x1 —| MUX

ot 11

X2 —| MUX

MUX [«— x3

45

BDD Features

0 Strengths

B ROBDD is a compact representation for many
Boolean functions

® ROBDD is canonical, given a fixed variable
ordering

B Many Boolean operations are of polynomial
time complexity in the input BDD sizes

COWeaknesses

® In the worst case, the size of a BDD is O(2")
for n-input Boolean functions

46




BDD Applications

[0 Boolean function verification

B Compare a specification f to an implementation g, assuming
their ROBDDs are F and G, respectively.
O For fully specified functions f and g, the verification is trivial

(pointer comparison) because of the strong canonicity of the
ROBDD

= Strong canonicity: the representations of identical functions
are the same

O For an incompletely specified function | = (f, d, —(f+d)) with onset f,
dc-set d, and offset —(f+d). A completely specified function g
correctly implements | if (d + f.g + —f-—Qg) is a tautology, that is, f
= g = (f+d)

O Satisfiability checking

B A Boolean function f is satisfiable if there exists an input
assignment for which f evaluates to ‘1’

B Any Boolean function whose ROBDD is not equal to ‘O’ is
satisfiable

47

BDD Applications

0 Min-cost satisfiability
B Suppose that choosing a Boolean variable x; to be ‘1’ costs c;.
Then, the minimum-cost satisfiability problem asks to
minimize: 2; ¢;-u(X;)
where p(x;)) = 1 when x; = ‘1’ and u(x;) = 0 when x; = ‘0.
B Solving minimum-cost satisfiability amounts to computing the
shortest path in an ROBDD with weights: w(v, n (V)) = ¢;, w(V,

A (v)) = 0, variable x; = ¢(v), which can be solved in linear
time

0 Combinatorial optimization
B Many combinatorial optimization problems can also be
formulated in terms of the satisfiability problem

B 0O-1 integer linear programming can be formulated as a
minimum-cost satisfiability problem although the translation
may not be efficient

O E.g., the constraint: x; + X, + X3 + X, = 3 can be written as
(X1+X2)(X1+X3)(X1+X4)(X2+X3)(X2+X4)%X3+X4)(—'X1+—'X2+_'X3+_'X4)

48




Outline

O Introduction

[C01Boolean reasoning engines
EBDD
B SAT

O Equivalence checking

OProperty checking

49

SAT Solving

0 SAT problem: Given a Boolean formula ¢ in CNF,
find an input assignment such that ¢ valuates to
true

0 SAT solving is a decision procedure over CNFs
Example
¢ = (a+b'+c)(a’+b+c)(a+b'+c")(a+b+c)
iIs SAT (e.g. under a=1, b=1, c=0)

0 SAT in CNF (POS) < Tautology in DNF (SOP)
B How about Tautology in CNF and SAT in DNF?

50




SAT Solving

0 Given a circuit, suppose we would like to know if

some signal is always zero. This can be
formulated as a SAT problem if we can covert the

circuit to an CNF.

O—@—

@
@<::::@*o Is output always 0 ?
O gndi

an AlG

51

Circuit to CNF

OO0 Naive conversion of circuit to CNF:

B Multiply out expressions of circuit until two level structure
B Example: y =X,®X, ®X, @ ... X,

O circuit size is linear in the number of variables

O\.\‘C
© : O/o/'
O generated chess-board Karnaugh map
0 CNF (or DNF) formula has 21 terms (exponential in #vars)

0 Better approach:
B Introduce one variable per circuit vertex
B Formulate the circuit as a conjunction of constraints imposed
on the vertex values by the gates
B Uses more variables but size of formula is linear in the size of

the circuit

52




Circuit to CNF

0 Example
B Single gate:

a AND
\

b/Q—> c —)» (-a+ -b+c)(a+ —c)(b+ —c)

B Circuit of connected gates:

@—»@\ 1+2+4)A+-4)(=2+ -4)

D, (-2 + =3 + 5)(2 + =5)(3 + —5)
@§®</@0 = (2 + =3 + 6)(—2 + —6)(3 + —6)
=—©®* (-4 + =5 + 7)(4 + =7)(5 + =7)

Is output always O ?

(5 + 6 + 8)(-5 + -8)(—6 + —-8)
(7 + 8 +9)(—=7 + —9)(—=8 + —9)
(9)

Justify to “1”

53

Circuit to CNF

C1Circuit to CNF conversion

M can be done in linear size (with respect to the
circuit size) if intermediate variables can be
introduced

B may grow exponentially in size if no
intermediate variables are allowed

54




DPLL-Style SAT Solving

SAT(clause set S, literal v)

1.

o

0o ~

2.
3.
4

S = S, [/lcofactor each clause of Sw.r.t. v
IT no clauses In S, return T

IT a clause In S 1s empty (FALSE), return
F

IT S has a unit clause with literal u,

" then return SAT(S, u) /limplication
. Choose a variable x with value not yet

assigned
IT SAT(S, xX), return T
IT SAT(S, —x), return T

. Return F

55

SAT Solving with Case Splitting

0 Example

0O N O O & WODN P

E:E:ﬂ)c) /a
SV Ve /
:Zi :fn) J/ d // d J/ d
RSP LY L[]

Source: Karem A. Sakallah, Univ. of Michigan 56




SAT Solving with Implication

ClImplication in a CNF formula are caused
by unit clauses

M A unit clause is a clause in which all literals
except one are assigned (to be false)

COThe value of the unassigned variable is implied
Example

(a+—-b+c)
a=0, b=1 = c=1

57

Implications in CNF

0 Example

a AND
\

/Q—» ¢ (—a+—-b+c)(a+—c)(b+-—c)

b

Implications:  (—a + —b + c) (a + —¢) (b + —¢)
1\\1> 0 X X
A Ot RN OLL Ry Sr%
X 0 0, > 1,
1
}1;0» 0 O 039»* x O
1 X 1\.3

58




SAT Solving with Implication

0 Example

(o +b+ )
(o +b+ )
(ra+ + )
(0 +c+d)
(ra+ + )
(ra+ + )
(b+-c+ )
(O +-c+ )

0 N O o A WODN P

€
©

Source: Karem A. Sakallah, Univ. of Michigan

SAT Solving with Learning

0 Example
(+b+ ) <9
G+b+ )40
(ka+ + )12
(0 +c+d)
(ra+ + )
(ra+ + )
(b+-c+
(b+-c+ )

0 N O O & WODN P

Source: Karem A. Sakallah, Univ. of Michigan 60




Implementation Issues

O Track sensitivity of clauses for changes (two-literal-watch
scheme)

B clause with all literals but one assigned — implication

B clause with all literals but two assigned — sensitive to a
change of either literal

B all other clauses are insensitive and need not be
observed

O Learning:
B learned implications are added to the CNF formula as
additional clauses
Olimit the size of the clause

Olimit the “lifetime” of a learned clause, will be removed
after some time

61

Quantification over CNF and DNF

[0 Recall a quantified Boolean formula (QBF) is

Ql Xl, Q2 X2’ Ty Qn Xn' ¢

where Qi is either a existential (3) or universal
quantifier (v), x; is a Boolean variable, and ¢ is a
Boolean formula.

] Existential (respectively universal) quantification
over DNF (respectively CNF) is easy

B One approach to quantifier elimination is by back-and-
forth CNF-DNF conversion!

0 Solving QBFs with QBF-solvers

62




Outline

O Introduction
OOBoolean reasoning engines
Cl1Equivalence checking

OProperty checking

63

Equivalence Checking in
Microprocessor Design

Architectural Specification
(informal)

4

RTL Specification
(Verilog, VHDL)

4

Circuit Implementation
(Schematic)

iCN

Layout Implementation \-
(GDsS 1)

64




Equivalence Checking in ASIC Design

RTL

Specification | Property Checking

o
e

Cell-Based Equivalence
Synthesis Checking

s

Standard Cell
Implementation

s

Engineering Equivalence
Changes (ECOs) / Checking

o

Final
Implementation

65

Equivalence Checking

] Equivalence checking is one of the most
important problem in design verification

B It ensures logic transformation process (e.g. two-level,
multi-level logic minimization, retiming and resynthesis,
etc.) does not introduce errors

0 Two types of equivalence checking
B Combinational equivalence checking
0 Check if two combinational circuits are equivalent
B Sequential equivalence checking
O Check if two sequential circuits are equivalent

66




Outline

O Introduction
OOBoolean reasoning engines

ClIEquivalence checking
B Combinational equivalence checking
B Sequential equivalence checking

OProperty checking

67

History ot Equivalence Checking

[1 SAS (IBM 1978 - 1994):

® standard equivalence checking tool running on
mainframes

B based on the DBA algorithm (“BDDs in time”)
® verified manual cell-based designs against RTL spec

B handling of entire processor designs
O application of “proper cutpoints”

Oapplication of synthesis routines to make circuits
structurally similar

O special hacks for hard problems

O Verity (IBM 1992 - today):
® originally developed for switch-level designs

B today IBMs standard EC tool for any combination of
switch-, gate-, and RTL designs

68




History of Equivalence Checking

O Chrysalis (1994 - Avanti - now Synopsys):
B based on ATPG technology and cutpoint exploitation
B very weak if many cutpoints present
B did not adopt BDDs for a long time

O Formality (1997 - Synopsys)
B multi-engine technology including strong structural matching
techniques

O Verplex (1998 - now Cadence)
B strong multi-engine based tool
B heavy SAT-based
B very fast front-end

69

Combinational EC

O Given two combinational circuits C, and C,, are
their outputs equivalent under any possible input
assignment?

11+~




Miter for Combinational EC

0 Two combinational circuits C; and C, are
equivalent if and only if the output of their “miter”
structure always produces constant O

C,

= =

71

Approaches to Combinational EC

CdBasic methods:

B random simulation
Cdgood at identifying inequivalent signals

B BDD-based methods
B structural SAT-based methods

=

72

|




BDD-based Combinational EC

Procedure
1.Construct the ROBDDs F,; and F, for circuits C,

and C,, respectively
OVariable orderings of F, and F, should be the same

2.Let G= F,®F,. If G=0, C, and C, are equivalent;
otherwise, they are inequivalent

COONo false negative or false positive
= False negative: circuits are equivalent; however,
verifier fails to tell
= False positive: circuits are inequivalent; however,
verifier says otherwise

73

SAT-based Combinational EC

CdProcedure
1.Convert the miter structure into a CNF

2.Perform SAT solving to verify if the output
variable cannot be valuated to true under

every input assignment (i.e. UNSAT)

74




Combinational EC
0 Pure BDD and plain SAT solving cannot handle all
logic cones

® BDDs can be built for about 80% of the cones
of high-speed designs and less for complex

ASICs
M plain SAT blows up in CPU time on a miter
structure

0 Contemporary method highly exploit structural
similarities between two circuits to be compared

75

Combinational EC

0 Memory statistics of BDD-based EC on a PowerPC processor
design

10°F

1Uﬁ_-
E X,

a5 % of al Circuits

Memory in KBytes

104_-

10 1 1 1
i 10' 10° 10° 10t 10°
Circuit Size (Number of Transistors) 76




Combinational EC

0 Runtime statistics of BDD-based EC on a PowerPC
processor design

107

1otk

—
(=]
2]

E 95 % of al Cireuits =
i W WX

CPU Time in Seconds
[=]

jary
(=]
T

107k

B

10 1 1
i

10 10 10° 10 10t 10°

Circuit Size {Number of Transistors) 77

Necessity of Structure Similarity

COPure BDDs are incapable of verifying
equivalence of large circuits

M Even more so for arithmetic circuits (e.g. BDDs
blow up in representing multipliers)

Ol ldentifying structure similarity helps
simplify verification tasks
M E.g. structure hashing in AIGs

78




Combinational EC

| |
O Evidence of vast existence of structure similarities
100 T
g
2 "
Z T
k5 o B ¢
g 10 & = & & i 7]
S " & @ = <>®
i ’ $.° %o a® %
= 2)@@@ Ooo@ ®®®9©®
.5 ot o G
g @ Qf’(:)@ R 2
w S0y fag @
110 1tl)0 10I00 10;)00 100I000 1e+08
Circuit Size 79
Structure and Verification
| |

O

B Exhaustive simulation
B Decision diagrams

B Graph hashing
B SAT based cutpoint identification

Degree of
Structural
Difference

Struture-
independent
techniques

Structure-dependent
techniques

Combined
methods

Size

v

80




Summary

0 Combinational EC is considered to be solvable in
most industrial circuits (w/ multi-million gates)

B Computational efforts scale almost linearly with the
design size

B Existence of structural similarities

OLogic transformations preserve similarities to some extent
B Hybrid engine of BDD, SAT, AIG, simulation, etc.

O Cutpoint identification

0 Unsolved for arithmetic circuits

B Absence of structural similarities
O Commutativity ruins internal similarities

B Word- vs. bit-level verification

81

Outline
O Introduction

OOBoolean reasoning engines

ClEquivalence checking
B Combinational equivalence checking
M Sequential equivalence checking

OProperty checking

82




Sequential EC

] Given two sequential circuits (and thus FSMs), do
they produce the same output sequence under
any possible input sequence?

X —* ﬂl+>y
M, 6

/ |§|< / =
X —7 22+’y2

83

Miter for Sequential EC

O Two FSMs M; and M, are equivalent if and only if
the output of their product machine always
produces constant O

. 4
M, & Y1
\ ?
+:z : =0
X —F
) 7 Yo

M2 52 \

84




Product Machine

OThe product FSM M,,, of FSMs M; = (Q4, 14,
2, Q, 8, M) and M, = (Qo, 15, 2., Q, 6,, A,)
Is a six-tuple (Qq.2, 11,20 25 Q, 81,2, A1.2),
where
B State space Qq,, = Q1 x Q,
H Initial state set 1,,, =1, x I,
¥ Input alphabet .
B QOutput alphabet {0,1}
® Transition function §,., = (3, 5,)
B Output function A;,, = (A, @ 1)

85

Sequential EC

0 Approaches for combinational EC do not work for
sequential EC because two equivalent FSMs need
not have the same transition and output
functions

B False negatives may result from applying combinational
EC on sequential circuits

[0 One solution to sequential EC is by reachability
analysis

® Two FSMs M; and M, are equivalent if and only if the
output of their product FSM M., is constant O under all
input assignments and all reachable states of M.,

B Need to know the set of reachable states of M,

86




Reachability Analysis

0 Given an FSM M = (Q, I, 2, Q, §, A) , which states

:' Q{( \ . Reachable states

\ \
\
\
K \
N \
K \
Y \
\ \
\
\ '
\ '
\ Il
\ 1
\
N '
N 1
. ’
.
A /
~. /,
Sso .

" Unreachable states

87

Symbolic Reachability Analysis

C0Reachability analysis can be performed
either explicitly (over a state transition
graph) or implicitly (over transition
functions or a transition relation)

® Implicit reachability analysis is also called
symbolic reachability analysis (often using
BDDs and more recently SAT)

Cllmage computation is the core
computation in symbolic reachability
analysis

88




Reachability Onion Ring

89

Computing Reachable States

0 Input: Sequential system represented by a
transition relation and an initial state (or a set of
initial states)

B Transition functions can be converted into a transition
relation

0 Computation: Image computation using Boolean
operations on characteristic functions
(representing state sets)

0 Output: A characteristic function representing the
set of reachable states

90




Relation

O Definition. Relation R ¢ XxY is a subset of the Cartesian
product of two sets X and Y. If (X,y)eR, then we
alternatively write “x R y” meaning X is related to y by R.

X1 X5 X3 | Yy | Y2
X 0] 0 0] ) 0]
1 } Y1 O O 1|01
X, - 0] 1 0] 0] 1
0 1 1 0] 1
X3 Yo 1 0o o|o0o]oO
1 0] 1 0] 1
1 1 0] 1 1
1 1 1 1 1

Courtesy of A. Mishchenko 91

Characteristic Function

0 Relation R ¢ XxY can be represented by a characteristic
function: a Boolean function F;z(X,y) taking value 1 for
those (X,y)eR and O otherwise.

X, X, Xz |y, Y, | F
O O OoO|O0O o 1
O O 1] 0 1 1
O 1 0] O 1 1
0 1 1 0 1 1
1 0O 0|0 O 1
1 O 1 0 1 1
1 1 O 1 1 1
1 1 1 1 1 1
other 0 9 nodes

Courtesy of A. Mishchenko 92




Transition Relation

O Definition. A transition relation T of an FSM M = (Q, I, X, Q,
d,A)isarelation Tc (£Zx Q) x Qsuch that T(c,q,,0,) =1
Iff there is a transition from g, to g, under input c.

B3 (ExQ-—>Q
BT: ExQ)xQ - {0,1}

Assume 6 = (8, ..., 8,). Then

T(X,5,5)=(s,"=6,(X,5)) A (S, =0,(X,5)) A+ A (S, "= 6,(X,5))

=[1G'=5(.9)

where X, s, s’ are primary-input, current-state, and next-state
variables, respectively.

93

Quantified Transition Relation

O Definition
LetM = (Q, I, Z, Q, 3, A) be an FSM
B Quantified transition relation Ty
T.(5,5) =3X(S,' = 5,(X, 5)) A (S, = 5,(X,5)) A=+ A (S, ' = 6, (X,5))
=3 [(s;'=6,(x,9))

O(p,q) € T; if there exists an input assignment bringing
M from state p to state

Clonly concerns about the reachability of the FSM’s
transition graph

94




Transition Relation

CDExample
1
0
0
1
0,1

Courtesy of A. Mishchenko

CS S:S, NS |s;'s,’ | T

0 A 00 B 10 1
0,1 A 00 A 00 1
0 B 10 B 10 1
1 B 10 A 00 1
0 C 01 B 10 1
1 C 01 A 00 1
other o

95

Transition Relation

CDExample
1
0
0
1
0,1

Courtesy of A. Mishchenko

96




Image Computation

O Given a mapping of one Output space

Boolean space (input space)
into another Boolean space

(output space) Input space
B For a set of minterms RN
(care set) in the input P
space
O The image is the set of
related minterms from the
output space
B For a set of minterms in
the output space
O The pre-image is the set

of related minterms in the ;
input space ©

Courtesy of A. Mishchenko 97

Image Computation

Input space
O Example PHESP

abc -
000

« y Output space
001 Xy
010 00
011 01

a b 100 | 10
101 | 11
110
111

Courtesy of A. Mishchenko [ : o8




Image Computation

O Image(C(x).T(X,y)) = Ix [C(X) A T(X,y) ]

O Implicit methods by far outperform explicit ones

B Successfully computing images with more than 2190
minterms in the input/output spaces

] Operations A and 3 are basic Boolean
manipulations and are implemented in BDD
packages

¥ To avoid large intermediate results (during and after the
product computation), BDD AND-EXIST operation
performs product and quantification in one pass over the
BDD

99

Symbolic Image Computation

O Definition. Let F: BM™xB" be a projection and C be a set of
minterms in B™. Then the image of C is the set

Img(C, F) ={weB"| (v, w) e Fand v € C} in B".

OO0 Characteristic function
B for reachable next-state computation

N;(5') =1Img(Ri(5),T5(5,57) B B
=35.(R(5) AT,(5,5") B

=35.(R (s)A(axH(s =6,(X,5))))

100




Symbolic Pre-Image Computation

O Definition. Let F: BM™xB" be a projection and C be a set of
minterms in B™. Then the pre-image of C is the set
Prelmg(C, F) ={veB™| (v, w) e Fand w € C} in B".

OO0 Characteristic Function
B for reachable previous-state computation

N,(s)=Prelmg(R (), T,(5,5%)  [en >

35" .(RG)AT,(,5))
3 (R(S)AER] [ (s "= 8 (%.5)) __B

101

Reachability Analysis

ForwardReachability( Transition Relation T, Initial State I )

{

i :=0

R -=1

repeat
Rhew = Image( R', T );
1 =1 +1
Ri := Ri-1v R,

until R" = Ri-1

return Ri

O The procedures can be realized using BDD package.

O Backward reachability analysis can be done in a similar manner with pre-
image computation and starting from final states to see if they can be
reached from initial states.

102




Sequential Equivalence Checking

ClLet R(s) be the characteristic function of
the reachable state set of the product FSM
M,,, obtained from forward reachability
analysis. Then FSMs M; and M, are
equivalent if and only if

R(S) & (A1.2(X,5)=0)
Is valid for all valuations on input variables

X and state variables s.
M This can be checked in constant time for BDD

103

Sequential Equivalence Checking

0 Example
B Are M1 and M2 equivalent ?

0/1 [
0/0 1/0

—
SO S1
11

13

0/0 0/0 0/1 1/0

M1

1
. lg

Q

to 1/1 0/1 t2

— l\.
| ]

11 1/0
[§]

Ca C3

104




Sequential Equivalence Checking

CDExample (cont'd)
B Product FSM of M1 and M2

105

Sequential Equivalence Checking

0 Example (cont'd)
B Forward reachability analysis
Img(C,T)=[3X,5.T(X,5,5)AC(S)].

106




Sequential Equivalence Checking

0 Example (cont'd) @
B Backward reachability analysis 1 n
Prelmg(C,T)=3%,5'"T(X,5,5)AC(5") @
0/1
/1

1

107

Remarks on Sequential EC

] Industrial equivalence checkers almost
exclusively use an combinational EC paradigm
even for sequential EC

B Sequential EC is too complex and can only be applied to
design with a few hundred state bits

M Structure similarity should be identified to simplify
sequential EC
] Besides sequential equivalence checking,
reachability analysis is useful in sequential circuit
optimization
B In sequential optimization, unreachable states can be

used as sequential don’t cares to optimize a sequential
circuit

108




Outline

O Introduction
O Boolean reasoning engines
O Equivalence checking

CIProperty checking
W Safety property checking

109

Model Checking

C1A specific model-checking problem is
defined by

more detailed M |=

)

“implementation”
(system model)

“satisfies”, “implements”, “refines”
(satisfaction relation)

110




Model Checking

OM|=o

B Check if system model M satisfies a system property ¢

B System model M is described with a state transition

system

O finite state or infinite state

B Temporal property ¢ can be described with three

orthogonal choices:

1.operational vs. declarative:

2.may Vvs. must:

3.prohibiting bad vs. desiring good behavior:

Different choices lead to different model checking

problems.

111

Property Checking

O Safety property:
Something “bad” will never
happen

B Safety property violation
always has a finite witness

O if something bad happens
on an infinite run, then it
happens already on some
finite prefix

B Example

O Two processes cannot be
in their critical sections
simultaneously

O Liveness property:
Something “good” will
eventually happen

B Liveness property violation
never has a finite witness

O no matter what happens
along a finite run,
something good could still
happen later

B Example

O Whenever process P1
wants to enter the critical
section, provided process
P2 never stays in the
critical section forever, P1
gets to enter eventually

For finite state systems, liveness can be converted to safety!

112




Safety Property Checking

ClSafety property checking can be
formulated as a reachability problem
M Are bad states reachable from good states?

[0Sequential equivalence checking can be
considered as one kind of safety property
checking
B M : product machine

M ¢ : all states reachable from initial states has
output O

113

Model Checking

[ Data structure evolution

M State graph (late 70s-80s)
OProblem size ~10% states

m BDD (late 80s-90s)

OProblem size —~102° states
CCritical resource: memory

W SAT (late 90s-)
COGRASP, SATO, chaff, berkmin
COProblem size ~1019 (?) states
CCritical resource: CPU time

114




Remarks on Model Checking

COModel checking is a very rich subject
developed since early 1980’s

1t is a variation of mathematical logic and
IS concerned with automatic temporal
reasoning

CJReference

M. Clarke, O. Grumberg, and D. Peled.
Model Checking. MIT Press, 1999.

115




