
1

Introduction to Electronic
Design Automation

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Spring 2012

2

Formal Verification

Part of the slides are by courtesy of Prof. Y.-W. Chang, S.-Y. Huang, and A. Kuehlmann

3

Formal Verification

Course contents
 Introduction
Boolean reasoning engines
 Equivalence checking
 Property checking

Readings
Chapter 9

4

Outline

Introduction

Boolean reasoning engines

Equivalence checking

Property checking

5

(1995/1) Intel announces a pre-tax charge of 475 million dollars against
earnings, ostensibly the total cost associated with replacement of the
flawed processors.

6

(1996/6) The European Ariane5 rocket
explodes 40 s into its maiden flight due to
a software bug.

7

(2003/8) A programming error has been identified as the cause of the Northeast
power blackout, which affected an estimated 10 million people in Canada and 45
million people in the U.S.

8

Costs

(2008/9) A major computer failure onboard the Hubble Space Telescope is
preventing data from being sent to Earth, forcing a scheduled shuttle mission to
do repairs on the observatory to be delayed.

9

Design vs. Verification

Verification may take up to 70% of total
development time of modern systems !
 This ratio is ever increasing
Some industrial sources show 1:3 head-count

ratio between design and verification engineers

Verification plays a key role to reduce
design time and increase productivity

10

IC Design Flow and Verification

HDL spec.

logic
synthesis

netlist

netlist

layout /
mask

chip

RTL
synthesisdesign verif.design verif.

implement verif.implement verif.

physical
design

manufacture verif.manufacture verif.

fab.

11

Scope of Verification
 Design flow

 A series of transformations from abstract specification all the
way to layout

 Verification enters design flow in almost all abstraction
levels
 Design verification

 Functional property verification (main focus)
 Implementation verification

 Functional equivalence verification (main focus)
 Physical verification
 Timing verification
 Power analysis
 Signal integrity check

 Electro-migration, IR-drop, ground bounce, cross-talk, etc.
 Manufacture verification

 Testing

12

Verification
 Design/Implementation Verification

Functional Verification
 Property checking in system level

 PSPACE-complete
 Equivalence checking in RTL and gate level

 PSPACE-complete
Physical Verification
 DRC (design rule check) and LVS (layout vs.

schematic check) in layout level
 Tractable

 Manufacture Verification
 Testing

 NP-complete

 “Verification” often refers to functional
verification

13

Functional Verification
Design Flow Design Verification

Design Validation
(Is what I specified

really what I wanted?)

Property Checking
(Does the design

have desired properties?)

Equivalence Checking
(Implementation verification)

(Is what I implemented
really what I specified?)

Physical verification
(LVS: layout vs. schematic)

Register-Transfer Level ModelRegister-Transfer Level Model

Schematic
(gate-level or transistor-level)

Schematic
(gate-level or transistor-level)

LayoutLayout

Abstract Design SpecificationAbstract Design Specification

=

=

=

High-level synthesis

Logic synthesis

Physical design

Physical verification
(DRC: design rule check)

14

Functional Verification Approaches
 Simulation (software)

 Incomplete (i.e., may fail to catch bugs)
 Time-consuming, especially at lower abstraction levels such as

gate- or transistor-level
 Still the most popular way for design validation

 Emulation (hardware)
 FPGA-based emulation systems, emulation system based on

massively parallel machines (e.g., with 8 boards, 128
processors each), etc.

 2 to 3 orders of magnitude faster than software simulation
 Costly and may not be easy-to-use

 Formal verification
 a relatively new paradigm for property checking and

equivalence checking
 requires no input stimuli
 perform exhaustive proof through rigorous logical reasoning

15

Informal vs. Formal Verification
 Informal verification

 Functional simulation
aiming at locating bugs

 Incomplete
Show existence of

bugs, but not absence
of bugs

 Formal verification
 Mathematical proof of

design correctness
 Complete

Show both existence
and absence of bugs

We will be focusing on formal verification

16

Outline

Introduction

Boolean reasoning engines
BDD
SAT

Equivalence checking

Property checking

17

Binary Decision Diagram (BDD)
 Basic features

 ROBDD
Proposed by R.E. Bryant in 1986
A directed acyclic graph (DAG) representing a Boolean

function f: BnB
 Each non-terminal node is a decision node associated with a

input variable with two branches: 0-branch and 1-branch
 Two terminal nodes: 0-terminal and 1-terminal

 Example

x1
x2

f

x1

x2

0 1

0
1

10

ROBDD

18

Binary-Decision Diagram (BDD)
 Cofactor of Boolean function:

 Positive cofactor w.r.t. xi: fxi = f(x1,…, xi–1, 1, xi+1,…, xn)
 Negative cofactor w.r.t. xi: fxi = f(x1,…, xi–1, 0, xi+1,…, xn)

 Example
f = x1’ x2’ x3’ + x1’ x2’ x3 + x1 x2’ x3 + x1 x2 x3’ + x2 x3
fx1 = x2’ x3 + x2 x3’ + x2 x3
fx1’ = x2’ x3’ + x2’ x3 + x2 x3

 Shannon expansion: f = xi fxi + xi’ fxi’
 A complete expansion of a function can be obtained by

successively applying Shannon expansion on all variables until
either of the constant functions ‘0’ or ‘1’ is reached

19

Ordered BDD (OBDD)
 Complete Shannon expansion can be visualized as a binary tree

 Solid (dashed) lines correspond to the positive (negative) cofactor

f = x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3

20

Reduced OBDD (ROBDD)
 Reduction rules of ROBDD

 Rule 1: eliminate a node with two identical children
 Rule 2: merge two isomorphic sub-graphs

 Reduction procedure
 Input: An OBDD
 Output: An ROBDD
 Traverse the graph from the terminal nodes towards to root

node (i.e., in a bottom-up manner) and apply the above
reduction rules whenever possible

x x

y y

xx

21

ROBDD
 An OBDD is a directed tree G(V,E)
 Each vertex v  V is characterized by an

associated variable (v), a high subtree (v)
(high(v), the 1-branch) and a low subtree (v)
(low(v), the 0-branch)

 Procedure to reduce an OBDD:
 Merge all identical leaf vertices and appropriately

redirect their incoming edges
 Proceed from bottom to top, process all vertices: if

two vertices u and v are found for which (u) =
(v), (u) = (v), and (u) = (v), merge u and v
and redirect incoming edges

 For vertices v for which (v) = (v), remove v and
redirect its incoming edges to (v)

22

ROBDD
 Example

 f = x’yz’ + xz
 variable order: x < y < z

OBDDxyz f
000 0
001 0
010 1
011 0
100 0
101 1
110 0
111 1

Truth table

x

10

y

z

10

z

y

z

10

z

0 0 1 0 0 10 1

0 0001 111

x

y

zz

y

zz

0 1

by rule 2

23

ROBDD
 Example (cont’d)

x

y

zz

y

zz

0 1
rule 1 rule 2

x

y

z

y

z

0 1

rule 1

x

y

z z

0 1

ROBDD

24

Canonicity
 Canonicity requirements

 A BDD representation is not canonical for a given
Boolean function unless the following constraints are
satisfied:

1.Simple BDD – each variable can appear only once along
each path from the root to a leaf

2.Ordered BDD – Boolean variables are ordered in such a
way that if the node labeled xi has a child labeled xk,
then order(xi) < order(xk)

3.Reduced BDD – no two nodes represent the same
function, i.e., redundancies are removed by sharing
isomorphic sub-graphs

25

ROBDD Properties
 ROBDD is a canonical representation for a fixed variable

ordering
 ROBDD is compact in representing many Boolean functions

used in practice
 Variable ordering greatly affects the size of an ROBDD

 E.g., the parity function of k bits:

x2

2 1 2

1

k

j j

j

f x x



 

26

Effects of Variable Ordering
 BDD size

 Can vary from linear to exponential in the number of the
variables, depending on the ordering

 Hard-to-build BDD
 Datapath components (e.g., multipliers) cannot be

represented in polynomial space, regardless of the
variable ordering

 Heuristics of ordering
 (1) Put the variable that influence most on top
 (2) Minimize the distance between strongly related

variables
(e.g., x1x2 + x2x3 + x3x4)
x1 < x2 < x3 < x4 is better than x1 < x4 < x2 < x3

27

BDD Package
 A BDD package refers to a software program that

supports Boolean manipulation using ROBDDs. It
has the following features:
 It provides convenient API (application

programming interface)
 It supports the conversion between the

external Boolean function representation and
the internal ROBDD representation

Multiple Boolean functions are stored in shared
ROBDD

 It can create new functions from existing ones
(e.g., h = f • g)

28

BDD Data Structure
 A triplet (,,)

uniquely identifies an
ROBDD vertex

 A unique table
(implemented by a
hash table) that stores
all triplets already
processed

29

Building ROBDD
 The procedure directly

builds the compact
ROBDD structure

 A simple symbolic
computation system is
assumed for the
derivation of the
cofactors

 (i) gives the ith
variable from the top

30

Building ROBDD
 Example

31

Recursive BDD Operation
 Construct the ROBDD h = f <op> g from two

existing ROBDDs f and g, where <op> is a binary
Boolean operator (e.g. AND, OR, NAND, NOR)
 A recursive procedure on each variable x

h = x · hx=1 + x’ · hx=0
= x · (f <op> g)x=1 + x’ · (f <op> g)x=0
= x · (fx=1 <op> gx=1) + x’ (fx=0 <op> gx=0)

 (f <op> g)x = (fx <op> gx) for <op> = AND, OR, NAND,
NOR

x

fx=0 fx=1

op
x

gx=0 gx=1

x

fx=0 op gx=0 fx=1 op gx=1

0 1
0 1 0 1

32

Recursive BDD Operation
 Existential quantification

Let x1 [f(x1,y1 ,…,yn)] = g(y1 ,…,yn).
Then g(y1 ,…,yn) = 1 iff
f(0,y1 ,…,yn)=1 or f(1,y1 ,…,yn)=1

x1
0 1

x2
0 1

x3

0 1
0 1

x2
0 1

x3

0 1

0 1

x3

0 1
0 1OR =

x2
0 1

x3

0 1

0 1
x3

0 1

0 1

x3

0 1
0 1

reduction
f = (x1+x2) · x3 x1 f = fx1=0 + fx1=1

33

ROBDD Manipulation
 Separate algorithms could be designed for each operator on

ROBDDs, such as AND, NOR, etc. However, the universal if-then-
else operator ‘ite’ is sufficient.
z = ite(f,g,h), z equals g when f is true and equals h otherwise:
 Example:

 The ite operator is well-suited for a recursive algorithm based on
ROBDDs ((v) = x):

34

ITE Operator
 ITE operator ite(f,g,h) = fg + f’h can implement any two variable logic function.

There are 16 such functions corresponding to all subsets of vertices of B2:

Table Subset Expression Equivalent Form
0000 0 0 0
0001 AND(f, g) f g ite(f, g, 0)
0010 f > g f g ite(f, g, 0)
0011 f f f
0100 f < g fg ite(f, 0, g)
0101 g g g
0110 XOR(f, g) f  g ite(f, g, g)
0111 OR(f, g) f + g ite(f, 1, g)
1000 NOR(f, g) (f + g) ite(f, 0, g)
1001 XNOR(f, g) f  g ite(f, g, g)
1010 NOT(g) g ite(g, 0, 1)
1011 f  g f + g ite(f, 1, g)
1100 NOT(f) f ite(f, 0, 1)
1101 f  g f + g ite(f, g, 1)
1110 NAND(f, g) (f g) ite(f, g, 1)
1111 1 1 1

35

Recursive Formulation of ITE

Ite(f,g,h)
= f g + f h
= v (f g + f h)v + v (f g + f h)v

= v (fv gv + fv hv) + v (fv gv +fv hv)
= ite(v, ite(fv,gv,hv), ite(fv,gv,hv))

where v is the top-most variable of BDDs f,
g, h

36

ITE Operator
 Example

I = ite (F, G, H)
= ite (a, ite (Fa , Ga , Ha), ite (Fa , Ga , Ha))
= ite (a, ite (1, C , H), ite(B, 0, H))
= ite (a, C, ite (b , ite (Bb , 0b , Hb), ite (Bb , 0b , Hb))
= ite (a, C, ite(b , ite (1, 0, 1), ite (0, 0, D)))
= ite (a, C, ite(b , 0, D))
= ite (a, C, J)

Check: F = a + b
G = ac
H = b + d
ite(F, G, H) = (a + b)(ac) + ab(b + d) = ac + abd

F,G,H,I,J,B,C,D
are pointers

b1

1

a

0

1 0

1 0

F

B

1

1

a

0

1 0

0

G

c 0C

1

b

0

1 0

0

H

d D

1
1

0

a
1 0

0

I

b J

1

C

D

37

ITE Operator
 ITE algorithm processes

the variables in the order
used in the BDD package
 (i) gives the ith variable

from the top;  -1(x)
gives the index position
of variable x from the
top

 Cofactor: Suppose F is the
root vertex of the function
for which Fx should be
computed. Then
Fx = (F) if -1((F)) = i
 Fx’ can be calculated

similarly

 The time complexity of the
algorithm is O(|F||G||H|)

38

ITE Operator
 Example

G = ite(G, 0, 1)

39

ITE Operator
 Example (cont’d)

H = F  G
= ite(F, G, G)

40

BDD Memory Management
Ordering

 Finding the best ordering minimizing ROBDD sizes is
intractable

 Optimal ordering may change as ROBDDs are being
manipulated
An ROBDD package may reorder the variables at different

moments
It can move some variable closer to the top or bottom by

remembering the best position, and repeat the procedure
for other variables

 Garbage collection
 Another important technique, in addition to variable

ordering, for memory management

41

Data Type Conversion

Truth Table

Boolean
Formula

Logic Netlist

BDD

enumerate each root-to-1
path (each representing
a product term)

translation
using MUXes

recursive
Shannon
expansion

incremental
construction
from PIs to POs

enumerate each root-to-1
path (each representing
a product term)

recursive
Shannon
expansion

42

Formula to BDD

Use variable order: x1<x2<x3

x1
0

1
x2

0 1

x3

0 1

0 1

f

Given a Boolean formula
f = x3 · (x1 + x2)

Shannon expansion on x1
f = x1 · fx1=1 + x1’ · fx1=0

= x1 · x3 + x1’ · x2 · x3

Shannon expansion on x2 and x3
f = x1 · x3 + x1’ · (x2 · x3 + x2’ · 0)

Perform reduction on the resulting BDD
to a canonical form

a sequence of recursive
Shannon expansions

43

Netlist to BDD
Decide a good variable ordering

Topologically sort the signals
(from PI’s towards PO’s)

select the next signal based
on the topological order

construct the selected signal’s OBDD
using its direct fanins’ OBDD’s

more signal’s
OBDD to build ?

each PO’s OBDD
yes

no

x1
x2
x3

z1

z2

Boolean network C

44

Netlist to BDD
 Example Topological order: {x1,x2,x3,z1,z2}

variable order: x1<x2<x3

x1

0 1

0 1
x2

0 1

0 1
x3

0 1

0 1

x1

1

0 1

x2

0 1

0 1

x1
0

1
x2

0 1

x3

0 1

0 1

OBDD(z1) OBDD(z2)

OBDD(z2) = OBDD(x3) · OBDD(z1)

OBDD(x1) OBDD(x2) OBDD(x3)

x1
x2
x3

z1

z2

Boolean network C

45

BDD to Netlist
 MUX-based translation

 replace each decision node by a MUX
 replace 0-terminal by GND, and 1-terminal by VDD
 reverse the direction of every edge
 specify the root node as the output node

x1
0

1
x2

0 1

x3

0 1

0 1

MUX

MUX

MUX

GND VDD

output function

x2

x1

x3

1

1

1

0

0

0

46

BDD Features
Strengths
ROBDD is a compact representation for many

Boolean functions
ROBDD is canonical, given a fixed variable

ordering
Many Boolean operations are of polynomial

time complexity in the input BDD sizes

Weaknesses
 In the worst case, the size of a BDD is O(2n)

for n-input Boolean functions

47

BDD Applications
 Boolean function verification

 Compare a specification f to an implementation g, assuming
their ROBDDs are F and G, respectively.
 For fully specified functions f and g, the verification is trivial

(pointer comparison) because of the strong canonicity of the
ROBDD
 Strong canonicity: the representations of identical functions

are the same
 For an incompletely specified function I = (f, d, (f+d)) with onset f,

dc-set d, and offset (f+d). A completely specified function g
correctly implements I if (d + fg + fg) is a tautology, that is, f
 g  (f+d)

 Satisfiability checking
 A Boolean function f is satisfiable if there exists an input

assignment for which f evaluates to ‘1’
 Any Boolean function whose ROBDD is not equal to ‘0’ is

satisfiable

48

BDD Applications
 Min-cost satisfiability

 Suppose that choosing a Boolean variable xi to be ‘1’ costs ci.
Then, the minimum-cost satisfiability problem asks to
minimize: i ciui(xi)
where (xi) = 1 when xi = ‘1’ and (xi) = 0 when xi = ‘0’.

 Solving minimum-cost satisfiability amounts to computing the
shortest path in an ROBDD with weights: w(v,  (v)) = ci, w(v,
 (v)) = 0, variable xi = (v), which can be solved in linear
time

 Combinatorial optimization
 Many combinatorial optimization problems can also be

formulated in terms of the satisfiability problem
 0-1 integer linear programming can be formulated as a

minimum-cost satisfiability problem although the translation
may not be efficient
 E.g., the constraint: x1 + x2 + x3 + x4 = 3 can be written as

(x1+x2)(x1+x3)(x1+x4)(x2+x3)(x2+x4)(x3+x4)(x1+x2+x3+x4)

49

Outline

Introduction

Boolean reasoning engines
BDD
SAT

Equivalence checking

Property checking

50

SAT Solving
 SAT problem: Given a Boolean formula  in CNF,

find an input assignment such that  valuates to
true

 SAT solving is a decision procedure over CNFs
Example

 = (a+b+c)(a+b+c)(a+b+c)(a+b+c)
 is SAT (e.g. under a=1, b=1, c=0)

 SAT in CNF (POS)  Tautology in DNF (SOP)
 How about Tautology in CNF and SAT in DNF?

51

SAT Solving
 Given a circuit, suppose we would like to know if

some signal is always zero. This can be
formulated as a SAT problem if we can covert the
circuit to an CNF.

1

6

2 5
8

7

3

4

9 0

an AIG

Is output always 0 ?

52

Circuit to CNF
 Naive conversion of circuit to CNF:

 Multiply out expressions of circuit until two level structure
 Example: y = x1 x2  x2  ...  xn (Parity function)

 circuit size is linear in the number of variables



 generated chess-board Karnaugh map
 CNF (or DNF) formula has 2n-1 terms (exponential in #vars)

 Better approach:
 Introduce one variable per circuit vertex
 Formulate the circuit as a conjunction of constraints imposed

on the vertex values by the gates
 Uses more variables but size of formula is linear in the size of

the circuit

53

Circuit to CNF
 Example

 Single gate:

 Circuit of connected gates:

b

a
c (a + b + c)(a + c)(b + c)

AND

1

6

2 5
8

7

3

4

9 0

(1 + 2 + 4)(1 + 4)(2 + 4)
(2 + 3 + 5)(2 + 5)(3 + 5)
(2 + 3 + 6)(2 + 6)(3 + 6)
(4 + 5 + 7)(4 + 7)(5 + 7)
(5 + 6 + 8)(5 + 8)(6 + 8)
(7 + 8 + 9)(7 + 9)(8 + 9)
(9)

Justify to “1”

Is output always 0 ?

54

Circuit to CNF

Circuit to CNF conversion
 can be done in linear size (with respect to the

circuit size) if intermediate variables can be
introduced

may grow exponentially in size if no
intermediate variables are allowed

55

DPLL-Style SAT Solving
SAT(clause set S, literal v)
1. S := Sv //cofactor each clause of S w.r.t. v
2. If no clauses in S, return T
3. If a clause in S is empty (FALSE), return

F
4. If S has a unit clause with literal u,

then return SAT(S, u) //implication
5. Choose a variable x with value not yet

assigned
6. If SAT(S, x), return T
7. If SAT(S, x), return T
8. Return F

56

SAT Solving with Case Splitting
 Example

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

1
2
3
4
5
6
7
8

a(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)

b

c

d d

b

c

d d

c

d(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)

Source: Karem A. Sakallah, Univ. of Michigan

57

SAT Solving with Implication

Implication in a CNF formula are caused
by unit clauses
A unit clause is a clause in which all literals

except one are assigned (to be false)
The value of the unassigned variable is implied

Example
(a+b+c)
a=0, b=1  c=1

58

Implications in CNF
 Example

(a + b + c) (a + c) (b + c)

0

x
x

x

0
x

0

0
x

x

x
1

x

1
1

1

x
1x

1
0

1

x
0

1

0
x

0

1
x

1

1
x

Implications:

(a+b+c)(a+c)(b+c)
a

c
b

AND

59

SAT Solving with Implication
 Example

1
2
3
4
5
6
7
8

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

a(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) d

7
7

b
c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) 8

8

8

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) d

5
5

a
c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) 6

6

6

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) c

3
3

a
b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) 5

5
d

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

6
6

6

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) d

4
4

a
c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

Source: Karem A. Sakallah, Univ. of Michigan 60

SAT Solving with Learning
 Example

1
2
3
4
5
6
7
8

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

a(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) d

7
7

b
c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) 8

8

8

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

bc  ¬


 (¬b + ¬c)

9 (¬b + ¬c)(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

9 (¬b + ¬c)

c9b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

9 (¬b + ¬c)

a

d

5

5

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

9 (¬b + ¬c)

6
6

6

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

9 (¬b + ¬c)

ab  ¬


 (¬a + ¬b)

10 (¬a + ¬b)
(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

b

a

10

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

c3
3

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

d

5

5

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

6
6

6

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

a  ¬


 (¬a)

11 (¬a)11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

a11

11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b
11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b 9 c

11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

4

4 d

11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

Source: Karem A. Sakallah, Univ. of Michigan

61

Implementation Issues
 Track sensitivity of clauses for changes (two-literal-watch

scheme)
 clause with all literals but one assigned  implication
 clause with all literals but two assigned  sensitive to a

change of either literal
 all other clauses are insensitive and need not be

observed

 Learning:
 learned implications are added to the CNF formula as

additional clauses
 limit the size of the clause
 limit the “lifetime” of a learned clause, will be removed

after some time

62

Quantification over CNF and DNF
 Recall a quantified Boolean formula (QBF) is

Q1 x1, Q2 x2, …, Qn xn. 
where Qi is either a existential () or universal
quantifier (), xi is a Boolean variable, and  is a
Boolean formula.

 Existential (respectively universal) quantification
over DNF (respectively CNF) is easy
 One approach to quantifier elimination is by back-and-

forth CNF-DNF conversion!

 Solving QBFs with QBF-solvers

63

Outline

Introduction

Boolean reasoning engines

Equivalence checking

Property checking

64

Equivalence Checking in
Microprocessor Design

Architectural Specification
(informal)

RTL Specification
(Verilog, VHDL)

Circuit Implementation
(Schematic)

Layout Implementation
(GDS II)

Cycle Simulation

Equivalence
Checking

Circuit Simulation

Test Programs

Property Checking

65

Equivalence Checking in ASIC Design
RTL

Specification

Cell-Based
Synthesis

Standard Cell
Implementation

Engineering
Changes (ECOs)

Equivalence
Checking

Final
Implementation

Equivalence
Checking

Property Checking

66

Equivalence Checking
 Equivalence checking is one of the most

important problem in design verification
 It ensures logic transformation process (e.g. two-level,

multi-level logic minimization, retiming and resynthesis,
etc.) does not introduce errors

 Two types of equivalence checking
 Combinational equivalence checking

Check if two combinational circuits are equivalent
 Sequential equivalence checking

Check if two sequential circuits are equivalent

67

Outline

Introduction

Boolean reasoning engines

Equivalence checking
Combinational equivalence checking
Sequential equivalence checking

Property checking

68

History of Equivalence Checking
 SAS (IBM 1978 - 1994):

 standard equivalence checking tool running on
mainframes

 based on the DBA algorithm (“BDDs in time”)
 verified manual cell-based designs against RTL spec
 handling of entire processor designs

application of “proper cutpoints”
application of synthesis routines to make circuits

structurally similar
special hacks for hard problems

 Verity (IBM 1992 - today):
 originally developed for switch-level designs
 today IBMs standard EC tool for any combination of

switch-, gate-, and RTL designs

69

History of Equivalence Checking
 Chrysalis (1994 - Avanti - now Synopsys):

 based on ATPG technology and cutpoint exploitation
 very weak if many cutpoints present
 did not adopt BDDs for a long time

 Formality (1997 - Synopsys)
 multi-engine technology including strong structural matching

techniques

 Verplex (1998 - now Cadence)
 strong multi-engine based tool
 heavy SAT-based
 very fast front-end

70

Combinational EC
 Given two combinational circuits C1 and C2, are

their outputs equivalent under any possible input
assignment?

x C1

C2x


?

y1

y2

71

Miter for Combinational EC
 Two combinational circuits C1 and C2 are

equivalent if and only if the output of their “miter”
structure always produces constant 0

x 0?

C1

C2

72

Approaches to Combinational EC

Basic methods:
 random simulation

good at identifying inequivalent signals
 BDD-based methods
 structural SAT-based methods

x 0?

C1

C2

73

BDD-based Combinational EC

Procedure
1.Construct the ROBDDs F1 and F2 for circuits C1

and C2, respectively
Variable orderings of F1 and F2 should be the same

2.Let G= F1⊕F2. If G=0, C1 and C2 are equivalent;
otherwise, they are inequivalent
No false negative or false positive

 False negative: circuits are equivalent; however,
verifier fails to tell

 False positive: circuits are inequivalent; however,
verifier says otherwise

74

SAT-based Combinational EC

Procedure
1.Convert the miter structure into a CNF

2.Perform SAT solving to verify if the output
variable cannot be valuated to true under
every input assignment (i.e. UNSAT)

75

Combinational EC
 Pure BDD and plain SAT solving cannot handle all

logic cones
BDDs can be built for about 80% of the cones

of high-speed designs and less for complex
ASICs

 plain SAT blows up in CPU time on a miter
structure

 Contemporary method highly exploit structural
similarities between two circuits to be compared

76

Combinational EC
 Memory statistics of BDD-based EC on a PowerPC processor

design

77

Combinational EC
 Runtime statistics of BDD-based EC on a PowerPC

processor design

78

Necessity of Structure Similarity

Pure BDDs are incapable of verifying
equivalence of large circuits
 Even more so for arithmetic circuits (e.g. BDDs

blow up in representing multipliers)

Identifying structure similarity helps
simplify verification tasks
 E.g. structure hashing in AIGs

79

Combinational EC
 Evidence of vast existence of structure similarities

Fu
nc

tio
na

l E
qu

iv
al

en
t N

et
s

(%
)

Circuit Size 80

Structure and Verification
 Structure-independent techniques

 Exhaustive simulation
 Decision diagrams

 Structure-dependent techniques
 Graph hashing
 SAT based cutpoint identification

Struture-
independent
techniques

Structure-dependent
techniques

Combined
methods

Degree of
Structural
Difference

Size

81

Summary
 Combinational EC is considered to be solvable in

most industrial circuits (w/ multi-million gates)
 Computational efforts scale almost linearly with the

design size
 Existence of structural similarities

Logic transformations preserve similarities to some extent
 Hybrid engine of BDD, SAT, AIG, simulation, etc.

Cutpoint identification

 Unsolved for arithmetic circuits
 Absence of structural similarities

Commutativity ruins internal similarities
 Word- vs. bit-level verification

82

Outline

Introduction

Boolean reasoning engines

Equivalence checking
Combinational equivalence checking
Sequential equivalence checking

Property checking

83

Sequential EC
 Given two sequential circuits (and thus FSMs), do

they produce the same output sequence under
any possible input sequence?


?

y1

D

x 1
1M1

y2

D

x 2
2M2

84

Miter for Sequential EC
 Two FSMs M1 and M2 are equivalent if and only if

the output of their product machine always
produces constant 0

0=
?

y1

D
x

1
1M1

y2

D

2
2M2

85

Product Machine

The product FSM M12 of FSMs M1 = (Q1, I1,
, , , 1) and M2 = (Q2, I2, , , , 2)
is a six-tuple (Q12, I12, , , 12, 12),
where
State space Q12 = Q1  Q2

 Initial state set I12 = I1  I2

 Input alphabet 
Output alphabet {0,1}
 Transition function 12 = (, )
Output function 12 = (  )

86

Sequential EC
 Approaches for combinational EC do not work for

sequential EC because two equivalent FSMs need
not have the same transition and output
functions
 False negatives may result from applying combinational

EC on sequential circuits

One solution to sequential EC is by reachability
analysis
 Two FSMs M1 and M2 are equivalent if and only if the

output of their product FSM M12 is constant 0 under all
input assignments and all reachable states of M12

 Need to know the set of reachable states of M12

87

Reachability Analysis
 Given an FSM M = (Q, I, , , , ) , which states

are reachable from the initial state set I ?

Unreachable states

Reachable states

88

Symbolic Reachability Analysis
Reachability analysis can be performed

either explicitly (over a state transition
graph) or implicitly (over transition
functions or a transition relation)
 Implicit reachability analysis is also called

symbolic reachability analysis (often using
BDDs and more recently SAT)

Image computation is the core
computation in symbolic reachability
analysis

89

Reachability Onion Ring

0

1

1

2
2

2

2

3 3

3

3

3

33

90

Computing Reachable States
 Input: Sequential system represented by a

transition relation and an initial state (or a set of
initial states)
 Transition functions can be converted into a transition

relation

 Computation: Image computation using Boolean
operations on characteristic functions
(representing state sets)

Output: A characteristic function representing the
set of reachable states

91

Relation
 Definition. Relation R  XY is a subset of the Cartesian

product of two sets X and Y. If (x,y)R, then we
alternatively write “x R y” meaning x is related to y by R.

x1 x2 x3 y1 y2

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 0
1 0 1 0 1
1 1 0 1 1
1 1 1 1 1

x1

x2

x3

y1

y2

Courtesy of A. Mishchenko 92

Characteristic Function
 Relation R  XY can be represented by a characteristic

function: a Boolean function FR(x,y) taking value 1 for
those (x,y)R and 0 otherwise.

x1 x2 x3 y1 y2 F
0 0 0 0 0 1
0 0 1 0 1 1

0 1 0 0 1 1
0 1 1 0 1 1
1 0 0 0 0 1
1 0 1 0 1 1
1 1 0 1 1 1
1 1 1 1 1 1

other 0

x1

x2

x3

y1

y2

0 1

Courtesy of A. Mishchenko

93

Transition Relation
 Definition. A transition relation T of an FSM M = (Q, I, , ,

, ) is a relation T  ( x Q) x Q such that T(, q1, q2) = 1
iff there is a transition from q1 to q2 under input .
 : ( x Q)  Q
 T: ( x Q) x Q  {0,1}

Assume  = (, …, ). Then

where x, s, s’ are primary-input, current-state, and next-state
variables, respectively.

1 1 2 2(, , ') (' (,)) (' (,)) (' (,))

 (' (,))
k k

i i
i

T x s s s x s s x s s x s
s x s
  



      

 

        


 

94

Quantified Transition Relation

Definition
Let M = (Q, I, , , , ) be an FSM
Quantified transition relation T

(p,q)  T if there exists an input assignment bringing
M from state p to state q

only concerns about the reachability of the FSM’s
transition graph

1 1 2 2(, ') .(' (,)) (' (,)) (' (,))

 . (' (,))
k k

i i
i

T s s x s x s s x s s x s
x s x s

  


        

  

        


  

95

Transition Relation

Example

x CS s1 s2 NS s1’ s2’ T

0 A 00 B 10 1
0,1 A 00 A 00 1

0 B 10 B 10 1
1 B 10 A 00 1
0 C 01 B 10 1
1 C 01 A 00 1

other 0

C

B
A

0,1

0
1

0

1
0

Courtesy of A. Mishchenko 96

Transition Relation

Example

C

B
A

0,1

0
1

0

1
0

Courtesy of A. Mishchenko

x
s1

s1
s2

s2
10

97

Image Computation
 Given a mapping of one

Boolean space (input space)
into another Boolean space
(output space)
 For a set of minterms

(care set) in the input
space
 The image is the set of

related minterms from the
output space

 For a set of minterms in
the output space
 The pre-image is the set

of related minterms in the
input space

Input space

Output space

Care set

Im
age

Courtesy of A. Mishchenko 98

Image Computation

Example

a b c

yx Output space

Image

Care set000

001

010

011

100

101

110

111

00

01

10

11

abc

xy

Input space

Courtesy of A. Mishchenko

99

Image Computation
 Image(C(x),T(x,y)) = x [C(x)  T(x,y)]

 Implicit methods by far outperform explicit ones
 Successfully computing images with more than 2100

minterms in the input/output spaces

Operations  and  are basic Boolean
manipulations and are implemented in BDD
packages
 To avoid large intermediate results (during and after the

product computation), BDD AND-EXIST operation
performs product and quantification in one pass over the
BDD

100

Symbolic Image Computation
 Definition. Let F: BmBn be a projection and C be a set of

minterms in Bm. Then the image of C is the set
Img(C, F) = { w  Bn | (v, w)  F and v  C} in Bn.

 Characteristic function
 for reachable next-state computation

(') ((), (, '))
.(() (, '))

.(() (. (' (,))))

i i

i

i i i
i

N s Img R s T s s
s R s T s s
s R s x s x s






  

    

   

   

     wv

Bm Bn

101

Symbolic Pre-Image Computation
 Definition. Let F: BmBn be a projection and C be a set of

minterms in Bm. Then the pre-image of C is the set
PreImg(C, F) = { v  Bm | (v, w)  F and w  C} in Bn.

 Characteristic Function
 for reachable previous-state computation

() (('), (, '))
'.((') (, '))

'.((') (. (' (,))))

i i

i

i i i
i

N s PreImg R s T s s
s R s T s s
s R s x s x s







  

    

   

   

     wv

Bm Bn

102

Reachability Analysis
ForwardReachability(Transition Relation T, Initial State I)
{

i := 0
Ri := I
repeat

Rnew = Image(Ri, T);
i := i + 1
Ri := Ri-1  Rnew

until Ri = Ri-1
return Ri

}

 The procedures can be realized using BDD package.

 Backward reachability analysis can be done in a similar manner with pre-
image computation and starting from final states to see if they can be
reached from initial states.

103

Sequential Equivalence Checking

Let R(s) be the characteristic function of
the reachable state set of the product FSM
M12 obtained from forward reachability
analysis. Then FSMs M1 and M2 are
equivalent if and only if

R(s)  (12(x,s)0)
is valid for all valuations on input variables
x and state variables s.
 This can be checked in constant time for BDD

104

Sequential Equivalence Checking
 Example

 Are M1 and M2 equivalent ?

105

Sequential Equivalence Checking

Example (cont’d)
 Product FSM of M1 and M2

M1
i o

M2

s0

t0
s1

t2

0/0

1/0

0/0 1/0

s1

t1

s0

t30/0

1/0

0/01/0

s1

t0

0/1

1/1

0/1

1/1

s0

t1

s0

t2
0/1 1/1

s1

t3

1/10/1

106

Sequential Equivalence Checking
 Example (cont’d)

 Forward reachability analysis

s1
t2

s0
t3

s1
t1

s0
t0

R0

R1

R2
R3

s0

t0
s1

t2

0/0

1/0

0/0 1/0

s1

t1

s0

t30/0

1/0

0/01/0

s1

t0

0/1

1/1

0/1

1/1

s0

t1

s0

t2
0/1 1/1

s1

t3

1/10/1

'(,) [, . (, , ') ()]s sImg C T x s T x s s C s     
     

107

Sequential Equivalence Checking
 Example (cont’d)

 Backward reachability analysis

s0

t0
s1

t2

0/0

1/0

0/0 1/0

s1

t1

s0

t30/0

1/0

0/01/0

s1

t0

0/1

1/1

0/1

1/1

s0

t1

s0

t2
0/1 1/1

s1

t3

1/10/1

(,) , '. (, , ') (')PreImg C T x s T x s s C s       

s0
t1

s1
t0

s1
t3

R0
R1

s0
t2

108

Remarks on Sequential EC
 Industrial equivalence checkers almost

exclusively use an combinational EC paradigm
even for sequential EC
 Sequential EC is too complex and can only be applied to

design with a few hundred state bits
 Structure similarity should be identified to simplify

sequential EC
 Besides sequential equivalence checking,

reachability analysis is useful in sequential circuit
optimization
 In sequential optimization, unreachable states can be

used as sequential don’t cares to optimize a sequential
circuit

109

Outline

Introduction

Boolean reasoning engines

Equivalence checking

Property checking
Safety property checking

110

Model Checking

A specific model-checking problem is
defined by

M |= 

“implementation”
(system model)

“specification”
(system property)

“satisfies”, “implements”, “refines”
(satisfaction relation)

more detailed more abstract

111

Model Checking
M |= 

 Check if system model M satisfies a system property 

 System model M is described with a state transition
system
 finite state or infinite state

 Temporal property  can be described with three
orthogonal choices:

1.operational vs. declarative: automata vs. logic
2.may vs. must: branching vs. linear time
3.prohibiting bad vs. desiring good behavior: safety vs.

liveness

Different choices lead to different model checking
problems.

112

Property Checking
 Safety property:

Something “bad” will never
happen
 Safety property violation

always has a finite witness
 if something bad happens

on an infinite run, then it
happens already on some
finite prefix

 Example
 Two processes cannot be

in their critical sections
simultaneously

 Liveness property:
Something “good” will
eventually happen
 Liveness property violation

never has a finite witness
 no matter what happens

along a finite run,
something good could still
happen later

 Example
Whenever process P1

wants to enter the critical
section, provided process
P2 never stays in the
critical section forever, P1
gets to enter eventually

For finite state systems, liveness can be converted to safety!

113

Safety Property Checking

Safety property checking can be
formulated as a reachability problem
Are bad states reachable from good states?

Sequential equivalence checking can be
considered as one kind of safety property
checking
M : product machine
  : all states reachable from initial states has

output 0

114

Model Checking

Data structure evolution
State graph (late 70s-80s)

Problem size ~104 states
BDD (late 80s-90s)

Problem size ~1020 states
Critical resource: memory

SAT (late 90s-)
GRASP, SATO, chaff, berkmin
Problem size ~10100 (?) states
Critical resource: CPU time

115

Remarks on Model Checking
Model checking is a very rich subject

developed since early 1980’s

It is a variation of mathematical logic and
is concerned with automatic temporal
reasoning

Reference
M. Clarke, O. Grumberg, and D. Peled.
Model Checking. MIT Press, 1999.

