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Formal Verification

Course contents
 Introduction
Boolean reasoning engines
 Equivalence checking
 Property checking

Readings
Chapter 9
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Outline

Introduction

Boolean reasoning engines

Equivalence checking

Property checking
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(1995/1) Intel announces a pre-tax charge of 475 million dollars against 
earnings, ostensibly the total cost associated with replacement of the 
flawed processors. 

6

(1996/6) The European Ariane5 rocket 
explodes 40 s into its maiden flight due to 
a software bug. 

7

(2003/8) A programming error has been identified as the cause of the Northeast 
power blackout, which affected an estimated 10 million people in Canada and 45 
million people in the U.S. 
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Costs

(2008/9) A major computer failure onboard the Hubble Space Telescope is 
preventing data from being sent to Earth, forcing a scheduled shuttle mission to 
do repairs on the observatory to be delayed.
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Design vs. Verification

Verification may take up to 70% of total 
development time of modern systems !
 This ratio is ever increasing
Some industrial sources show 1:3 head-count 

ratio between design and verification engineers

Verification plays a key role to reduce 
design time and increase productivity
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IC Design Flow and Verification

HDL spec.

logic 
synthesis

netlist

netlist

layout /
mask

chip

RTL 
synthesisdesign verif.design verif.

implement verif.implement verif.

physical 
design

manufacture verif.manufacture verif.

fab.
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Scope of Verification
 Design flow

 A series of transformations  from abstract specification all the 
way to layout

 Verification enters design flow in almost all abstraction 
levels
 Design verification

 Functional property verification (main focus)
 Implementation verification

 Functional equivalence verification (main focus)
 Physical verification
 Timing verification
 Power analysis
 Signal integrity check

 Electro-migration, IR-drop, ground bounce, cross-talk, etc.
 Manufacture verification

 Testing
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Verification
 Design/Implementation Verification

Functional Verification
 Property checking in system level

 PSPACE-complete
 Equivalence checking in RTL and gate level

 PSPACE-complete
Physical Verification
 DRC (design rule check) and LVS (layout vs. 

schematic check) in layout level 
 Tractable

 Manufacture Verification
 Testing 

 NP-complete

 “Verification” often refers to functional 
verification
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Functional Verification
Design Flow Design Verification

Design Validation
(Is what I specified 

really what I wanted?)

Property Checking
(Does the design

have desired properties?)

Equivalence Checking
(Implementation verification)

(Is what I implemented
really what I specified?)

Physical verification
(LVS: layout vs. schematic)

Register-Transfer Level ModelRegister-Transfer Level Model

Schematic
(gate-level or transistor-level)

Schematic
(gate-level or transistor-level)

LayoutLayout

Abstract Design SpecificationAbstract Design Specification

=

=

=

High-level synthesis

Logic synthesis

Physical design

Physical verification
(DRC: design rule check)
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Functional Verification Approaches
 Simulation (software)

 Incomplete (i.e., may fail to catch bugs)
 Time-consuming, especially at lower abstraction levels such as 

gate- or transistor-level
 Still the most popular way for design validation

 Emulation (hardware)
 FPGA-based emulation systems, emulation system based on 

massively parallel machines (e.g., with 8 boards, 128 
processors each), etc.

 2 to 3 orders of magnitude faster than software simulation
 Costly and may not be easy-to-use

 Formal verification
 a relatively new paradigm for property checking and 

equivalence checking
 requires no input stimuli
 perform exhaustive proof through rigorous logical reasoning
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Informal vs. Formal Verification
 Informal verification

 Functional simulation 
aiming at locating bugs

 Incomplete
Show existence of 

bugs, but not absence 
of bugs

 Formal verification
 Mathematical proof of 

design correctness
 Complete

Show both existence 
and absence of bugs

We will be focusing on formal verification
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Outline

Introduction

Boolean reasoning engines
BDD
SAT

Equivalence checking

Property checking
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Binary Decision Diagram (BDD)
 Basic features

 ROBDD
Proposed by R.E. Bryant in 1986
A directed acyclic graph (DAG) representing a Boolean 

function f: BnB
 Each non-terminal node is a decision node associated with a 

input variable with two branches: 0-branch and 1-branch
 Two terminal nodes: 0-terminal and 1-terminal

 Example

x1
x2

f

x1

x2

0 1

0
1

10

ROBDD
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Binary-Decision Diagram (BDD)
 Cofactor of Boolean function:

 Positive cofactor w.r.t. xi: fxi = f(x1,…, xi–1, 1, xi+1,…, xn)
 Negative cofactor w.r.t. xi:        fxi = f(x1,…, xi–1, 0, xi+1,…, xn)

 Example
f = x1’ x2’ x3’ + x1’ x2’ x3 + x1 x2’ x3 + x1 x2 x3’ + x2 x3
fx1 = x2’ x3 + x2 x3’ + x2 x3
fx1’ = x2’ x3’ + x2’ x3 + x2 x3

 Shannon expansion: f = xi fxi + xi’ fxi’
 A complete expansion of a function can be obtained by 

successively applying Shannon expansion on all variables until 
either of the constant functions ‘0’ or ‘1’ is reached
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Ordered BDD (OBDD)
 Complete Shannon expansion can be visualized as a binary tree 

 Solid (dashed) lines correspond to the positive (negative) cofactor

f = x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3
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Reduced OBDD (ROBDD)
 Reduction rules of ROBDD

 Rule 1: eliminate a node with two identical children
 Rule 2: merge two isomorphic sub-graphs

 Reduction procedure
 Input: An OBDD
 Output: An ROBDD
 Traverse the graph from the terminal nodes towards to root 

node (i.e., in a bottom-up manner) and apply the above 
reduction rules whenever possible

x x

y y

xx
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ROBDD
 An OBDD is a directed tree G(V,E)
 Each vertex v  V is characterized by an 

associated variable (v), a high subtree (v)
(high(v), the 1-branch) and a low subtree (v) 
(low(v), the 0-branch)

 Procedure to reduce an OBDD:
 Merge all identical leaf vertices and appropriately 

redirect their incoming edges
 Proceed from bottom to top, process all vertices: if 

two vertices u and v are found for which (u) = 
(v), (u) = (v), and (u) = (v), merge u and v 
and redirect incoming edges

 For vertices v for which (v) = (v), remove v and 
redirect its incoming edges to (v)
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ROBDD
 Example

 f = x’yz’ + xz
 variable order: x < y < z

OBDDxyz f
000 0
001 0
010 1
011 0
100 0
101 1
110 0
111 1

Truth table

x

10

y

z

10

z

y

z

10

z

0 0 1 0 0 10 1

0 0001 111

x

y

zz

y

zz

0 1

by rule 2
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ROBDD
 Example (cont’d)

x

y

zz

y

zz

0 1
rule 1 rule 2

x

y

z

y

z

0 1

rule 1

x

y

z z

0 1

ROBDD
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Canonicity
 Canonicity requirements

 A BDD representation is not canonical for a given 
Boolean function unless the following constraints are 
satisfied:

1.Simple BDD – each variable can appear only once along 
each path from the root to a leaf

2.Ordered BDD – Boolean variables are ordered in such a 
way that if the node labeled xi has a child labeled xk, 
then order(xi) < order(xk)

3.Reduced BDD – no two nodes represent the same 
function, i.e., redundancies are removed by sharing 
isomorphic sub-graphs
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ROBDD Properties
 ROBDD is a canonical representation for a fixed variable 

ordering
 ROBDD is compact in representing many Boolean functions 

used in practice
 Variable ordering greatly affects the size of an ROBDD

 E.g., the parity function of k bits: 

x2

2 1 2

1

k

j j

j

f x x



 
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Effects of Variable Ordering
 BDD size

 Can vary from linear to exponential in the number of the 
variables, depending on the ordering

 Hard-to-build BDD
 Datapath components (e.g., multipliers) cannot be 

represented in polynomial space, regardless of the 
variable ordering

 Heuristics of ordering
 (1) Put the variable that influence most on top
 (2) Minimize the distance between strongly related 

variables
(e.g., x1x2 + x2x3 + x3x4) 
x1 < x2 < x3 < x4 is better than x1 < x4 < x2 < x3
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BDD Package
 A BDD package refers to a software program that 

supports Boolean manipulation using ROBDDs. It 
has the following features:
 It provides convenient API  (application 

programming interface)
 It supports the conversion between the 

external Boolean function representation and 
the internal ROBDD representation

Multiple Boolean functions are stored in shared 
ROBDD

 It can create new functions from existing ones 
(e.g., h = f  • g)
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BDD Data Structure
 A triplet (,,) 

uniquely identifies an 
ROBDD vertex

 A unique table
(implemented by a 
hash table) that stores 
all triplets already 
processed
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Building ROBDD
 The procedure directly 

builds the compact 
ROBDD structure

 A simple symbolic 
computation system is 
assumed for the 
derivation of the 
cofactors

 (i) gives the ith
variable from the top

30

Building ROBDD
 Example
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Recursive BDD Operation
 Construct the ROBDD h = f <op> g from two 

existing ROBDDs f and g, where <op> is a binary 
Boolean operator (e.g. AND, OR, NAND, NOR)
 A recursive procedure on each variable x

h = x · hx=1 + x’ · hx=0
= x · (f <op> g)x=1 + x’ · (f <op> g)x=0
= x · (fx=1 <op> gx=1) + x’ (fx=0 <op> gx=0) 

 (f <op> g)x = (fx <op> gx) for <op> = AND, OR, NAND, 
NOR

x

fx=0 fx=1

op
x

gx=0 gx=1

x

fx=0 op gx=0 fx=1 op gx=1

0 1
0 1 0 1
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Recursive BDD Operation
 Existential quantification

Let x1 [f(x1,y1 ,…,yn)] = g(y1 ,…,yn). 
Then  g(y1 ,…,yn) = 1 iff
f(0,y1 ,…,yn)=1 or f(1,y1 ,…,yn)=1

x1
0 1

x2
0 1

x3

0 1
0 1

x2
0 1

x3

0 1

0 1

x3

0 1
0 1OR =

x2
0 1

x3

0 1

0 1
x3

0 1

0 1

x3

0 1
0 1

reduction
f = (x1+x2) · x3 x1 f = fx1=0 + fx1=1
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ROBDD Manipulation
 Separate algorithms could be designed for each operator on 

ROBDDs, such as AND, NOR, etc. However, the universal if-then-
else operator ‘ite’ is sufficient. 
z = ite(f,g,h), z equals g when f is true and equals h otherwise:
 Example:

 The ite operator is well-suited for a recursive algorithm based on 
ROBDDs ((v) = x):
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ITE Operator
 ITE operator ite(f,g,h) = fg + f’h can implement any two variable logic function. 

There are 16 such functions corresponding to all subsets of vertices of B2:

Table Subset Expression Equivalent Form
0000 0 0 0
0001 AND(f, g) f g ite(f, g, 0)
0010 f > g f g ite(f, g, 0)
0011 f f f
0100 f < g fg ite(f, 0, g)
0101 g g g
0110 XOR(f, g) f  g ite(f, g, g)
0111 OR(f, g) f + g ite(f, 1, g)
1000 NOR(f, g) (f + g) ite(f, 0, g)
1001 XNOR(f, g) f  g ite(f, g, g)
1010 NOT(g) g ite(g, 0, 1)
1011 f  g f + g ite(f, 1, g)
1100 NOT(f) f ite(f, 0, 1)
1101 f  g f + g ite(f, g, 1)
1110 NAND(f, g) (f g) ite(f, g, 1)
1111 1 1 1
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Recursive Formulation of ITE

Ite(f,g,h) 
= f g + f h 
= v (f g + f h)v + v (f g + f h)v

= v (fv gv + fv hv) + v (fv gv +fv hv)
= ite(v, ite(fv,gv,hv), ite(fv,gv,hv))

where v is the top-most variable of BDDs f, 
g, h
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ITE Operator
 Example

I = ite (F, G, H) 
= ite (a, ite (Fa , Ga , Ha ), ite (Fa , Ga , Ha ))
= ite (a, ite (1, C , H ), ite(B, 0, H ))
= ite (a, C, ite (b , ite (Bb , 0b , Hb ), ite (Bb , 0b , Hb )) 
= ite (a, C, ite(b , ite (1, 0, 1), ite (0, 0, D))) 
= ite (a, C, ite(b , 0, D))
= ite (a, C, J)

Check: F = a + b
G = ac
H = b + d
ite(F, G, H)  = (a + b)(ac) + ab(b + d) = ac + abd

F,G,H,I,J,B,C,D
are pointers

b1

1

a

0

1 0

1 0

F

B

1

1

a

0

1 0

0

G

c 0C

1

b

0

1 0

0

H

d D

1
1

0

a
1 0

0

I

b J

1

C

D
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ITE Operator
 ITE algorithm processes 

the variables in the order 
used in the BDD package
 (i) gives the ith variable 

from the top;  -1(x)
gives the index position 
of variable x from the 
top

 Cofactor: Suppose F is the 
root vertex of the function 
for which Fx should be 
computed. Then
Fx = (F)    if -1((F)) = i
 Fx’ can be calculated 

similarly

 The time complexity of the 
algorithm is O(|F||G||H|)
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ITE Operator
 Example

G = ite(G, 0, 1)
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ITE Operator
 Example (cont’d)

H = F  G
= ite(F, G, G)
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BDD Memory Management
Ordering

 Finding the best ordering minimizing ROBDD sizes is 
intractable

 Optimal ordering may change as ROBDDs are being 
manipulated
An ROBDD package may reorder the variables at different 

moments
It can move some variable closer to the top or bottom by 

remembering the best position, and repeat the procedure 
for other variables

 Garbage collection
 Another important technique, in addition to variable 

ordering, for memory management
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Data Type Conversion

Truth Table

Boolean
Formula

Logic Netlist

BDD

enumerate each root-to-1
path (each representing 
a product term)

translation
using MUXes

recursive
Shannon
expansion

incremental
construction
from PIs to POs

enumerate each root-to-1
path (each representing 
a product term)

recursive
Shannon
expansion
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Formula to BDD

Use variable order: x1<x2<x3

x1
0

1
x2

0 1

x3

0 1

0 1

f

Given a Boolean formula
f = x3 · (x1 + x2)

Shannon expansion on x1
f = x1 · fx1=1 + x1’ · fx1=0

= x1 · x3 + x1’ · x2 · x3 

Shannon expansion on x2 and x3
f = x1 · x3 + x1’ · (x2 · x3 + x2’ · 0)

Perform reduction on the resulting BDD 
to a canonical form

a sequence of recursive
Shannon expansions
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Netlist to BDD
Decide a good variable ordering

Topologically sort the signals
(from PI’s towards PO’s)

select the next signal based
on the topological order

construct the selected signal’s OBDD
using its direct fanins’ OBDD’s

more signal’s
OBDD to build ?

each PO’s OBDD
yes

no

x1
x2
x3

z1

z2

Boolean network C
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Netlist to BDD
 Example Topological order: {x1,x2,x3,z1,z2}

variable order: x1<x2<x3

x1

0 1

0 1
x2

0 1

0 1
x3

0 1

0 1

x1

1

0 1

x2

0 1

0 1

x1
0

1
x2

0 1

x3

0 1

0 1

OBDD(z1) OBDD(z2)

OBDD(z2) = OBDD(x3) · OBDD(z1)

OBDD(x1) OBDD(x2) OBDD(x3)

x1
x2
x3

z1

z2

Boolean network C
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BDD to Netlist
 MUX-based translation

 replace each decision node by a MUX
 replace 0-terminal by GND, and 1-terminal by VDD
 reverse the direction of every edge
 specify the root node as the output node

x1
0

1
x2

0 1

x3

0 1

0 1

MUX

MUX

MUX

GND VDD

output function

x2

x1

x3

1

1

1

0

0

0
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BDD Features
Strengths
ROBDD is a compact representation for many 

Boolean functions
ROBDD is canonical, given a fixed variable 

ordering
Many Boolean operations are of polynomial 

time complexity in the input BDD sizes 

Weaknesses
 In the worst case, the size of a BDD is O(2n) 

for n-input Boolean functions
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BDD Applications
 Boolean function verification

 Compare a specification f  to an implementation g, assuming 
their ROBDDs are F and G, respectively.
 For fully specified functions f and g, the verification is trivial 

(pointer comparison) because of the strong canonicity of the 
ROBDD
 Strong canonicity: the representations of identical functions 

are the same
 For an incompletely specified function I = (f, d, (f+d)) with onset f, 

dc-set d, and offset (f+d). A completely specified function g 
correctly implements I if (d + fg + fg) is a tautology, that is, f 
 g  (f+d)

 Satisfiability checking
 A Boolean function f is satisfiable if there exists an input 

assignment for which f evaluates to ‘1’
 Any Boolean function whose ROBDD is not equal to ‘0’ is 

satisfiable
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BDD Applications
 Min-cost satisfiability

 Suppose that choosing a Boolean variable xi to be ‘1’ costs ci. 
Then, the minimum-cost satisfiability problem asks to 
minimize:  i ciui(xi)
where (xi) = 1 when xi = ‘1’ and (xi) = 0 when xi = ‘0’.

 Solving minimum-cost satisfiability amounts to computing the 
shortest path in an ROBDD with weights: w(v,  (v)) = ci, w(v, 
 (v)) = 0, variable xi = (v), which can be solved in linear 
time

 Combinatorial optimization
 Many combinatorial optimization problems can also be 

formulated in terms of the satisfiability problem
 0-1 integer linear programming can be formulated as a 

minimum-cost satisfiability problem although the translation 
may not be efficient
 E.g., the constraint: x1 + x2 + x3 + x4 = 3 can be written as 

(x1+x2)(x1+x3)(x1+x4)(x2+x3)(x2+x4)(x3+x4)(x1+x2+x3+x4)
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Outline

Introduction

Boolean reasoning engines
BDD
SAT

Equivalence checking

Property checking
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SAT Solving
 SAT problem: Given a Boolean formula  in CNF, 

find an input assignment such that  valuates to 
true

 SAT solving is a decision procedure over CNFs
Example

 = (a+b+c)(a+b+c)(a+b+c)(a+b+c)
 is SAT (e.g. under a=1, b=1, c=0)

 SAT in CNF (POS)  Tautology in DNF (SOP)
 How about Tautology in CNF and SAT in DNF?
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SAT Solving
 Given a circuit, suppose we would like to know if 

some signal is always zero. This can be 
formulated as a SAT problem if we can covert the 
circuit to an CNF.

1

6

2 5
8

7

3

4

9 0

an AIG

Is output always 0 ?
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Circuit to CNF
 Naive conversion of circuit to CNF:

 Multiply out expressions of circuit until two level structure
 Example: y = x1 x2  x2  ...  xn (Parity function)

 circuit size is linear in the number of variables



 generated chess-board Karnaugh map
 CNF (or DNF) formula has 2n-1 terms (exponential in #vars)

 Better approach:
 Introduce one variable per circuit vertex
 Formulate the circuit as a conjunction of constraints imposed 

on the vertex values by the gates
 Uses more variables but size of formula is linear in the size of

the circuit
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Circuit to CNF
 Example

 Single gate:

 Circuit of connected gates:

b

a
c (a + b + c)(a + c)(b + c)

AND

1

6

2 5
8

7

3

4

9 0

(1 + 2 + 4)(1 + 4)(2 + 4)
(2 + 3 + 5)(2 + 5)(3 + 5)
(2 + 3 + 6)(2 + 6)(3 + 6)
(4 + 5 + 7)(4 + 7)(5 + 7)
(5 + 6 + 8)(5 + 8)(6 + 8)
(7 + 8 + 9)(7 + 9)(8 + 9)
(9)

Justify to “1”

Is output always 0 ?
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Circuit to CNF

Circuit to CNF conversion 
 can be done in linear size (with respect to the 

circuit size) if intermediate variables can be 
introduced

may grow exponentially in size if no 
intermediate variables are allowed
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DPLL-Style SAT Solving
SAT(clause set S, literal v)
1. S :=  Sv //cofactor each clause of S w.r.t. v
2. If no clauses in S, return T
3. If a clause in S is empty (FALSE), return 

F
4. If S has a unit clause with literal u, 

then return SAT(S, u) //implication
5. Choose a variable x with value not yet 

assigned
6. If SAT(S, x), return T
7. If SAT(S, x), return T
8. Return F
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SAT Solving with Case Splitting
 Example

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

1
2
3
4
5
6
7
8

a(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)

b

c

d d

b

c

d d

c

d(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)
(¬b + ¬c + ¬d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)

(¬b + ¬c + d)

Source: Karem A. Sakallah, Univ. of Michigan 
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SAT Solving with Implication

Implication in a CNF formula are caused 
by unit clauses
A unit clause is a clause in which all literals 

except one are assigned (to be false) 
The value of the unassigned variable is implied

Example
(a+b+c)
a=0, b=1  c=1
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Implications in CNF
 Example

(a + b + c)           (a + c)              (b + c)

0

x
x

x

0
x

0

0
x

x

x
1

x

1
1

1

x
1x

1
0

1

x
0

1

0
x

0

1
x

1

1
x

Implications:

(a+b+c)(a+c)(b+c)
a

c
b

AND
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SAT Solving with Implication
 Example

1
2
3
4
5
6
7
8

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

a(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) d

7
7

b
c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) 8

8

8

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) d

5
5

a
c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) 6

6

6

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) c

3
3

a
b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) 5

5
d

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

6
6

6

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) d

4
4

a
c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

Source: Karem A. Sakallah, Univ. of Michigan 60

SAT Solving with Learning
 Example

1
2
3
4
5
6
7
8

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

a(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) d

7
7

b
c

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d) 8

8

8

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

bc  ¬


 (¬b + ¬c)

9 (¬b + ¬c)(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

9 (¬b + ¬c)

c9b

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

9 (¬b + ¬c)

a

d

5

5

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

9 (¬b + ¬c)

6
6

6

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

9 (¬b + ¬c)

ab  ¬


 (¬a + ¬b)

10 (¬a + ¬b)
(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

b

a

10

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

c3
3

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

d

5

5

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

6
6

6

(a + b + c)
(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

10 (¬a + ¬b)
9 (¬b + ¬c)

a  ¬


 (¬a)

11 (¬a)11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

a11

11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b
11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

b 9 c

11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

4

4 d

11 (¬a)
10 (¬a + ¬b)
9 (¬b + ¬c)(a + b + c)

(a + b + ¬c)
(¬a + b + ¬c)
(a + c + d)
(¬a + c + d)
(¬a + c + ¬d)
(¬b + ¬c + ¬d)
(¬b + ¬c + d)

Source: Karem A. Sakallah, Univ. of Michigan 
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Implementation Issues
 Track sensitivity of clauses for changes (two-literal-watch 

scheme)
 clause with all literals but one assigned  implication
 clause with all literals but two assigned  sensitive to a 

change of either literal
 all other clauses are insensitive and need not be 

observed

 Learning: 
 learned implications are added to the CNF formula as 

additional clauses
 limit the size of the clause
 limit the “lifetime” of a learned clause, will be removed 

after some time
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Quantification over CNF and DNF
 Recall a quantified Boolean formula (QBF) is 

Q1 x1, Q2 x2, …, Qn xn. 
where Qi is either a existential () or universal 
quantifier (), xi is a Boolean variable, and  is a 
Boolean formula.

 Existential (respectively universal) quantification 
over DNF (respectively CNF) is easy
 One approach to quantifier elimination is by back-and-

forth CNF-DNF conversion!

 Solving QBFs with QBF-solvers
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Outline

Introduction

Boolean reasoning engines

Equivalence checking

Property checking
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Equivalence Checking in 
Microprocessor Design

Architectural Specification
(informal)

RTL Specification
(Verilog, VHDL)

Circuit Implementation
(Schematic)

Layout Implementation
(GDS II)

Cycle Simulation

Equivalence
Checking

Circuit Simulation

Test Programs

Property Checking
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Equivalence Checking in ASIC Design
RTL

Specification

Cell-Based
Synthesis

Standard Cell
Implementation

Engineering 
Changes (ECOs)

Equivalence
Checking

Final
Implementation

Equivalence
Checking

Property Checking
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Equivalence Checking
 Equivalence checking is one of the most 

important problem in design verification
 It ensures logic transformation process (e.g. two-level, 

multi-level logic minimization, retiming and resynthesis, 
etc.) does not introduce errors

 Two types of equivalence checking
 Combinational equivalence checking

Check if two combinational circuits are equivalent
 Sequential equivalence checking

Check if two sequential circuits are equivalent
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Outline

Introduction

Boolean reasoning engines

Equivalence checking
Combinational equivalence checking
Sequential equivalence checking

Property checking
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History of Equivalence Checking
 SAS (IBM 1978 - 1994):

 standard equivalence checking tool running on 
mainframes

 based on the DBA algorithm (“BDDs in time”)
 verified manual cell-based designs against RTL spec
 handling of entire processor designs

application of “proper cutpoints”
application of synthesis routines to make circuits 

structurally similar
special hacks for hard problems

 Verity (IBM 1992 - today):
 originally developed for switch-level designs
 today IBMs standard EC tool for any combination of 

switch-, gate-, and RTL designs
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History of Equivalence Checking
 Chrysalis (1994 - Avanti - now Synopsys):

 based on ATPG technology and cutpoint exploitation
 very weak if many cutpoints present
 did not adopt BDDs for a long time

 Formality (1997 - Synopsys)
 multi-engine technology including strong structural matching 

techniques

 Verplex (1998 - now Cadence)
 strong multi-engine based tool
 heavy SAT-based
 very fast front-end
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Combinational EC
 Given two combinational circuits C1 and C2, are 

their outputs equivalent under any possible input 
assignment?

x C1

C2x


?

y1

y2
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Miter for Combinational EC
 Two combinational circuits C1 and C2 are 

equivalent if and only if the output of their “miter”
structure always produces constant 0

x 0?

C1

C2
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Approaches to Combinational EC

Basic methods:
 random simulation

good at identifying inequivalent signals
 BDD-based methods
 structural SAT-based methods

x 0?

C1

C2
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BDD-based Combinational EC

Procedure
1.Construct the ROBDDs F1 and F2 for circuits C1 

and C2, respectively 
Variable orderings of F1 and F2 should be the same

2.Let G= F1⊕F2. If G=0, C1 and C2 are equivalent; 
otherwise, they are inequivalent
No false negative or false positive

 False negative: circuits are equivalent; however, 
verifier fails to tell

 False positive: circuits are inequivalent; however, 
verifier says otherwise
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SAT-based Combinational EC

Procedure
1.Convert the miter structure into a CNF

2.Perform SAT solving to verify if the output 
variable cannot be valuated to true under 
every input assignment (i.e. UNSAT)

75

Combinational EC
 Pure BDD and plain SAT solving cannot handle all 

logic cones
BDDs can be built for about 80% of the cones 

of high-speed designs and less for complex 
ASICs

 plain SAT blows up in CPU time on a miter 
structure

 Contemporary method highly exploit structural 
similarities between two circuits to be compared
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Combinational EC
 Memory statistics of BDD-based EC on a PowerPC processor 

design
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Combinational EC
 Runtime statistics of BDD-based EC on a PowerPC 

processor design
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Necessity of Structure Similarity

Pure BDDs are incapable of verifying 
equivalence of large circuits
 Even more so for arithmetic circuits (e.g. BDDs 

blow up in representing multipliers)

Identifying structure similarity helps 
simplify verification tasks
 E.g. structure hashing in AIGs
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Combinational EC
 Evidence of vast existence of structure similarities
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Structure and Verification
 Structure-independent techniques

 Exhaustive simulation
 Decision diagrams

 Structure-dependent techniques
 Graph hashing
 SAT based cutpoint identification

Struture-
independent
techniques

Structure-dependent
techniques

Combined 
methods

Degree of 
Structural 
Difference

Size
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Summary
 Combinational EC is considered to be solvable in 

most industrial circuits (w/ multi-million gates)
 Computational efforts scale almost linearly with the 

design size
 Existence of structural similarities

Logic transformations preserve similarities to some extent
 Hybrid engine of BDD, SAT, AIG, simulation, etc.

Cutpoint identification

 Unsolved for arithmetic circuits 
 Absence of structural similarities

Commutativity ruins internal similarities
 Word- vs. bit-level verification
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Outline

Introduction

Boolean reasoning engines

Equivalence checking
Combinational equivalence checking
Sequential equivalence checking

Property checking
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Sequential EC
 Given two sequential circuits (and thus FSMs), do 

they produce the same output sequence under 
any possible input sequence?


?

y1

D

x 1
1M1

y2

D

x 2
2M2
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Miter for Sequential EC
 Two FSMs M1 and M2 are equivalent if and only if 

the output of their product machine always 
produces constant 0

0=
?

y1

D
x

1
1M1

y2

D

2
2M2
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Product Machine

The product FSM M12 of FSMs M1 = (Q1, I1, 
, , , 1) and M2 = (Q2, I2, , , , 2) 
is a six-tuple (Q12, I12, , , 12, 12), 
where
State space Q12 = Q1  Q2

 Initial state set I12 = I1  I2

 Input alphabet 
Output alphabet {0,1}
 Transition function 12 = (, )
Output function 12 = (  )
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Sequential EC
 Approaches for combinational EC do not work for 

sequential EC because two equivalent FSMs need 
not have the same transition and output 
functions
 False negatives may result from applying combinational 

EC on sequential circuits

One solution to sequential EC is by reachability 
analysis
 Two FSMs M1 and M2 are equivalent if and only if the 

output of their product FSM M12 is constant 0 under all 
input assignments and all reachable states of M12

 Need to know the set of reachable states of M12
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Reachability Analysis
 Given an FSM M = (Q, I, , , , ) , which states 

are reachable from the initial state set I ?

Unreachable states

Reachable states

88

Symbolic Reachability Analysis
Reachability analysis can be performed 

either explicitly (over a state transition 
graph) or implicitly (over transition 
functions or a transition relation)
 Implicit reachability analysis is also called 

symbolic reachability analysis (often using 
BDDs and more recently SAT)

Image computation is the core 
computation in symbolic reachability 
analysis
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Reachability Onion Ring

0

1

1

2
2

2

2

3 3

3

3

3
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Computing Reachable States
 Input: Sequential system represented by a 

transition relation and an initial state (or a set of 
initial states)
 Transition functions can be converted into a transition 

relation

 Computation: Image computation using Boolean 
operations on characteristic functions 
(representing state sets)

Output: A characteristic function representing the 
set of reachable states
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Relation
 Definition. Relation R  XY is a subset of the Cartesian 

product of two sets X and Y.  If (x,y)R, then we 
alternatively write “x R y” meaning x is related to y by R.

x1 x2 x3 y1 y2

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 0
1 0 1 0 1
1 1 0 1 1
1 1 1 1 1

x1

x2

x3

y1

y2

Courtesy of A. Mishchenko 92

Characteristic Function
 Relation R  XY can be represented by a characteristic 

function: a Boolean function FR(x,y) taking value 1 for 
those (x,y)R and 0 otherwise.

x1 x2 x3 y1 y2 F
0 0 0 0 0 1
0 0 1 0 1 1

0 1 0 0 1 1
0 1 1 0 1 1
1 0 0 0 0 1
1 0 1 0 1 1
1 1 0 1 1 1
1 1 1 1 1 1

other 0

x1

x2

x3

y1

y2

0 1

Courtesy of A. Mishchenko
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Transition Relation
 Definition. A transition relation T of an FSM M = (Q, I, , , 

, ) is a relation T  ( x Q) x Q such that T(, q1, q2) = 1 
iff there is a transition from q1 to q2 under input .
 : ( x Q)  Q 
 T: ( x Q) x Q  {0,1}

Assume  = (, …, ). Then

where x, s, s’ are primary-input, current-state, and next-state 
variables, respectively.

1 1 2 2( , , ') ( ' ( , )) ( ' ( , )) ( ' ( , ))

               ( ' ( , ))
k k

i i
i

T x s s s x s s x s s x s
s x s
  



      

 

        


 
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Quantified Transition Relation

Definition
Let M = (Q, I, , , , ) be an FSM
Quantified transition relation T

(p,q)  T if there exists an input assignment bringing 
M from state p to state q

only concerns about the reachability of the FSM’s 
transition graph

1 1 2 2( , ') .( ' ( , )) ( ' ( , )) ( ' ( , ))

            . ( ' ( , ))
k k

i i
i

T s s x s x s s x s s x s
x s x s

  


        

  

        


  

95

Transition Relation

Example

x CS s1 s2 NS s1’ s2’ T

0 A 00 B 10 1
0,1 A 00 A 00 1

0 B 10 B 10 1
1 B 10 A 00 1
0 C 01 B 10 1
1 C 01 A 00 1

other 0

C

B
A

0,1

0
1

0

1
0

Courtesy of A. Mishchenko 96

Transition Relation

Example

C

B
A

0,1

0
1

0

1
0

Courtesy of A. Mishchenko

x
s1

s1
s2

s2
10
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Image Computation
 Given a mapping of one 

Boolean space (input space) 
into another Boolean space 
(output space)
 For a set of minterms 

(care set) in the input 
space
 The image is the set of 

related minterms from the 
output space

 For a set of minterms in 
the output space
 The pre-image is the set 

of related minterms in the 
input space

Input space

Output space

Care set

Im
age

Courtesy of A. Mishchenko 98

Image Computation

Example

a b c

yx Output space

Image

Care set000

001

010

011

100

101

110

111

00

01

10

11

abc

xy

Input space

Courtesy of A. Mishchenko
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Image Computation
 Image(C(x),T(x,y)) = x [C(x)  T(x,y) ]

 Implicit methods by far outperform explicit ones
 Successfully computing images with more than 2100

minterms in the input/output spaces

Operations  and  are basic Boolean 
manipulations and are implemented in BDD 
packages
 To avoid large intermediate results (during and after the 

product computation), BDD AND-EXIST operation 
performs product and quantification in one pass over the 
BDD

100

Symbolic Image Computation
 Definition. Let F: BmBn be a projection and C be a set of 

minterms in Bm. Then the image of C is the set 
Img(C, F) = { w  Bn | (v, w)  F and v  C} in Bn.

 Characteristic function
 for reachable next-state computation

( ') ( ( ), ( , '))
.( ( ) ( , '))

.( ( ) ( . ( ' ( , ))))

i i

i

i i i
i

N s Img R s T s s
s R s T s s
s R s x s x s






  

    

   

   

     wv

Bm Bn
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Symbolic Pre-Image Computation
 Definition. Let F: BmBn be a projection and C be a set of 

minterms in Bm. Then the pre-image of C is the set 
PreImg(C, F) = { v  Bm | (v, w)  F and w  C} in Bn.

 Characteristic Function
 for reachable previous-state computation

( ) ( ( '), ( , '))
'.( ( ') ( , '))

'.( ( ') ( . ( ' ( , ))))

i i

i

i i i
i

N s PreImg R s T s s
s R s T s s
s R s x s x s







  

    

   

   

     wv

Bm Bn
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Reachability Analysis
ForwardReachability( Transition Relation T, Initial State I )
{

i := 0
Ri := I
repeat

Rnew = Image( Ri, T );
i := i + 1
Ri := Ri-1  Rnew

until Ri = Ri-1
return Ri

}

 The procedures can be realized using BDD package.

 Backward reachability analysis can be done in a similar manner with pre-
image computation and starting from final states to see if they can be 
reached from initial states.
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Sequential Equivalence Checking

Let R(s) be the characteristic function of 
the reachable state set of the product FSM 
M12 obtained from forward reachability 
analysis. Then FSMs M1 and M2 are 
equivalent if and only if 

R(s)  (12(x,s)0)
is valid for all valuations on input variables 
x and state variables s.
 This can be checked in constant time for BDD
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Sequential Equivalence Checking
 Example

 Are M1 and M2 equivalent ?
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Sequential Equivalence Checking

Example (cont’d)
 Product FSM of M1 and M2

M1
i o

M2

s0

t0
s1

t2

0/0

1/0

0/0 1/0

s1

t1

s0

t30/0

1/0

0/01/0

s1

t0

0/1

1/1

0/1

1/1

s0

t1

s0

t2
0/1 1/1

s1

t3

1/10/1
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Sequential Equivalence Checking
 Example (cont’d)

 Forward reachability analysis

s1
t2

s0
t3

s1
t1

s0
t0

R0

R1

R2
R3

s0

t0
s1

t2

0/0

1/0

0/0 1/0

s1

t1

s0

t30/0

1/0

0/01/0

s1

t0

0/1

1/1

0/1

1/1

s0

t1

s0

t2
0/1 1/1

s1

t3

1/10/1

'( , ) [ , . ( , , ') ( )]s sImg C T x s T x s s C s     
     
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Sequential Equivalence Checking
 Example (cont’d)

 Backward reachability analysis

s0

t0
s1

t2

0/0

1/0

0/0 1/0

s1

t1

s0

t30/0

1/0

0/01/0

s1

t0

0/1

1/1

0/1

1/1

s0

t1

s0

t2
0/1 1/1

s1

t3

1/10/1

( , ) , '. ( , , ') ( ')PreImg C T x s T x s s C s       

s0
t1

s1
t0

s1
t3

R0
R1

s0
t2
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Remarks on Sequential EC
 Industrial equivalence checkers almost 

exclusively use an combinational EC paradigm 
even for sequential EC
 Sequential EC is too complex and can only be applied to 

design with a few hundred state bits
 Structure similarity should be identified to simplify 

sequential EC
 Besides sequential equivalence checking, 

reachability analysis is useful in sequential circuit 
optimization
 In sequential optimization, unreachable states can be 

used as sequential don’t cares to optimize a sequential 
circuit
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Outline

Introduction

Boolean reasoning engines

Equivalence checking

Property checking
Safety property checking
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Model Checking

A specific model-checking problem is 
defined by 

M |= 

“implementation”
(system model)

“specification”
(system property)

“satisfies”, “implements”, “refines”
(satisfaction relation)

more detailed more abstract
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Model Checking
M |= 

 Check if system model M satisfies a system property 

 System model M is described with a state transition 
system
 finite state or infinite state

 Temporal property  can be described with three 
orthogonal choices:

1.operational vs. declarative: automata vs. logic
2.may vs. must: branching vs. linear time
3.prohibiting bad vs. desiring good behavior: safety vs. 

liveness

Different choices lead to different model checking 
problems.
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Property Checking
 Safety property: 

Something “bad” will never 
happen
 Safety property violation 

always has a finite witness 
 if something bad happens 

on an infinite run, then it 
happens already on some 
finite prefix

 Example
 Two processes cannot be 

in their critical sections 
simultaneously

 Liveness property: 
Something “good” will 
eventually happen
 Liveness property violation 

never has a finite witness 
 no matter what happens 

along a finite run, 
something good could still 
happen later

 Example
Whenever process P1 

wants to enter the critical 
section, provided process 
P2 never stays in the 
critical section forever, P1 
gets to enter eventually

For finite state systems, liveness can be converted to safety!
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Safety Property Checking

Safety property checking can be 
formulated as a reachability problem
Are bad states reachable from good states?

Sequential equivalence checking can be 
considered as one kind of safety property 
checking 
M : product machine
  : all states reachable from initial states has 

output 0
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Model Checking

Data structure evolution
State graph (late 70s-80s)

Problem size ~104 states
BDD (late 80s-90s)

Problem size ~1020 states
Critical resource: memory

SAT (late 90s-)
GRASP, SATO, chaff, berkmin
Problem size ~10100 (?) states
Critical resource: CPU time
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Remarks on Model Checking
Model checking is a very rich subject 

developed since early 1980’s

It is a variation of mathematical logic and 
is concerned with automatic temporal 
reasoning

Reference
M. Clarke, O. Grumberg, and D. Peled. 
Model Checking. MIT Press, 1999.


