Introduction to Electronic
Design Automation

Jie-Hong Roland Jiang
LR

/\\
Department of Electrical Engineering I\
National Taiwan University

Spring 2012

Physical Design I

‘ High-level synthesis‘

U

‘ Logic synthesis ‘

Physical design

Slides are by Courtesy of Prof. Y.-W. Chang

Physical Design

O Physical design converts a circuit description into a geometric
description.

The description is used to manufacture a chip.

Physical design cycle:

1. Logic partitioning

2. Floorplanning and placement

3. Routing

4. Compaction

O Others: circuit extraction, timing verification and design rule
checking

oo

VDD

b—q b-c
L
a-dL, physical
. dd poc design
circuil 1 z ———— layout

b—|§ a d—|§
ci 3 9y o 4

Vs

Physical Design Flow

Physical Design

Partitioning T = lcur 1

Compaction | ,T?‘
b >

Extraction & -
Verification A routing system

Outline Circuit Partitioning
O Partitioning O Course contents:

m Kernighang-Lin partitioning algorithm
OFloorplanning
OPlacement : ~ ok [-~ Lyt
ORouting Corsie—4
O Compaction

(4¥] graphrepresentation

Circuit Partitioning Problem Definition: Partitioning

O Objective: Partition a circuit into parts such that every
component is within a prescribed range and the # of
connections among the components is minimized.

B More constraints are possible for some applications.

O Cutset? Cut size? Size of a component?

O k-way partitioning: Given a graph G(V, E), where each
vertex v € V has a size s(v) and each edge e € E has a
weight w(e), the problem is to divide the set V into k disjoint
subsets V,, V., ..., V,, such that an objective function is
optimized, su%ject to certain constraints.

O Bounded size constraint: The size of the i-th subset is
bounded by B, (i.e., X uey; s(v} £ B;)
B |s the partition balanced?

O Min-cut cost between two subsets: .
Minimize w.0WE , where p(u) is the partition # of
node u. '

O The 2-way, balanced partitioning problem is NP-complete,
even in its simple form with identical vertex sizes and unit
edge weights.

Kernighan-Lin Algorithm

O Kernighan and Lin, “An efficient heuristic procedure for
partitioning graphs,” The Bell System Technical Journal, vol.
49, no. 2, Feb. 1970.

O An iterative, 2-way, balanced partitioning (bi-sectioning)
heuristic.

O Till the cut size keeps decreasing

B Vertex pairs which give the largest decrease or the
smallest increase in cut size are exchanged.

B These vertices are then locked (and thus are prohibited
from participating in any further exchanges).

B This process continues until all the vertices are locked.
B Find the set with the largest partial sum for swapping.
B Unlock all vertices.

K-L Algorithm: A Simple Example

O Each edge has a unit weight.

Step #H# Vertex palr Cost reduction Cut cost

0 - 0 5
1 {d, g} 3 2
2 {c, f} 1 1
3 {b, n} -2 3
4 {a, e} -2 5

O Questions: How to compute cost reduction? What pairs to
be swapped?

® Consider the change of internal & external connections.

10

Properties
I
O Two sets A and B such that |JAl =n=|B]and AnB =d.
O External costofa e A E, = 2., Cyy-
O Internal costofac A: I, = ZVEA Coy-
O D-value of a vertex a: D, = E_ - |, (cost reduction for moving a).
O Cost reduction (gain) for swapping a and b: g, = D, + D, - 2c,,.
O If a € A and b € B are interchanged, then the new D-values, D’,
are given by
D’z = Dg+4 2cga—2cgp, Vo € A— {a}
D’y = Dy+ Qcyb— 2eya, Yy € B — {b}

A B bef i
b Efore after
N) A€
E— swap Swip
£
A “Cxa +Cym +2Cxa
Gain g Dy— cap 4 Cra
Gttty Dp—cop +oxk —Cb —2Gy

Internal eost vs. External cost wpeating D—values

11

A Weighted Example

I
|abcdef
b I
ald 1 232 ¢4
db101421
o] cl2 1 0 321
g3 4 36043
e|l2 22 402
f e flet 1320

costs associcated with o

Initicd cur cost = (34244 (4+ 241)+(3+241) = 22

O Iteration 1
I,=142=3, E,=34+24+4=09, Dy=E,—I,=9-3=6
Ih=141=2;, Ey=44+241=7; Dy=Ey—Izy=7-2=5
Ie=241=3;, E.=34241=6; De=E.—I.=6-3=3
{43=443=7, E;4=34443=10, Dy=E;—I;=10—-7=3
lo=442=6;, E.=24242=6; Do=Fe—Io=6-6=0
If=3+2=5: Ef=4+1+1=6: Df:Ef—If=6—5=1

12

A Weighted Example (cont'd)

A Weighted Example (cont'd)

O Iteration 1: S
=142=3; Faq=34+24+4=9;, Da=Fa—-Ila=9-3=6 ‘ - h
rb—1+1=2, E:=4+2+1=7; D:=E§—r;=7—2=5 ‘
Ie=241=3; EBE;=34+241=6; De=FEs—Ilo=6-3=3
Ig=4+4+3=7V, Egq=34+44+3=10; Dy=E;4-I4=10-7=3
fe=4+2=5. Be=24242=6; De=Fe—Ile=6-6=0
[p=3%2=80 Ep=a4lal=6 Dp=Ep-lp=6-5=1 0 D, =D,+2¢,-26, ¥VxeA-{p}(swappandq,peA, qeB)
O g,y = D, + D, - 2¢,,. Dy = Dat20p—20,;=06+2x1-2x4=0
Sod = Da+Dg—20,4=6+3-2x3=3 Dh = Det2m—2c;=3+2x1-2x1=3
gae = 64+0-2x2=2 Dy = Dy+2cy—2c4=34+2x3-2x4=1
Gaf = BF+1-2x4=-1 Di = Do+t2c—2cp=042%x2-2x2=0
9 = B+3-2x4=0
g = 5+0-2x2=1 O g,, =D, + D - 2c,,.
9%f = E4+1-2x%1=4 {mazimum) (§1 =4) God = Dot Dy—2eg=04+1-2x3=-5
Sog = 3+3-2x3=0 Goe = Dh+DL—2c,,=0+4+0-2x2=-4
gee = 3+0-2x2=-1 Gt = Do+ D 2e4=3+1-2x3=-2
Gef = 3+1-2x1=2 oo = Dot Dh—200e=34+0—2x2=—1 {magimum) (¢ =-1)
O Swap b and f.
O Swap c and e.
13 14
. ’ . 7
A Weighted Example (cont'd) A Weighted Example (cont'd)
I I

NN
O D", =D,+2¢c,,-2¢C, VxeA-{p}
DY = Di42cc—20e=04+2%2-2%x2=0
D = Di+2c4,—25=1+2x4-2x3=3
o g,, =D" + D", - 2¢c,,
God = D”+Dd—2cad—0+3 2x3=-3(65=-3)

B Note that this step is redundant

O Summary: §1 =gy =4 g2 =9ce =1, §3=ggq = —3. (315 =0).

O Largest partial sum maxzé“:lgfg =4 (k=1)= Swap b and f.

15

]
bl
%]
™

bty e e iy |

hm R0 TR
o DO L B e O
Lo)
e B by 5 e B
bag da O o oy b =,
[NS I U O

Initial cut cost = (I+3+2)+(F+3+2)+(1+3+2) = 18 (22—4)

O Iteration 2: Repeat what we did at Iteration 1
(Initial cost = 22-4 =18).

O Summary: §1 =9 = -1, 5=g5= -3, 3=gp4 =4

O Largest partial sum = max}* 5=0 (k= 3)= Stop!

16

Kernighan-Lin Algorithm

Time Complexity

Algorithm: Kemighan-Lin(G) OLine 4: Initial computation of D: O(n2)
I t: G =(V,E},|V| = 2n. .
Onﬁgput: Ba(lance?cll bil—partition A and B with “small” cut cost. D L|ne 5: The for—loop: O(n)
i - 2
; tE,liepgallr‘::ition G inte A and B such that [Va| = |Vg|, VanV¥s =10, DThe bOdy Of the Ioop - O(n)))
3repont ~ B=Y B lines 6--7: Step i takes (n —i + 1)2 time.
5 forimiiendo [Lines 4--11: Each pass of the repeat loop:
4] Find a pair of unlecked vertices vs; € Va and vy € Vg whose O 3
exchange makes the largest decrease or smallest increase in (n) .
7 ﬁ:rﬁf:; and vy; as locked, store the gain g, and compute D Suppose the repeat |00p termlnateS aftel’ r
the new D, for all unlocked v € V;
8 Find k, such that Gy = Eleg} is maximized,; paSSGS.
if G th R -
20 Chove s gy frOM Va 10 Vig and wgas... 1o from Vi 10 Va OThe total running time: O(rn3).
lock ©», Yo .
2 uﬁﬁfék <o " ® Polynomial-time algorithm?
13 en
17 18
Extensions of K-L Algorithm Outline

O Unequal sized subsets (assume n; < n,)
1. Partition: |A| = n, and |B| = n,.
2. Add n, - n; dummy vertices to set A. Dummy vertices have no
connections to the original graph.
3. Apply the Kernighan-Lin algorithm.
4. Remove all dummy vertices.
O Unequal sized “vertices”
1. Assume that the smallest “vertex" has unit size.

2. Replace each vertex of size s with s vertices which are fully
connected with edges of infinite weight.

3. Apply the Kernighan-Lin algorithm.
O k-way partition
1. Partition the graph into k equal-sized sets.
2. Apply the Kernighan-Lin algorithm for each pair of subsets.
3. Time complexity? Can be reduced by recursive bi-partition.

19

OPartitioning
OFloorplanning
OPlacement
ORouting

O Compaction

20

Floorplanning

O Course contents
B Floorplan basics
B Normalized Polish expression for slicing flooprlans
B B*-trees for non-slicing floorplans
0 Reading
B Chapter 10

PowerPC 604 Pentium 4 21

Floorplanning

O Partitioning leads to

B Blocks with well-defined areas and shapes (rigid/hard
blocks).

B Blocks with approximate areas and no particular shapes
(flexible/soft blocks).

B A netlist specifying connections between the blocks.
O Objectives
B Find locations for all blocks.
B Consider shapes of soft block and pin locations of all the blocks.

Blocks w/ areas Block locations
(shapes) -
netlist @ f netlist
2= JlE
Partitioning Floorplanning/Placement Routing

(/Pin assignment)
22

FHarly Layout Decision Example

—
in
.
T | O
M RB RC enB [F——H——1
sell 17 enc I &5 B
enB b_out wah B—H—1
“ mi_out c_out ena [—1 R'E| l'{_(;
el RA seiz (I} 8 Dbuour [I;;r
sel2 :> ml_our[[] - -
m2_out Cont. pqy RA M2
a2 = = —
= 7 L=
selfun selfun a_our m2_our
Cont. ALU alu_our
alu_out ALU

it

v

23

Early Layout Decision Methodology

O An integrated circuit is essentially a two-dimensional
medium; taking this aspect into account in early stages of
the design helps in creating designs of good quality.

O Floorplanning gives early feedback: thinking of layout at
early stages may suggest valuable architectural
modifications; floorplanning also aids in estimating delay
due to wiring.

O Floorplanning fits very well in a top-down design strategy,
the step-wise refinement strategy also propagated in
software design.

O Floorplanning assumes, however, flexibility in layout design,
the existence of cells that can adapt their shapes and
terminal locations to the environment.

24

Floorplanning Problem

O Inputs to the floorplanning problem:
B A set of blocks, hard or soft.
B Pin locations of hard blocks.
B A netlist.
O Objectives: minimize area, reduce wirelength for

(critical) nets, maximize routability (minimize
congestion), determine shapes of soft blocks, etc.

7 5 3

6 6 .

1 3 1 2

An optimal floorplan, :
in terms of area A non—optimal floorplan -

Floorplan Design

X

o Modules: D'v

8 Area: A=xy

® Aspectratio: r <=y/x <=3

® Rotfation: D D

® Module connectiviry

a 2 b
3 NG
c 5 d
6
e f

26

Floorplanning Concepts

O Leaf cell
(block/module): a —
cell at the lowest level
of the hierarchy; it
does not contain any
other cell.

O Composite cell

(block/module): a
cell that is composed
of either leaf cells or
composite cells. The
entire IC is the

highest- level D D E D D

composite cell. 1]

composite cell

27

O A composite cell’'s subcells

are obtained by a
horizontal or vertical
bisection of the composite
cell.

Slicing floorplans can be
represented by a slicing
tree.

In a slicing tree, all cells
(except for the top-level
cell) have a parent, and all
composite cells have
children.

O A slicing floorplan is also

called a floorplan of order
2.

Slicing Floorplan + Slicing Tree

H

v[T

Jo/8u0h0

O

H: horizontal cut
V: vertical cut

different from the definitions in the

textbook!!

28

Skewed Slicing Tree

O Rectangular dissection: Subdivision of a given rectangle by a
finite # of horizontal and vertical line segments into a finite # of
non-overlapping rectangles.

O Slicing structure: a rectangular dissection that can be obtained
by repetitively subdividing rectangles horizontally or vertically.

O Slicing tree: A binary tree, where each internal node represents
a vertical cut line or horizontal cut line, and each leaf a basic
rectangle.

O Skewed slicing tree: One in which no node and its right child
are the same.

3 i \“‘:—/__v\ pd
[3 H H H
! 4 5 \-\ 2/ \J, H/ \3 2/ \1 V/ \l-l
M StV AYA
2 | 6|7 2 AT SN
6 T =T A\ /\
6745 4

S
Non-slicing floorplan ~ Slicing floorplan A slicing tree (skewed) A“a;fii‘:&f‘e%;“’e

29

Slicing Floorplan Design by
Simulated Annealing

O Related work
B \Wong & Liu, “A new algorithm for floorplan
design,” DAC-86.
OConsiders slicing floorplans.

B \Wong & Liu, “Floorplan design for rectangular
and L-shaped modules,” ICCAD'87.
OAlso considers L-shaped modules.
B Wong, Leong, Liu, Simulated Annealing for
VLSI Design, pp. 31--71, Kluwer Academic
Publishers, 1988.

30

Simulated Annealing

O Kirkpatrick, Gelatt, and Vecchi, “Optimization by simulated
annealing,” Science, May 1983.

O Greene and Supowit, “Simulated annealing without rejected
moves,” ICCD-84.

|

Cost|

-

local optima global optimum

L

States
31

Simulated Annealing Basics

0 Non-zero probability for “up-hill” moves.

O Probability depends on
1. magnitude of the “up-hill” movement
2.total search time

1 if AC <0 /=* “down — hill"” moves s/
Prob(§ — §8) = _ACQ

e 17 ITAC>0 [*“up— kil moves=/

0 AC = cost(S'") - Cost(S)
O T: Control parameter (temperature)

O Annealing schedule: T=T,, T,, T,, ..., where T; =
NTowithr < 1.

32

Basic Ingredients for Simulated

Generic Simulated Annealing Algorithm Annealing
1 begin O Analogy:
2 Get an initial solution S; = —— -
3 Get an initial temperature T > O; Physical system Optl.mlzat.lon problem
4 while not yet “frozen” do state configuration
5 forl<i<Pdo energy cost function
6 Pick a random neighbor S' of S; ground state optimal solution
7 A < cost(S") - cost(S); quenching iterative improvement
/> downhill move */ careful annealing | simulated annealing
8 '/f* uApﬁiﬁ :nhofl'; ,S,C;_ S A [0 Basic Ingredients for Simulated Annealing:
9 if A> 0 then S « S’ with probability o7 ; = Solution space
10 T « rT; /* reduce temperature */ ® Neighborhood structure
11 return S B Cost function
12 end B Annealing schedule
33 34
Solution Representation of Slicing
Floorplan Redundant Representations
O An expression E =e; e,... e,,;, wheree; € {1, 2, ...,n,H, V}, 1<i< 1% v
2n-1, is a Polish expression of length 2n-1 iff i T T
1. every operand j, 1 <j < n, appears exactly once in E; 3 1 v v 4
2. (the balloting property) for every subexpression E; =e; ... e, 1 <i< H/ \4 1/ \H
2n-1, # operands > # operators. 1 4 N\ I\
16H35V2HV74HYV 23 2 3
f 2 E = I23H4VV E= [23HV4Y
#ofoperands =4 ... =7 non—skewed! skewed!
#of operators =2 ... =5 y v

O Polish expression <> Postorder traversal.
O ijH: rectangle i on bottom of j; ijV: rectangle i on the left of j.

.\‘.
T
7‘ 3 4 o 7\
A A4 ER|
. i 7’(s
6 AT
2 16
1 3 E = 16H2VISVHI4HYV
E= 164257553344 %

Pasiorder traversal of a iree!

35

Non—skewed - \H 7~ \V
cases A A A A

....... HH e YV L

O Question: How to eliminate ambiguous representation?

36

Normalized Polish Expression

O A Polish expression E = e; e, ... e,,; is called
normalized iff E has no consecutive operators of
the same type (H or V), i.e. skewed.

O Given a normalized Polish expression, we can
construct a unique rectangular slicing structure.

v
7 5 i
4 N /\
vV Vv 3 4
6 VANVAN
) 1/ \6
1 3 E = I6H2V7SVH34HY

A normalized Polish expression

37

Neighborhood Structure

O Chain: HVHVH ... or VHVHV .
16H 3 5|V|2\H V7 4ﬁj

‘\\/

chain

O Adjacent: 1 and 6 are adjacent operands; 2 and 7 are
adjacent operands; 5 and V are adjacent operand and
operator.

O 3 types of moves:

B M1 (Operand Swap): Swap two adjacent operands.
B M2 (Chain Invert): Complement some chain (V = H, H= V).

B M3 (Operator/Operand Swap): Swap two adjacent operand
and operator.

38

Effects of Perturbation

I
|]_3__'__7‘
4 | !
. 5 5
A | 4
1 4 4
| i | —H —-
1 2 3| 1 2 2 1 vE] 1 3
12V4H3V 12V3HAV I2H3H4V 12H34HY

O Question: The balloting property holds during the moves?
® M1 and M2 moves are OK.
B Check the M3 moves! Reject “illegal” M3 moves.
O Check M3 moves: Assume that the M3 move swaps the
operand e; with the operator e;,,, 1 <i < k-1. Then, the
swap will not violate the balloting property iff 2N, ; < i.

B N,: # of operators in the Polish expressionE =e; e, ... g, 1<
k<2n-1

39

Cost Function

O¢=A+1W.
B A: area of the smallest rectangle
B W: overall wiring length
H) : user- speufled parameter

4 |
=1 L5 2] s
1 3 | 3 “
4
. —_— —
1 2) 1 ‘ 2 M3 1 1
1 2V4H3V 12VIHGV T2V 2R3V

o w= Zuc, d;;-

H c;: # of connections between blocks i and j.
u dij: center-to-center distance between basic rectangles i and j.

[N

-

-
-
L

N
oy

!

40

Area Computation for Hard Blocks

0 Allow rotation t@wn 2 12
W EICE
SN e

Incremental Computation of Cost
Function

O Each move leads to only a minor modification of
the Polish expression.

O At most two paths of the slicing tree need to be

updated for each move.
|.ci:1\. / .tl)l[.} 1 3 4
l.ﬁnl{.m, E L
/V\-_\ /V
mwaxfui, . VL & H& L \—[&
"ID. E]\M e AN et L/H\ A S
2.0 AN T AN

u[l:l H u.i'+u2 L |_ L L I [Lo 1 [

O Wiring cost? ”“”‘f v W) E=12H34V56VHY E =12H35V46VHV
B Center-to-center interconnection length
a1 42

Incremental Computation of Cost
Function (cont'd) Annealing Schedule

\L\%\\ /H._%_-
(931 ml [A
/ I T \v I M2 /H\ LV/V\{&
NS S
g (N . s e L
L L e
E =12H34V50VHV E=12H34V56HVH
/V\\\%\— /VL\H
L L
e NS — 0 NN
L 4
N S 5“\ ¢ [
E =12H34V50VHV ﬁ |i

E =123H4V56VHYV 43

O Initial solution: 12V3V ... nV.

1 2 3 n

OT,=rTy,i=1,2,3,..; r=0.85.
O At each temperature, try kn moves (k = 5-10).
0 Terminate the annealing process if

B # of accepted moves < 5%,

B temperature is low enough, or

B run out of time.

a4

Wong-Liu Algorithm

Shape Curve

I I
'1“5“;5 (Prer i) O Flexible cells imply that cells can have different aspect
:2)’ E < 12VEVf1I_V JRY: /*Nllnltla'bll_lgolunoE IT/ 0: N = Kk ratios.

t 5 avg =
drepeat 0 e L uPe m O The relation between the width x and the height y is: xy
S MT « uphill « reject « O; = A, or y =A/x. The shape function is a hyperbola.

& Cllectiove(M): O Very thin cells are not interesting and often not feasible
o Mhi Select two adjacent operands ¢ and ej; NE ¢ Swap(E, e, e); to design. The shape function is a combination of a
1 M2 r?;neéfpz/f[’szér: engih chain « Complement(hyperbola and two straight lines.
t -y — —
13 v Isee?eoct(t\/\ll)gea)djaocent operand e; and operator e;,1; u ASpeCt ratio: r <= y/X <=Ss.
14 if (ei.1 #e€+1) and (2 Ny <) ‘then done « TRUE;
13’ Select two adjacent operator e; and operand e, ,; y = SX
14 if (6% €i,0) then done « TRUE; A
15 NE « Swap(E, €, €.1); T T
16 MT « MT+1; AcOSt < cost(NE) cost(E);
¥ — Kcost legal lecal
17 if (Acost <0)or (Random< ¢ 7) Yy shapes ega
18 then y Shapes
19 if (Acost > 0) then uphill « uphill + 1;
20 E « NE; _
21 if cost(E) < cost(best) then best « E; y=1rmx
22 else reject « reject + 1; -
23 until (uphill > N) or (MT > 2N); -
55 until (rejeet/MT = 0.5) or (T = ¢) or OutOfTime N
unti . € u I 5
26 end ! X X —>
45 46
b ’
Shape Curve (cont'd) Shape Curve (cont'd)
I I

O Leaf cells are built from discrete transistors: it is
not realistic to assume that the shape function
follows the hyperbola continuously.

O In an extreme case, a cell is rigid: it can only be
rotated and mirrored during floorplanning or
placement.

1
X —>

The shape function of a 2 x 4 inset cell.

47

O In general, a piecewise linear function can be
used to approximate any shape function.

0 The points where the function changes its
direction, are called the corner (break) points of
the piecewise linear function.

48

Addition for Vertical Abutment

O Composition by vertical abutment = the addition
of shape functions.

1]
Is X 5 I {5 % 7! +
h
ha(w) = hy(W) + hy(w)

Al

&)}
R A S

3Ix9

49

Deriving Shapes of Children

O A choice for the minimal shape of composite cell
fixes the shapes of the shapes of its children cells.

|

minimal area
of parent

consequences for
children’s shapes

50

Sizing Algorithm for Slicing Floorplans

O The shape functions of all leaf cells are given as
piecewise linear functions.

O Traverse the slicing tree in order to compute the
shape functions of all composite cells (bottom-up
composition).

0 Choose the desired shape of the top-level cell; as
the shape function is piecewise linear, only the
break points of the function need to be evaluated,
when looking for the minimal area.

O Propagate the consequences of the choice down
to the leaf cells (top-down propagation).

O The sizing algorithm runs in polynomial time for
slicing floorplans

B NP-complete for non-slicing floorplans

51

Feasible Implementations

O Shape curves correspond to different kinds of constraints
where the shaded areas are feasible regions.

feasible
W W,
LA
i h
wl] L"
X
y ¥ =81 ¥ =58x , y=sr y=gx y=L
// s / / / s
E P v=rx || £
/Bourd _ - a
Sy / = hx / - I y=2x
hs " .-~ : A 7 e T
£ - 7
/ W, - ; - | i//// -
x Lk \ =
W, w,] ‘ b i o M
. . = | >= e _— xiz=a, yi>=b xiyi»>=
xiz=ayi>=8 xiz=gyiz=b xiz=ag yi»=£b or

ar
xiz=b yiz=a
(a)rigid, fixed (b) rigid, free (c) flexible, fixed (d) flexible, free
orientation orientation orientation orientation 52

xiyi>=A xiz=bh yr=gxiyr=A

Wheel or Spiral Floorplan

Order-5 Floorplan Examples

This floorplan is not slicing! A

Wheel is the smallest non- B C

slicing floorplans. B 5 5 5 2

Limiting floorplans to those D 4 1 1

that have the slicing F G 3 4 3

property is reasonable: it H

certainly facilitates I 1l L

floorplanning algorithms.

Taking the shape of a

wheel floorplan and its

mirror image as the basis

of operators leads to

hierarchical descriptions of

order 5.

53 54

General Floorplan Representation: B*-Tree: Compacted Floorplan
Polar Graphs Representation

O vertex: channel segment
O edge: cell/block/module

hlvl \74 \76 \’7
A
fiy B | C
ol E
G hy
hy F hg
H h
1 L 6
I K
h
\’2 \’3 \’5 7

55

O Chang et al., “B*-tree: A new representation for non-slicing
floorplans,” DAC 2000.
B Compact modules to left and bottom
B Construct an ordered binary tree (B*-tree)
O Left child: the lowest, adjacent block on the right (x; = X;+w;)
O Right child: the first block above, with the same x-coordinate (x; =

;)

6 [—~©]
| 5 —1.O
° M = C%}@ =

A non-slicing floorplan Compact to left and down

56

B*-tree Packing

Contour Data Structure

O x-coordinates can be determined by the tree structure ?|
B Left child: the lowest, adjacent block on the right (x; = x;+w,) (,
B Right child: the first block above, with the same x-coordinate 2 2
(Xj = Xi) 1 1 1
O Y-coordinates?
B Horizontal contour: Use a doubly linked list to record the ©. 0 ©. 0 ©. 0 (0.9 (9. 0)
current maximum y-coordinate for each x-range ?9267(?5025)(0'6)’ <(39=8;(C(J,1052, 8()0,%5(%;5), ?3:1250'?32'6()0'(192%’) ©8)
B Reduce the complexity of computing a y-coordinate to NP = o e e oy (1B Oy (oo Oh>
amortized O(1) time (2,0)> (,0)> (15.,8), (15,0), («°,0)>
©, 1P ©
6 5 5
5 3|4 3|46, 8 3[4 |8
3 |
4 S e ©PEs © PG)
X3 = X 1 2 1 2 1
1 2
(0, 0) (9. 0) (0, 0) 9, 0) (0, 0) (9. 0)
o C = <(0,0), (0,12), C = <(0,0), (0,12), _
R R R X T S wre R PR L e
57 .6, (9,6), (9.8), 12,13), (12,8), (15,8), :15), (12,13), (12,8), gg
(15.8). (15.0). (<.0)> (15.00. (c0.0V> (15.8), (15,0), (.,0)>
B*-tree Perturbation Simulated Annealing Using B*-tree

0 Opl: rotate a macro
O Op2: move a node to another place
O Op3: swap two nodes

6 6
Op1l
3|4 > 4 S
3
1 2 1 2
[6
6
5 4
8] 4
3 5
1 2 2 1
59

0 The cost function is
based on problem
requirements

Initialize B*-tree
and Temperature

Perturb B*-tree

Should we
accept?

Recover last
B*-tree

Cooling
enough?

60

Strengths of B*-tree

Weaknesses of B*-tree

O Binary tree based, efficient and easy [0 Representation may
O Flexible to deal with various placement constraints by change after packing @ 3
augmenting t_he B*-tree data s_tl_'ucture (e.g.,_ preplaced, O Only a partially
symmetry, alignment, bus position) and rectilinear modules - @ @ —=
O Transformation between a tree and its placement takes topological . / —1 2
on|y linear time I’epresentatlon; |eSS 1
[0 Operate on only one B*-tree (vs. two O-trees) flexible than a fully 4 |
[0 Can evaluate area cost incrementally topological
O Smaller solution space: only O(n! 4"/n-5) combinations representation
O Directly corresponds to hierarchical and multilevel B B*-tree can represent 3
frameworks for large-scale floorplan designs only compacted 2 . oo
O Can be extended to 3D floorplanning & related applications placement B-tree?:
T| 4
61 62
Outline Placement

OPartitioning
OFloorplanning
OPlacement
ORouting

O Compaction

63

0 Course contents:
B Placement metrics
B Constructive placement: cluster growth, min cut

B |terative placement: force-directed method, simulated
annealing

O Reading
B Chapter 11

o o] [o] [o] o
componemsg:lz' IE' . . ./ slots

luyout surfuce
4 1 64

Placement

O Placement is the problem of automatically assigning
correct positions on the chip to predesigned cells, such that
some cost function is optimized.

O Inputs: A set of fixed cells/modules, a netlist.

O Goal: Find the best position for each cell/module on the
chip according to appropriate cost functions.

B Considerations: routability/channel density, wirelength,
cut size, performance, thermal issues, 1/0 pads.

Blocks w/ areas Block locations
(shapes) .
netlst f netlist
—_— —_—
> =
Partitioning Floorplanning/Placement Routing

(/Pin assigniment)
65

Placement Objectives and Constraints

O What does a placement algorithm try to optimize?

B total area

m total wire length

B number of horizontal/vertical wire segments crossing a line
O Constraints:

B placement should be routable (no cell overlaps; no density
overflow).

B timing constraints are met (some wires should always be
shorter than a given length).

AR AR AT
11
—
Density = 2 (2 tracks reguired)

eafeafeagen

Shorter wirelength, 3 tracks reqguired.

wirelength = {0 wirelength = 12

66

VLSI Placement: Building Blocks

O Different design styles create different placement
problems.

B E.g., building-block, standard-cell, gate-array placement
OBuilding block: The cells to be placed have arbitrary

_ ——
00

]
-

67

VLSI Placement: Standard Cells

O Standard cells are designed in such a way that power and
clock connections run horizontally through the cell and
other 1/0 leaves the cell from the top or bottom sides.

O The cells are placed in rows.
O Sometimes feedthrough cells are added to ease wiring.

T 1T T T T T1 T T 1
L feedthrough 1 1 1 v |
RN IR R N L1 1272] B
¥ CLK L
T T T T T T T T | 0 GND = | =
CELL 1 CELL 2
Ll 11 N N

68

Relation with Routing

Cldeally, placement and routing should be
performed simultaneously as they depend
on each other’s results. This is, however,
too complicated.

Consequences of Fabrication Method

O Full-custom fabrication (building block):
B Free selection of aspect ratio (quotient of height and width).
B Height of wiring channels can be adapted to necessity.
O Semi-custom fabrication (gate array, standard cell):
B Placement has to deal with fixed carrier dimensions.
B Placement should be able to deal with fixed channel capacities.

T | B P&R: placement and routing
B> AN OIn practice placement is done prior to
"= morm o w routing. The placement algorithm
ettt | B) TR TS| estimates the wire length of a net using
Tl EA [some metric.
l . - . | |]
69 70

Wirelength Estimation Wirelength Estimation (cont'd)

O Semi-perimeter method: Half the perimeter of the bounding e LT [FI*F*I*J;ITJ
rectangle that encloses all the pins of the net to be connected. Crirr I [l T [
Most widely used approximation! T rrriri— i :I_ﬁ

O Steiner-tree approximation: Computationally expensive. |_’E ’EEEFIE,EI |_|@_,EZE_’E’_I

O Minimum spanning tree: Good approximation to Steiner trees. l—,— ,—l I—P,—,—I l—,——,——l—i,—H

O Squared Euclidean distance: Squares of all pairwise terminal LT, !—“J!;Frfﬁ I % 3 F!_‘
distances in a net using a quadratic cost function |_| ’[F |E|[|DJ |_I :4 _|[le

LL L1 it I T T+ 1T 1

320 2l = 5t + 0y =)

i=1j=1

O Complete graph: Since #edges in a complete graph is (@j ,

wirelength =~ %Z(i,j) < netdist(i, J).

71

semi—perimeter fen = 11

complete gruph len * 2/m = 175

Steiner tree len = 2

|1l
SRR

LR

IREEEEEEN

,_
|_
|_
|
|
|
|
|
|

Spunning tree fen = {3

72

Placement Algorithms

O The placement problem is NP-complete
O Popular placement algorithms:

B Constructive algorithms: once the position of a cell is fixed,
it is not modified anymore.

OCluster growth, min cut, etc.

B Iterative algorithms: intermediate placements are modified
in an attempt to improve the cost function.

O Force-directed method, etc

B Nondeterministic approaches: simulated annealing, genetic
algorithm, etc.

O Most approaches combine multiple elements:

B Constructive algorithms are used to obtain an initial
placement.

B The initial placement is followed by an iterative improvement
phase.

B The results can further be improved by simulated annealing.

73

Bottom-Up Placement: Clustering

O Starts with a single cell and finds more
cells that share nets with it.

@ @

D0.
x
CIEREAC
X

H @
lw) 0l

9.0-

.

X
80 o°C
X
o

74

Placement by Cluster Growth

O Greedy method: Selects unplaced components and places
them in available slots.

B SELECT: Choose the unplaced component that is most
strongly connected to all of the placed components (or
most strongly connected to any single placed
component).

B PLACE: Place the selected component at a slot such that
a certain “cost” of the partial placement is minimized.

BEE . -
co poe:<: . . ./.s'lot.s‘

9 [] [] [] [] []
layout surfuce 75

Cluster Growth Example

O # of other terminals connected: ¢,=3, ¢,=1, c,=1, ¢4 =1,
c.=4, ¢=3, and c¢,;=3 = e has the most connectivity.

O Place e in the center, slot 4. a, b, g are connected to e, and
= Place a next to e (say, slot 3). Continue until all cells are
placed.

O Further improve the placement by swapping the gates.
2 3 4 5 3] 7

S HEHDEER
o>

density =4
wire length = 16
_— longest path = &

ARRNREARE

density = 2
—_— —_— wire length=8
longest path =2

76

Top-down Placement: Min Cut

O Starts with the whole circuit and ends with small
circuits.

O Recursive bipartitioning of a circuit (e.g., K&L)
leads to a min-cut placement.

77

Min-Cut Placement

O Breuer, “A class of min-cut placement algorithms,” DAC, 1977.

O Quadrature: suitable for circuits with high density in the
center.

O Bisection: good for standard-cell placement.

O Slice/Bisection: good for cells with high interconnection on
the periphery.

LRI NV ST .

da 2 4 6uSuth 4 6035864 100 QectOB& 100 95 1061

n2 ek aw ok
- l!! ci

Cladd= @ nik

nﬂ D - .__ C2
thoDmk {43) (k=2prk

bisection slice/bisection 78

Algorithm for Min-Cut Placement

Algorithm: Min_Cut_Placement(N, n, C)
/* N: the layout surface */

/* n - # of cells to be placed */

/* n0: # of cells in a slot */

/* C: the connectivity matrix */

(n £ n0) PlaceCells(N, n, C)

(N1, N2) « CutSurface(N);

(n1, C1), (n2, C2) « Partition(n, C);
Min_Cut_Placement(N1, nl1, C1);
Min_Cut_Placement(N2, n2, C2);

oO~NOUTDA WN P

79

Quadrature Placement Example

O Apply the K-L heuristic to partition + Quadrature
Placement: Cost C; = 4, C,,= C,x = 2, etc.

-G

pmtias| IO Lo et
|]
> -

2,457 |84213,14

c2 C2

13,69 014516 J[>0-L Y i L o2
0 Bans

C4b
Ci R4

o S e L

Cla (&) C3b 80

Min-Cut Placement with Terminal
Propagation

Terminal Propagation

O Dunlop & Kernighan, “A procedure for placement of O We should use the fact that s is in L,!
standard-cell VLSI circuits,” IEEE TCAD, Jan. 1985. conter ey cell
O Drawback of the original min-cut placement: Does not \s L s lp
consider the positions of terminal pins that enter a region. L ‘—‘Tf\.\ £l L3 &1
B What happens if we swap {1, 3, 6, 9} and {2, 4, 5, 7}
in the previous example? r g E \\ w2
prefer to have them in R1 Lower cost bigher cost
P will stay in RI for the rest of partitioning!
g S \' O When not to use p to bias partitioning? Net s has cells in
Li .\.//o L1 \.//. RI many groups: mm;:g::rrf;:gmear
\. R P pZT
P I
l _______ Bl 378 h w3 . | k
12 L2 R2 - . |
‘ p—O
\ 3
on't use p to bias the |
81 cotution b ebther direction: Use p! G 82
General Procedure for Iterative
Terminal Propagation Example Improvement

O Partitioning must be done breadth-first, not
depth-first.

Cl Cl Cl cl
¥y
C) & ® Lt r[}»—ﬁ_@ e A{‘(b a1
L R L R | - ‘
2
© @ | @ = @ @ e gg &
unbiased partition with terminal without terinirul

af R prapagation propugution o3

Algorithm: Iterative_ Improvement()

s « initial_configuration();
C « cost(s);
(not stop())
S” « perturb(s);
C” « cost(s”);
(accept(c, c?))
S « S7;

© 0 ~NO O &~ WN P

84

Placement by the Force-Directed
Method

O Hanan & Kurtzberg, “Placement techniques,” in Design
Automation of Digital Systems, Breuer, Ed, 1972.

O Quinn, Jr. & Breuer, “A force directed component placement
procedure for printed circuit boards,” IEEE Trans. Circuits and
Systems, June 1979.

O Reduce the placement problem to solving a set of simultaneous
linear equations to determine equilibrium locations for cells.

O Analogy to Hooke's law: F = kd, F: force, k: spring constant, d:
distance.

O Goal: Map cells to the layout surface.

o " 0 0
resulting " ER
force e e e e
* * 0 0 00
ey e s 00

layout surface

Finding the Zero-Force Target Location

O Cell i connects to several cells j's at distances d;i's by wires of weights
w;'s. Total force: F; = Xyw;d; N
O The zero-force target location (& , ¥;) can be determined by equating

the x- and y-components of the forces to zero:

s
S wijlej-dy=0 = @=M
/ ¥y R
O In the example, J Lo i 150
E‘”ij'(!ﬁ—ﬁ?ﬁ:g - fi= 7
’ Ty
8x0410x24+3x0+3x2
g = DT AT 108
8+10+3+3
¢ | e
O v ?» out
(0.1)
o+ -
OO Gni
fLO) (20) o

Force-Directed Placement

O Can be constructive or iterative:
B Start with an initial placement.

M Select a “most profitable” cell p (e.g.,
maximum F, critical cells) and place it in its
zero-force location.

B “Fix” placement if the zero-location has been
occupied by another cell q.
OPopular options to fix:

= Ripple move: place p in the occupied location,
compute a new zero-force location for q, ...

= Chain move: place p in the occupied location, move q

to an adjacent location, ...
= Move p to a free location close to g.

Force-Directed Placement

I
Algorithm: Force-Directed_Placement
1 begin
2 Compute the connectivity for each cell;
3 Sort the cells in decreasing order of their connectivities into list L;
4 while (TterationCount < IterationLimit) do
5 Seed «+ next maodule from L;
6 Declare the position of the seed vacant;
7 while (EndRipple = FALSE) do
8 Compute target location of the seed,
9 case the target location
10 VACANT:
11 Maove seed to the target location and lack;
12 EndHRipple «— TRUE,; AbortCount + O;
13 SAME AS PRESENT LOCATION:
14 EndHRipple «— TRUE,; AbortCount + O;
15 LOCKED:
16 Move selected cell to the nearest vacant location;
17 EndRipple «— TRUE,; AbortCount + AbortCount +1;
18 if (AbortCount > AbortLimit) then
19 Unlock all cell locations;
19 TterationCount «— lerationCount + 1,
20 OCCUPIED AND NCT LOCKED:
21 Select cell as the target location for next maove;
22 Move seed cell to target location and lock the target location,
23 EndRipple + FALSE, AbortCount < 0;
26 end

88

Placement by Simulated Annealing

O Sechen and Sangiovanni-Vincentelli, “The TimberWolf
placement and routing package,” IEEE J. Solid-State
Circuits, Feb. 1985; “TimberWolf 3.2: A new standard cell
placement and global routing package,” DAC-86.

O TimberWolf: Stage 1

B Modules are moved between different rows as well as
within the same row.

B Module overlaps are allowed.

B When the temperature is reached below a certain value,
stage 2 begins.

O TimberWolf: Stage 2
B Remove overlaps.

B Annealing process continues, but only interchanges
adjacent modules within the same row.

89

Solution Space & Neighborhood
Structure

O Solution Space: All possible arrangements of
the modules into rows, possibly with overlaps.
OO0 Neighborhood Structure: 3 types of moves
B M;: Displace a module to a new location.
B M,: Interchange two modules.
B M;: Change the orientation of a module.

L B (-1 8 | # ‘\E [& 1 -TH 1 [# (- [# |
NN

e

(| |'H| (I - (I [o []
[f 1 CHE]d ZI EDNE LA T 1
[4 3

overlap
M1 M2 M3

90

Neighborhood Structure

TimberWolf first tries to select a move between M; and M,:
Prob(M,) = 0.8, Prob(M,) = 0.2.
If a move of type M, is chosen and it is rejected, then a move of
type M, for the same module will be chosen with probability 0.1.
Restrictions: (1) what row for a module can be displaced? (2)
what pairs of modules can be interchanged?
Key: Range Limiter
B At the beginning, (W, Hy) is big enough to contain the whole chip.
B Window size shrinks as temperature decreases. Height & width «
log(T).
B Stage 2 begins when window size is so small that no inter-row module
interchanges are possible.

O O o O

91

Cost Function

O Cost function: C=C, + C, + Cj,.
O C,: total estimated wirelength.
BC =2 nes(ywW;+ B h)
B o, B are horizontal and vertical weights, respectively. (=1,
£ =1 = half perimeter of the bounding box of Net i.)
B Critical nets: Increase both o; and ;.

B If vertical wirings are “cheaper” than horizontal wirings, use
smaller vertical weights: g < o,.

O C,: penalty function for module overlaps.
B C, =7 2X,;,;0%.,y: penalty weight.
[| OHd r}\mount of overlaps in the x-dimension between modules i
a .
O C;: penalty function that controls the row length.
B C, =382 _rowslls - D/, 8 : penalty weight.
B D.: desired row length.
B L : sum of the widths of the modules in row r.

92

Annealing Schedule

Outline

OT,=r T, k=1,2,3, .. O Partitioning
Or, increases from 0.8 to max value 0.94 :
O Floorplanning
and then decreases to 0.8.
C0At each temperature, a total # of nP [0 Placement
attempts is made.
On: # of modules; P: user specified O Routing
constant B Global rounting
) B B Detailed routing
COTermination: T < 0.1.
O Compaction
93 94
Routing Routing
laceine nt
[ICourse contents: d
¥ Global routing ‘ij‘* D‘f i
. . + Generates a "loose” route for each net. L Y
- Detall rOUtIng * Assigns a list of routing regions to each net without I:” ><jl .y
H specifying the actual layout of wires. AL !
OReading Eﬁ/\ i
obal routi ‘
u Chapter 12 global routing Global routing
111 L TIT
IMLI| 1] [N &
s':';':s 1 L= sﬂ:a"'
HH L E J E ; z :,;'_—: HH [T é 5% E ;.f_.a. detailed routing
BEECi b RRER e i g o of ch it a
] LEEELE 1 HEEELE) 1
a "LEE:E&[1 - J”ZEEE:] |
T 8:;:5'T H ‘ i ; BT_' H compaction Detailed routing
Filling Retrace 95 9%

Routing Constraints

O 100% routing completion + area minimization, under a set
of constraints:
B Placement constraint: usually based on fixed placement
B Number of routing layers
B Geometrical constraints: must satisfy design rules
[|

Timing constraints (performance-driven routing): must satisfy
delay constraints

Crosstalk?
Process variations?

s

&

Two—luyer routing Geometrical constraint 97

Classification of Routing

graph search

—{glubal

general
purpose

TOUTETS

—tnver—thexell

power &
ground 98

Maze Router: Lee Algorithm

O Lee, “An algorithm for path connection and its
application,” IRE Trans. Electronic Computer, EC-
10, 1961.

O Discussion mainly on single-layer routing
O Strengths

B Guarantee to find connection between 2 terminals
if it exists.

B Guarantee minimum path.
0 Weaknesses
B Requires large memory for dense layout.
B Slow.
O Applications: global routing, detailed routing

99

Lee Algorithm

O Find a path from S to T by “wave propagation”.

8 8
8[7[8 878
8]7]6|7]8 87678
HEBEHEB HEBGEEE
7[6]5]4|5e[7]8 T7|6/5|45/6|7|8
B7e[54[345678 871654325678 |
B[7|6[5]4[3]|2[3]3|5]s8]7|8 57554323456|'-Bfa
B|7[6[54]3[Z[1 6|78 B[7[6[5]4]3[Z[1 6|7[8
6 5[4[3[Z]T[g] 8 65] 8
1 [6]5[4[3[Z[1 [551|321
L] LIFGEEE | E(7(6/ 543
O 8[76[5|4|5 O 8[76[5]4|5
] B7|9|° T] AEEE
8|7|6]7 8|7]6|7
8[7[8] | 8[7[8] |
B] B |]
Filling Retrace

O Time & space complexity for an M X N grid: O(MN) (huge!)

100

Reducing Memory Requirement

O Akers's Observations (1967)
B Adjacent labels for k are either k-1 or k+1.
B Want a labeling scheme such that each label has its preceding label
different from its succeeding label.
O Way 1: coding sequence 1, 2, 3, 1, 2, 3, ...; states: 1, 2, 3, empty,
blocked (3 bits required)
O Way 2: coding sequence 1, 1, 2, 2, 1, 1, 2, 2, ...; states: 1, 2, empty,
blocked (need only 2 bits)

1T 11
1T 2 11 z
[T 2[1]2 O 2|22
HEIERE Z[Z[122
1[3[2[3[1]Z 2|1 1[1]2]2
1]3[2[1[2[3[1]2 z|11]2[1[1]2|2
Z[Taz[1[a[1[z[3[1]Z 2|22 2[2[1[1]2[2
z EHEEENBBEE Z|2[1[[2[z[1[2[2[1]1[2|Z
HUEENEEL p HENOEALL 122 |
EIHEEELE 2 11 [2[2[T[] s 2
i 3213z] T 2[2[1
2[1[3[2[1[3 HEUEBEEB O
O 2[1]3[2[1]2 N 2[2[1[1]2]2 HEE
1 Z1 (3|2 1 HERIL T 1|
Z[7[3 Z| 2|1
Z[1[2] | 2[z]2
2[|1 [z 11
Sequence: 1,2,3,1, 2,3, ... Sequence: 1,1,2,2,1,1,2,2, .. 101

Reducing Running Time

O Starting point selection: Choose the point farthest from the
center of the grid as the starting point.

O Double fan-out: Propagate waves from both the source and
the target cells.

O Framing: Search inside a rectangle area 10--20% larger
than the bounding box containing the source and target.
B Need to enlarge the rectangle and redo if the search fails.

starting point selection double fan—out framing

.S T
I
| +% 1l
.
- |

102

Hadlock's Algorithm

O Hadlock, “A shortest path algorithm for grid graphs,”
Networks, 1977.

O Uses detour number (instead of labeling wavefront in
Lee's router)

B Detour number, d(P): # of grid cells directed away
from its target on path P.

B MD(S, T): the Manhattan distance between S and T.

m Path length of P, I(P): I(P) = MD(S, T) + 2 d(P).

B MD(S, T) fixed! = Minimize d(P) to find the shortest
path.

B For any cell labeled i, label its adjacent unblocked cells
away from T i+1; label i otherwise.

O Time and space complexities: O(MN), but
substantially reduces the # of searched cells.

O Finds the shortest path between S and T.

103

Hadlock's Algorithm (cont'd)

O d(P): # of grid cells directed away from its target on path P.
O MD(S, T): the Manhattan distance between S and T.

O Path length of P, I(P): I(P) = MD(S, T) + 2d(P).

O MD(S, T) fixed! = Minimize d(P) to find the shortest path.

O For any cell labeled i, label its adjacent unblocked cells away
from T i+1; label i otherwise.

AAFAEEEE
4[333] [4[4[4[4
321212 (3313
BIZ[I[I[I] [A[4]3
T st
4]3[2]2] Ll
4[3[3]
41414 104

Soukup's Algorithm

O Soukup, “Fast maze router,” DAC-78.
O Combined breadth-first and depth-first search.

B Depth-first (line) search is first directed toward target T until
an obstacle or T is reached.

B Breadth-first (Lee-type) search is used to “bubble” around an
obstacle if an obstacle Is reached.

O Time and space complexities: O(MN), but 10~50 times faster
than Lee's algorithm.

O Find a path between S and T, but may not be the shortest!

| 9| 8| & @4
20 [
e " DFs
CRANE o BFS
ac |1 obstacle

105

Mikami-Tabuchi's Algorithm

O Mikami & Tabuchi, “A computer program for optimal routing
of printed circuit connectors,” IFIP, H47, 1968.
O Every grid point is an escape point.

111461 223
mlerseclion 1"{\111L
5 |

N

2
|

oY

s source pin

l T target pin
i [obstacle
i

—_— e

11101

106

Hightower's Algorithm

O Hightower, “A solution to line-routing problem on the
continuous plane,” DAC-69.

O A single escape point on each line segment.

O If a line parallels to the blocked cells, the escape point is
placed just past the endpoint of the segment.

o 2

— |

) — 5 —]
i T S SOANGS pin
o

£ 1 T targetpin
intersection point DM

107

Global Routing Graph

COEach cell is represented by a vertex.

COTwo vertices are joined by an edge if the
corresponding cells are adjacent to each
other.

o e e el =
SR EE
oot ol o
Partitioned - Global Routing
L ut Resource Modeling Graph

108

Global-Routing Problem

O Given a netlist N={N,, N,, ..., N, }, a routing
graph G=(V,E), find a Steiner tree T, for each net
N;, 1 <i<n, such that U(g;)) < c(ej), V e € E and
2 L(T;) is minimized, where

B c(e)): capacity of edge g

B x;=1 if g; is in T;; x;=0 otherwise

B U(e) = 2 x;: # of wires that pass through the channel
corresponding to edge g

B | (T)): total wirelength of Steiner tree T,

O For high performance, the maximum wirelength
max; L(T;) is minimized (or the longest path
between two points in T; is minimized).

109

Classification of Global-Routing
Algorithms

0 Sequential approach:

B Select a net order and route nets sequentially in the
order

B Earlier routed nets might block the routing of
subsequent nets

B Routing quality heavily depends on net ordering
B Strategy: Heuristic net ordering + rip-up and rerouting
0 Concurrent approach:

m All nets are considered simultaneously
OE.g., 0-1 integer linear programming (0-1 ILP)

110

Net Ordering

O Net ordering greatly affects routing solutions.
O In the example, we should route net b before net a.

b
-

1=

=] p|

rottte ret d before net b

route net b before net u 111

Net Ordering (cont’d)

C0Order the nets in the ascending order of
the # of pins within their bounding boxes.

C1Order the nets in the ascending
(descending) order of their lengths if
routability (timing) is the most critical
metric.

O Order the nets based on their timing
criticality.

112

Rip-Up and Re-routing

O Rip-up and re-routing is required if a global or
detailed router fails in routing all nets.

O Approaches: the manual approach? the automatic
procedure?

0 Two steps in rip-up and re-routing

1. ldentify bottleneck regions, rip off some already routed
nets.

2.Route the blocked connections, and re-route the ripped-
up connections.

[0 Repeat the above steps until all connections are
routed or a time limit is exceeded.

113

Top-down Hierarchical Global Routing

[0 Recursively divides routing regions into
successively smaller super cells, and nets at
each hierarchical level are routed sequentially or
concurrently.

ol o o
o) = o = o
e o @
lovel 3 level 2
74
ol o
a
I ® I ~ o pin
ol d
level D lewvel 1

114

Bottom-up Hierarchical Global Routing

0 At each hierarchical level, routing is restrained
within each super cell individually.

O When the routing at the current level is finished,
every four super cells are merged to form a new
larger super cell at the next higher level.

@) 0 ?
© (e o)
9 Sl oy I-oo =
oc e o0
o cl’--o ?-O.:-l
level D level 1
opin

© merging point

115

Hybrid Hierarchical Global Routing

O (1) neighboring propagation, (2) preference
partitioning, and (3) bounded routing

Map to the upper
leveland finda ,*

routing path

:J""" A T Ay
. L-g;.ﬁﬂ:—::-&:-’ v thelower level to

' form prefarred regions
®)

[] preferred regions
H obstacle

O pin

— routing path

116

The Routing-Tree Problem

O Problem: Given a set of pins of a net, interconnect the pins by a
“routing tree.”

i D

gare array standard cell butlding black

O Minimum Rectilinear Steiner Tree (MRST) Problem: Given n
points in the plane, find a minimum-length tree of rectilinear
edges which connects the points.

O MRST(P) = MST(P U S), where P and S are the sets of original
points and Steiner points, respectively.

Steiner
P points
s
[u—
minimum spanning tree MRST

MKT 117

Theoretical Results for the MRST
Problem

O Hanan’s Thm: There exists an MRST with all Steiner points (set
S) chosen from the intersection points of horizontal and vertical
lines drawn points of P.

B Hanan, “On Steiner's problem with rectilinear distance,” SIAM
J. Applied Math., 1966. Cost(MST(P)) 3
<

O Hwang’s Theorem: For any point set P, Cost(MRST(F)) ~ 2

B Hwang, “On Steiner minimal tree with rectilinear distance,”
SIAM J. Applied Math., 1976.

O Best existing approximation algorithm: Performance bound 61/48

by Foessmeier et al.
o MRST >—%—0—%—4—}—o—%—4
T

—®* 171

L] 4

1 | | e & e a

+’ _I_ J‘ - _\ _\ MST &—a—0 9@

Lol ¢ | _ - ° - .
Hunan grid Cost{iMST)/Cost{MRST) —> 3/2

118

Coping with the MRST Problem

O Ho, Vijayan, Wong, “New algorithms for the rectilinear
Steiner problem,”

1.Construct an MRST from an MST.

2.Each edge is straight or L-shaped.

3. Maximize overlaps by dynamic programming.
O About 8% smaller than Cost(MST).

MST Two L—shaped MRST of the given MST

T TT‘T

Two possible L—shaped layouts per edge

119

Iterated 1-Steiner Heuristic for MRST

O Kahng & Robins, “A new class of Steiner tree heuristics with good
performance: the iterated 1-Steiner approach,” ICCAD-90.

Algorithm: Iterated_1-Steiner(P)
P: set of n points.
1 begin
2S5« G
/*H(P U S): set of Hanan points */
/* AMST(A, B) = Cost(MST(A)) - Cost(MST(A U B)) */
3 while (Cand « {x e HPUS)|AMST(PUS, {x})>0}#@)do
4 Find x e C and which maximizes AMST(P U S), {x});
5 SeSu{xh
6 Remove points in S which have degree <2 in MST(P U S);
7 return MST(P U S);
8 end

TR S
= J = E>°_!' Remmr_e;-io

Outline

O Partitioning
O Floorplanning
O Placement

O Routing
B Global rounting
B Detailed routing

O Compaction

121

Channel Routing

O In earlier process technologies, channel routing
was pervasively used since most wires were
routed in the free space (i.e., routing channel)
between a pair of logic blocks (cell rows)

block

Channel routing

122

Routing Region Decomposition

CThere are often various ways to
decompose a routing region.

C0The order of routing regions significantly
affects the channel-routing process.

channel 1 chammel 1 chame] 2
[channel 3|

chanmel 2]

123

Routing Models

O Grid-based model:
B A grid is super-imposed on the routing region.
B Wires follow paths along the grid lines.
B Pitch: distance between two gridded lines
O Gridless model:
B Any model that does not follow this “gridded” approach.

|
LLL
o pin
] mu! it mvia
H- | — metal 1
§ i == metal2
Cam

|

124

Models for Multi-Layer Routing

O Unreserved layer model: Any net segment is
allowed to be placed in any layer.

[0 Reserved layer model: Certain type of
segments are restricted to particular layer(s).
B Two-layer: HV (Horizontal-Vertical), VH
B Three-layer: HVH, VHV

-=track 2 = track 3
_;\ track 1 track 2
- track 1 track 1

unreserved layer model HVH model VHVY model

3 types aof 3—layer models

125

Terminology for Channel Routing

O Local density at
column i, d(i): total T © pin
of nets that Mm- = o ll B via
crosses column i. l = ' = track
. = metal [
O Cha_nnel density: = meinl?
maximum local Tramk Branch
density —h
B # of horizontal -
tracks required > —- | - e pin
channel density. u — Il — ﬂ o = mehal |
2 2 1 = matal 2
column: f 2 3 4 5 & 7 8§
denmity: 1 2 2 2 2 2 2 I

126

Channel Routing Problem

O Assignments of horizontal segments of nets to tracks.

O Assignments of vertical segments to connect the following:
B horizontal segments of the same net in different tracks, and
B terminals of the net to horizontal segments of the net.

O Horizontal and vertical constraints must not be violated

B Horizontal constraints between two nets: the horizontal span
of two nets overlaps each other.

B Vertical constraints between two nets: there exists a column
such that the terminal on top of the column belongs to one net
and the terminal on bottom of the column belongs to another
net.

O Objective: Channel height is minimized (i.e., channel area
is minimized).

127

Horizontal Constraint Graph (HCG)

O HCG G = (V, E) is undirected graph where
B V={v] v represents a net n;}
® E = {(v;, vyl a horizontal constraint exists between n;
and n;}.

O For graph G: vertices < nets; edge (i, j) < net i overlaps
net j.

1 5 2 0 2 i 1 0 3 4 0 5
- —0—0—90—90—0 00—

————h———b—0—0——0—
3 0 1 2 5 3 4 0 0 2 3 2

A routing problem and its HCG. 3

128

Vertical Constraint Graph (VCG)

2-Layer Channel Routing:
Basic Left-Edge Algorithm

O VCG G = (V, E) is directed graph where O Hashimoto & Stevens, “Wire routing by optimizing channel
_ ’ assignment within large apertures,” DAC-71.
m V={v| v represents a net n;} O No vertical constraint.
B E= {(v,, v)| a vertical constraint exists between O HV-layer model is used.
n; and n;}. O Doglegs are not allowed.
O For graph G: vertices < nets; edge i »j < net i O Treat each net as an interval.
must be above net j. O Intervals are sorted according to their left-end x-
coordinates.
5 1 O Intervals (nets) are routed one-by-one according to the
15 2 02 110 34 0 order.
————o——90—9—0—0—90—0 O For a net, tracks are scanned from top to bottom, and the
. first track that can accommodate the net is assigned to the
net.
3 01 2 5 3 4 0 0 2 3 2 O Optimality: produces a routing solution with the minimum
of tracks (if no vertical constraint).
A routing problem and its VCG. 3
129 130
Basic Left-Edge Algorithm Basic Left-Edge Example
Algorithm: Basic_Left-Edge(U, track[j]) ou=d{l, = [1 3] =[2,6],1;=[4,8].1,=1[5,
U: set of unassigned intervals (nets) 11, ..., In; 10], Ig g E? 11T I = [9 2].
1j=[sj, €ej]: interval j with left-end x-coordinate sj and right-end ej; O t=1:

track[j]: track to which net j is assigned.

1 begin

22U« {I2,12, .., In};

3te 0;

4 while (U= @) do

5 tet+1;

6 watermark « O;

7 while (there is an Ij e U s.t. sj > watermark) do

8 Pick the interval 1j € U with sj > watermark,
nearest watermark;

9 track[j] « t;

10 watermark « ej;

11 U« U-{lj};

12 end

131

B Route I,: watermark = 3;
B Route I; : watermark = 8
B Route I4: watermark = 12;
Ot=2:
B Route I, : watermark = 6;
B Route I : watermark = 11;
O t=3: Route |,

column: 1 2 3 4 5 6 7 8 9 10 11 12
I 0 0 04 2 0 3 0 4 0 6
L i 1
0 21 30035060 50
density: '] 2 2 3 3 3 3 3 3 2 1

132

Basic Left-Edge Algorithm

O If there is no vertical 0 2 1 0 2
constraint, the basic _‘@_ ‘F‘
[

left-edge algorithm is]
optimal. 1 00 3 3 1 00 3 3
. i result from basic optimal routing: 2 tracks
O If there is any vertical ‘ofi;edse algorithm
constraint, the
algorithm no longer L2351 45 g0
guarantees optimal |- I ©
solution. ©
el S
2 5 4 0 3 0 4 0

133

Constrained Left-Edge Algorithm

Algorithm: Constrained_Left-Edge(U, track[j])

U: set of unassigned intervals (nets) I, ..., I,;

I;i=[s;j, g]: interval j with left-end x-coordinate s; and right-end e;;
track[j]: track to which net j is assigned.

1 begin
P UREE o PU PR s
3te 0;
4 while (U # &) do
5 t«t+1;
6 watermark « O;
7 while (there is an unconstrained I; € U s.t. s; > watermark) do
8 Pick the interval I; e U that is unconstrained,

with s; > watermark, nearest watermark;
9 track[j] « t;
10 watermark « ej;
11 UeU-{I};
12 end

134

Constrained Left-Edge Example

o1, =11,3],1,=1[1,5] I;=1[6, 8], I, =[10, 11], Is= [2,
6], I; = [7, 9].

O Track 1: Route I, (cannot route l3); Route lg; Route 1,.

O Track 2: Route l,; 1 1 1 2 2 5 6 3 0 4 0

O Track 3: Route I.. T 17
O Track 4: Route I;.

&

track 2 track 3 track 4
135

Dogleg Channel Router

O Deutch, “A dogleg channel router,” 13rd DAC, 1976.

O Drawback of Left-Edge: cannot handle the cases with
constraint cycles. L2

ey

201 2 0 1

O Drawback of Left-Edge: the entire net is on a single track.
B Doglegs are used to place parts of a net on different tracks to
minimize channel height.
B Might incur penalty for additional vias.
0 1 2 20 3 0 4

save 2 tracks, with via penalty

0 1 2 2 0 3 0 4

12 6 3 3 4 4 0 120 3 3 4 4 0

no dogleg with dogleg 136

Dogleg Channel Router

Dogleg Channel Routing Example

O Each multi-pin net is broken into a set of 2-pin nets. Net Range
O Modified Left-Edge Algorithm is applied to each subnet. 2 (4]
1, [2,5]
colum: | 2 3 4 567 8 colmm] 23 456 738 i 24]
1 41 53 I, 4§11} 5 3 n Bl
L, Ty— 3 16.8]
2 5 73] b} 1, and 3 are assigred (o} £ and 5 are assigned
4 3 to the 1% track to the 2 frack
S {a} Nets ordered by columm: 1 2 3 4 5 6 T 8
74 2 313 24 2 3053 left-end coordinates L4 s 3
A routing Instance Multl-pin net decompositin]“ 5
m 6 1#track ==== 2 - =
“ 208 rack - =
Q "0 3dtrack =~
vCcG {d) 7, and 2 are assigned D - -
& O "o the 3 wack : > ol
137 f&] The: Mnal rowdeg resul with doglegs 138
Modern Routing Considerations Outline

O Signal/power Integrity
B Capacitive crosstalk
B Inductive crosstalk
B IR drop

O Manufacturability
B Process variation
B Optical proximity correction (OPC)
B Chemical mechanical polishing (CMP)
B Phase-Shift Mask (PSM)
[Reliability
B Double via insertion
B Process antenna effect
B Electromigration (EM)
B Electrostatic discharge (ESD)

139

OPartitioning
OFloorplanning
OPlacement
ORouting

O Compaction

140

Layout Compaction

C0Course contents
M Design rules
® Symbolic layout
B Constraint-graph compaction

141

Design Rules

O Design rules: restrictions O Patterns and design rules
on the mask patterns to are often expressed in A
increase the probability of rules.
successful fabrication. 0 Most common design

rules:

= T B minimum-width rules

e e e e It et o o (valid for a mask pattern

R e R i L -t of a specific layer): (a).

e (AN ot e 1| ® minimum-separation rules
J L

T
N R (between mask patterns of
T = 5 R T 1 (d the same layer or different

.. - '

+‘_:_+_;_;__ - () ke 1_| I Ia)_/e'rs). (b), (c), (d).

T R I B Ll B minimum-overlap rules
il || Lt (mask patterns in different

[
FTa—rT—rT 1T 1T | A B
P T SN T T S TN T N N N SO SO S T T |ayers): (e)

142

Vad

In Out

p/n diffusion
%# polysilicon
Il contact cut
E metal

\"rss

Symbolic layout

Geometric layout

143

Symbolic Layout

O Geometric (mask) layout: coordinates of the layout
patterns (rectangles) are absolute (or in multiples of X).
O Symbolic (topological) layout: only relations between layout
elements (below, left to, etc) are known.
B Symbols are used to represent elements located in several
layers, e.g. transistors, contact cuts.
B The length, width or layer of a wire or other layout element
might be left unspecified.
B Mask layers not directly related to the functionality of the
circuit do not need to be specified, e.g. n-well, p-well.
O The symbolic layout can work with a technology file that
contains all design rule information for the target
technology to produce the geometric layout.

144

Compaction and Its Applications

O A compaction program or compactor generates
layout at the mask level. It attempts to make the
layout as dense as possible.

O Applications of compaction:

B Area minimization: remove redundant space in
layout at the mask level.

B Layout compilation: generate mask-level layout
from symbolic layout.

B Redesign: automatically remove design-rule
violations.

B Rescaling: convert mask-level layout from one
technology to another.

145

Aspects of Compaction

O Dimension:

B 1-dimensional (1D) compaction: layout
elements only are moved or shrunk in one
dimension (x or y direction).

Ols often performed first in the x-dimension and then
in the y-dimension (or vice versa).

m 2-dimensional (2D) compaction: layout
elements are moved and shrunk
simultaneously in two dimensions.

O Complexity:
B 1D compaction can be done in polynomial
time.

B 2D compaction is NP-hard.

146

1D Compaction: X Followed By Y

O Each square is 2 A * 2 A, minimum separation is
1.

O Initially, the layout is 11 A * 11 A.

O After compacting along the x direction, then the y
direction, we have the layout size of 8 L * 11 A.

147

1D Compaction: Y Followed By X

0 Each square is 2 A * 2 X, minimum separation is
1.

O Initially, the layout is 11 A * 11 A.

O After compacting along the y direction, then the x
direction, we have the layout size of 11 A * 8 A.

2D Compaction

Inequalities for Distance Constraints

O Each square is 2 A * 2 1, minimum separation is 1 A. OO0 Minimum-distance O For example, if the
O Initially, the layout is 11 A * 11 X. design rules can be minimum width is a
[0 After 2D compaction, the layout size is only 8 1 * 8 1. expressed as and the minimum
inequalities. separation is b, then
Xz3—X,2Db
—» -—
> —
R E)
> -—
- -
O Since 2D compaction is NP-complete, most compactors are - -—
based on repeated 1D compaction.
X5 Xg X3 Xy
149 150
The Constraint Graph Maximum-Distance Constraints
O The inequalities can be used to construct a constraint graph O Sometimes the distance of layout elements is bounded by a

G(V, E):
B There is a vertex v; for each variable x;.
B For each inequality x; — x; > d;; there is an edge (v;, v;) with
weight dj; .
B There is an extra source vertex, v,; it is located at x = 0 ; all
other vertices are at its right.
O If all the inequalities express minimum-distance
constraints, the graph is acyclic (DAG).
O The longest path in a constraint graph determines the
layout dimension.

-B- ” - | - |
= :
constraint graph

maximum, e.g., when the user wants a maximum wire
width, maintains a wire connecting to a via, etc.
B A maximum distance constraint gives an inequality of the
form: x; — x; < ¢;or X; — X2 -¢j
B Consequence for the constraint graph: backward edge
O (v;, v;) with weight d; = -c;; the graph is not acyclic anymore.
O The longest path in a constraint graph determines the
layout dimension.

X)X, C

- (] - min, distance
> h - max. distance

X 152

Longest-Paths in Cyclic Graphs

O Constraint-graph compaction with maximum-distance
constraints requires solving the longest-path problem in
cyclic graphs.

O Two cases are distinguished:

B There are positive cycles: No bounded solution for
longest paths. (The inequality constraints are
conflicting.) We shall detect the cycles.

B All cycles are negative: Polynomial-time algorithms
exist.

+2

153

Longest and Shortest Paths

O Longest paths become shortest paths and vice
versa when edge weights are multiplied by —1.

[Situation in DAGs: both the longest and shortest
path problems can be solved in linear time.
O Situation in cyclic directed graphs:

B All weights are positive: shortest-path problem in P
(Dijkstra), no feasible solution for the longest-path
problem.

B All weights are negative: longest-path problem in P
(Dijkstra), no feasible solution for the shortest-path
problem.

B No positive cycles: longest-path problem is in P.
B No negative cycles: shortest-path problem is in P.

154

Remarks on Constraint-Graph
Compaction

O Noncritical layout elements: Every element outside the
critical paths has freedom on its best position == may use
this freedom to optimize some cost function.

O Automatic jog insertion: The quality of the layout can
further be improved by automatic jog insertion.

O Hierarchy: A method to reduce complexity is hierarchical
compaction, e.g., consider cells only.

155

Constraint Generation

O The set of constraints should be irredundant and
generated efficiently.
O An edge (v;, v)) is redundant if edges (v;, v,) and (v, Vv;)
exist and w((v;, v;)) < w((v;, Vi) + w((Vvy, Vv)))
B The minimum-distance constraints for (A, B) and (B, C)
make that for (A, C) redundant.

B C
- -
A
— ES
> <

O Doenhardt and Lengauer have proposed a method for
irredundant constraint generation with complexity O(n log

n).

156

