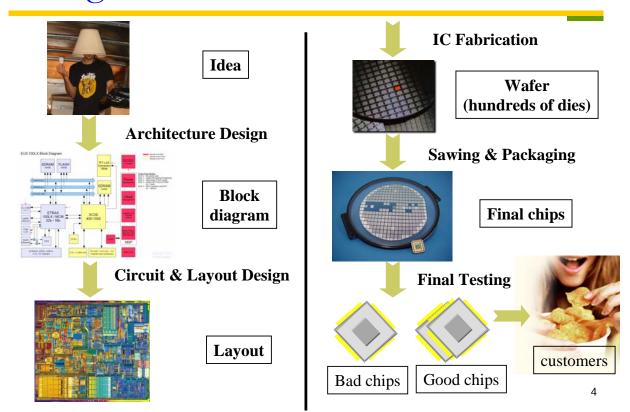
Introduction to Electronic Design Automation

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Spring 2012

1


Testing

Testing

- Recap
 - Design verification
 - Is what I specified really what I wanted?
 - Property checking
 - Implementation verification
 - Is what I implemented really what I specified?
 - Equivalence checking
 - Manufacture verification
 - Is what I manufactured really what I implemented?
 - Testing; post manufacture verification
 - Quality control
 - Distinguish between good and bad chips

3

Design Flow

Manufacturing Defects

- Processing faults
 - missing contact windows
 - parasitic transistors
 - oxide breakdown
- Material defects
 - bulk defects (cracks, crystal imperfections)
 - surface impurities
- □ Time-dependent failures
 - dielectric breakdown
 - electro-migration
- □ Packaging failures
 - contact degradation
 - seal leaks

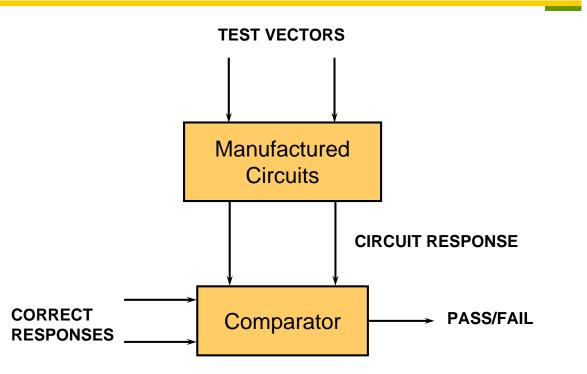
5

Faults, Errors and Failures

- Faults
 - A physical defect within a circuit or a system
 - May or may not cause a system failure
- Errors
 - Manifestation of a fault that results in incorrect circuit (system) outputs or states
 - Caused by faults
- Failures
 - Deviation of a circuit or system from its specified behavior
 - Fail to do what is supposed to do
 - Caused by errors
- □ Faults cause errors; errors cause failures

Testing and Diagnosis

Testing

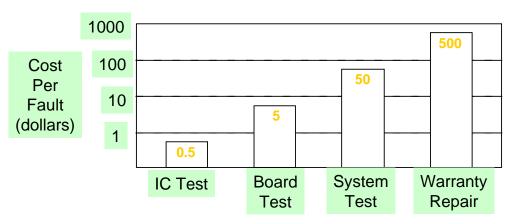

Exercise a system and analyze the response to ensure whether it behaves correctly after manufacturing

Diagnosis

Locate the causes of misbehavior after the incorrectness is detected

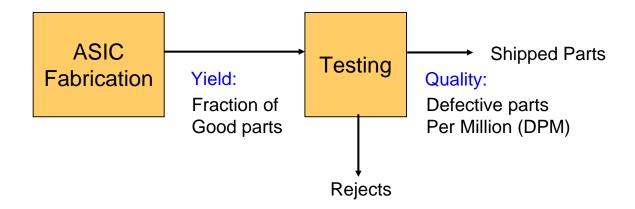
7

Scenario of Manufacturing Test


Test Systems

9

Purpose of Testing


- Verify manufactured circuits
 - Improve system reliability
 - Reduce repair costs
 - Repair cost goes up by an order of magnitude each step away from the fab. line

B. Davis, "The Economics of Automatic Testing" McGraw-Hill 1982

Testing and Quality

Quality of shipped part can be expressed as a function of the yield Y and test (fault) coverage T.

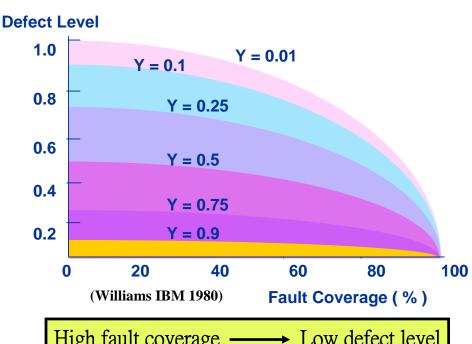
11

Fault Coverage

- Fault coverage T
 - Measure of the ability of a test set to detect a given set of faults that may occur on the Design Under Test (DUT)

Defect Level

□ A defect level is the fraction of the shipped parts that are defective


$$DL = 1 - Y^{(1-T)}$$

Y: yield

T: fault coverage

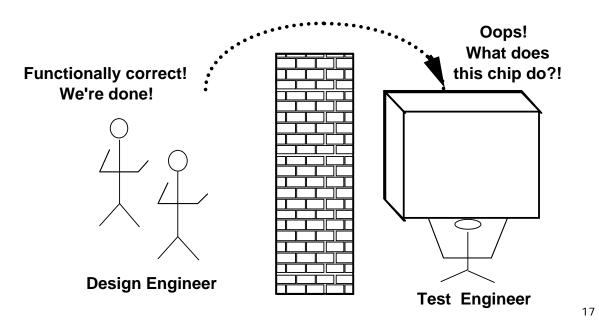
13

Defect Level vs. Fault Coverage

High fault coverage — Low defect level

DPM vs. Yield and Coverage

Yield	Fault Coverage	DPM
50%	90%	67,000
75%	90%	28,000
90%	90%	10,000
95%	90%	5,000
99%	90%	1,000
90%	90%	10,000
90%	95%	5,000
90%	99%	1,000
90%	99.9%	100


15

Why Testing Is Difficult?

- □ Test time explodes exponentially in exhaustive testing of VLSI
 - For a combinational circuit with 50 inputs, need $2^{50} = 1.126 \times 10^{15}$ test patterns.
 - Assume one test per 10⁻⁷sec, it takes 1.125x10⁸sec = 3.57years.
 - Test generation for sequential circuits are even more difficult due to the lack of controllability and observability at flip-flops (latches)
- Functional testing
 - may NOT be able to detect the physical faults

The Infamous Design/Test Wall

30-years of experience proves that test after design does not work!

Outline

- Fault Modeling
- **□** Fault Simulation
- ■Automatic Test Pattern Generation
- Design for Testability

Functional vs. Structural Testing

- I/O functional testing is inadequate for manufacturing
 - Need fault models
- Exhaustive testing is daunting
 - Need abstraction and smart algorithms
 - Structural testing is more effective

19

Why Fault Model?

- □ Fault model identifies target faults
 - Model faults that are most likely to occur
- □ Fault model limits the scope of test generation
 - Create tests only for the modeled faults
- □ Fault model makes testing effective
 - Fault coverage can be computed for specific test patterns to measure its effectiveness
- □ Fault model makes analysis possible
 - Associate specific defects with specific test patterns

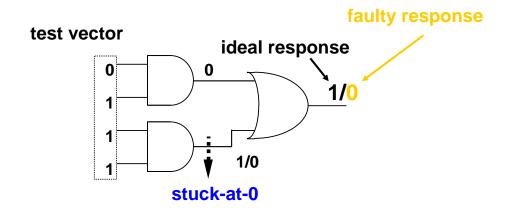
Fault Modeling vs. Physical Defects

- □ Fault modeling
 - Model the effects of physical defects on the logic function and timing
- ■Physical defects
 - Silicon defects
 - Photolithographic defects
 - Mask contamination
 - Process variation
 - Defective oxides

21

Fault Modeling vs. Physical Defects (cont'd)

- Electrical effects
 - Shorts (bridging faults)
 - Opens
 - Transistor stuck-on/open
 - Resistive shorts/opens
 - Change in threshold voltages
- Logical effects
 - Logical stuck-at-0/1
 - Slower transition (delay faults)
 - AND-bridging, OR-bridging


Typical Fault Types

- ■Stuck-at faults
- ■Bridging faults
- □ Transistor stuck-on/open faults
- Delay faults
- □IDDQ faults
- ■State transition faults (for FSM)
- Memory faults
- ■PLA faults

23

Single Stuck-At Fault

- Assumptions:
 - Only one wire is faulty
 - Fault can be at an input or output of a gate
 - Faulty wire permanently sticks at 0 or 1

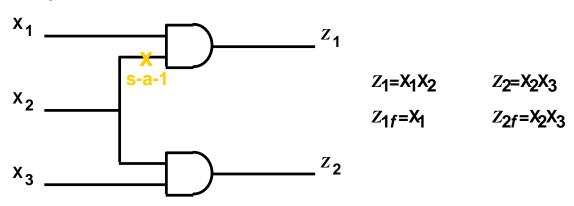
Multiple Stuck-At Faults

- Several stuck-at faults occur at the same time
 - Common in high density circuits
- ☐ For a circuit with k lines
 - There are 2k single stuck-at faults
 - There are 3^k-1 multiple stuck-at faults
 - ■A line could be stuck-at-0, stuck-at-1, or fault-free
 - □One out of 3^k resulting circuits is fault-free

25

Why Single Stuck-At Fault Model?

- Complexity is greatly reduced
 - Many different physical defects may be modeled by the same logical single stuck-at fault
- Stuck-at fault is technology independent
 - Can be applied to TTL, ECL, CMOS, BiCMOS etc.
- Design style independent
 - Gate array, standard cell, custom design
- Detection capability of un-modeled defects
 - Empirically, many un-modeled defects can also be detected accidentally under the single stuck-at fault model
- Cover a large percentage of multiple stuck-at faults

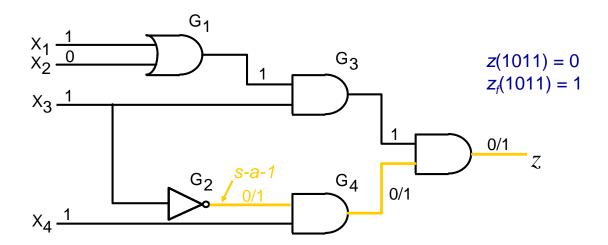

Why Logical Fault Modeling?

- ☐ Fault analysis on logic rather than physical problem
 - Complexity is reduced
- □ Technology independent
 - Same fault model is applicable to many technologies
 - Testing and diagnosis methods remain valid despite changes in technology
- Wide applications
 - The derived tests may be used for physical faults whose effect on circuit behavior is not completely understood or too complex to be analyzed
- Popularity
 - Stuck-at fault is the most popular logical fault model

27

Definition of Fault Detection

- □ A test (vector) t detects a fault f iff t detects f (i.e. $z(t) \neq z_f(t)$)
- Example


Test $(x_{1},x_{2},x_{3}) = (100)$ detects f because $z_{1}(100)=0$ and $z_{1f}(100)=1$

Fault Detection Requirement

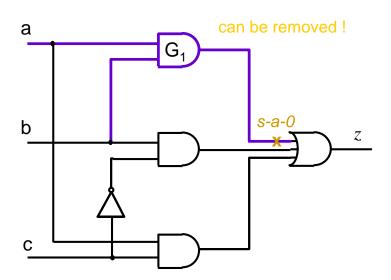
- □ A test t that detects a fault f
 - **activates** f (or generate a fault effect) by creating different v and v_f values at the site of the fault
 - **propagates** the error to a primary output z by making all the wires along at least one path between the fault site and z have different v and v_f values
- Sensitized wire
 - A wire whose value in response to the test changes in the presence of the fault f is said to be sensitized by the test in the faulty circuit
- Sensitized path
 - A path composed of sensitized wires is called a sensitized path

29

Fault Sensitization

Input vector 1011 detects the fault f (G_2 stuck-at-1) v/v_f : v = signal value in the fault free circuit

 v_f = signal value in the faulty circuit

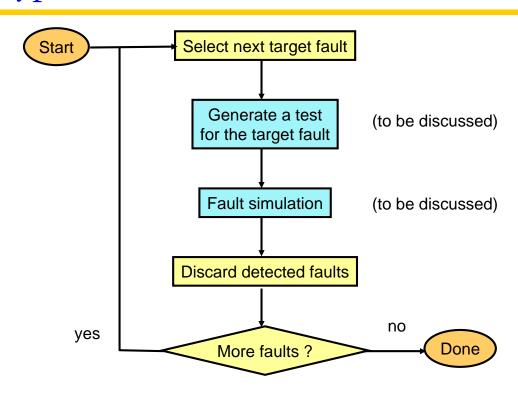

Detectability

- □ A fault f is said to be detectable
 - if there exists a test t that detects f
 - otherwise, f is an undetectable fault
- □ For an undetectable fault f
 - no test can simultaneously activate f and create a sensitized path to some primary output

31

Undetectable Fault

- □ The stuck-at-0 fault at G₁ output is undetectable
 - Undetectable faults do not change the function of the circuit
 - The related circuit can be deleted to simplify the circuit



Test Set

- Complete detection test set
 - A set of tests that detects any detectable fault in a designated set of faults
- Quality of a test set
 - is measured by fault coverage
- □ Fault coverage
 - Fraction of the faults detected by a test set
 - can be determined by fault simulation
 - >95% is typically required under the single stuck-at fault model
 - >99.9% required in the ICs manufactured by IBM

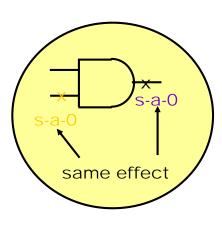
33

Typical Test Generation Flow

Fault Equivalence

Distinguishing test

■ A test t distinguishes faults α and β if $z_{\alpha}(t) \neq z_{\beta}(t)$ for some PO function z


■ Equivalent faults

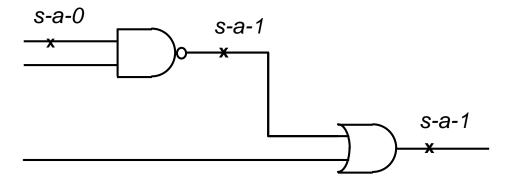
- Two faults α and β are said to be equivalent in a circuit iff the function under α is equal to the function under β for every input assignment (sequence) of the circuit.
- That is, no test can distinguish α and β , i.e., test-set(α) = test-set(β)

35

Fault Equivalence

- AND gate:
 - all s-a-0 faults are equivalent
- OR gate:
 - all *s-a-1* faults are equivalent
- NAND gate:
 - all the input s-a-0 faults and the output sa-1 faults are equivalent
- NOR gate:
 - all input s-a-1 faults and the output s-a-0 faults are equivalent
- Inverter:
 - input *s-a-1* and output *s-a-0* are equivalent
 - input s-a-0 and output s-a-1 are equivalent

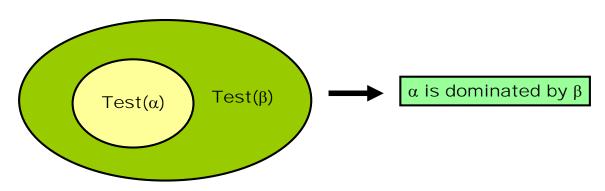
Equivalence Fault Collapsing


 $\square n+2$, instead of 2(n+1), single stuck-at faults need to be considered for n-input AND (or OR) gates

37

Equivalent Fault Group

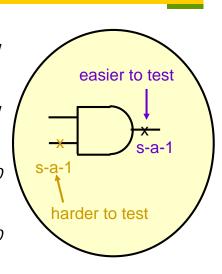
- In a combinational circuit
 - Many faults may form an equivalence group
 - These equivalent faults can be found in a reversed topological order from POs to PIs



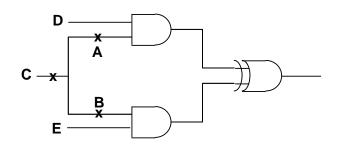
Three faults shown are equivalent!

Fault Dominance

Dominance relation


- A fault β is said to *dominate* another fault α in an irredundant circuit iff every test (sequence) for α is also a test (sequence) for β , i.e., test-set(α) \subseteq test-set(β)
- No need to consider fault β for fault detection

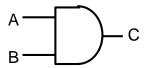
39


Fault Dominance

- AND gate
 - Output *s-a-1* dominates any input *s-a-1*
- NAND gate
 - Output *s-a-0* dominates any input *s-a-1*
- OR gate
 - Output *s-a-0* dominates any input *s-a-0*
- NOR gate
 - Output *s-a-1* dominates any input *s-a-0*
- Dominance fault collapsing
 - Reducing the set of faults to be analyzed based on the dominance relation

Stem vs. Branch Faults

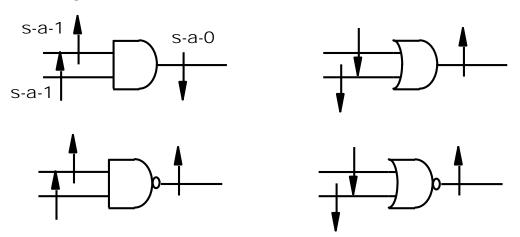
- Detect A s-a-1: $z(t) \oplus z_f(t) = (CD \oplus CE) \oplus (D \oplus CE)$ $= D \oplus CD \Rightarrow (C=0,D=1)$
- Detect C s-a-1: $z(t) \oplus z_f(t) = (CD \oplus CE) \oplus (D \oplus E)$ $\Rightarrow (C=0,D=1,E=0) \text{ or}$ (C=0,D=0,E=1)
- □ Hence, C s-a-1 does not dominate A s-a-1
- In general, there might be no equivalence or dominance relations between stem and branch faults



C: stem of a multiple fanout A, B: branches

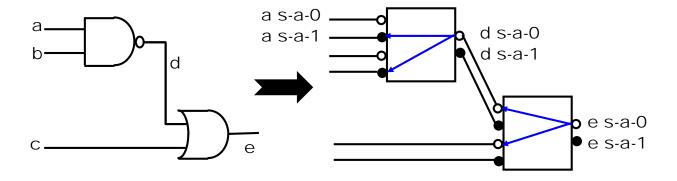
41

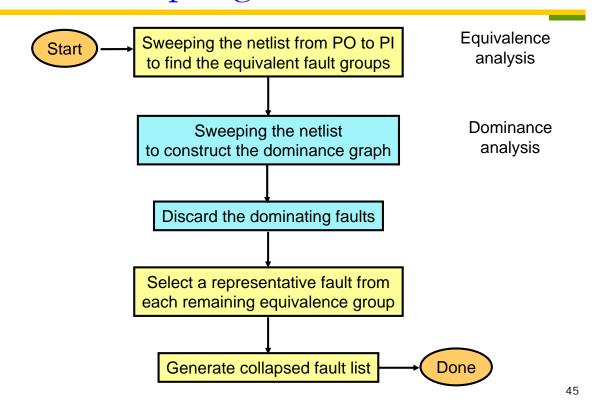
Analysis of a Single Gate


- Fault Equivalence Class
 - (A s-a-0, B s-a-0, C s-a-0)
- □ Fault Dominance Relations
 - (C s-a-1 > A s-a-1) and (C s-a-1 > B s-a-1)
- Faults that can be ignored:
 - A s-a-0, B s-a-0, and C sa-1

AB	C	A	В	С	A	В	С
		sa1	sa1	sa1	sa0	sa0	sa0
00	0			1			
01	0	1		1			
10	0		1	1			
11	1				0	0	0

Fault Collapsing

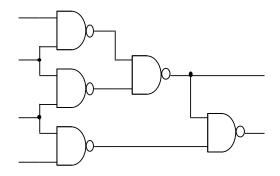

- Collapse faults by fault equivalence and dominance
 - For an n-input gate, we only need to consider n+1 faults in test generation


43

Dominance Graph

- Rule
 - When fault α dominates fault β , then an arrow is pointing from α to β
- Application
 - Find out the transitive dominance relations among faults

Fault Collapsing Flow

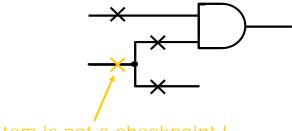


Prime Fault

- $\square \alpha$ is a prime fault if every fault that is dominated by α is also equivalent to α
- □ Representative Set of Prime Fault (RSPF)
 - A set that consists of exactly one prime fault from each equivalence class of prime faults
 - True minimal RSPF is difficult to find

Why Fault Collapsing?

- Save memory and CPU time
- Ease testing generation and fault simulation
- Exercise

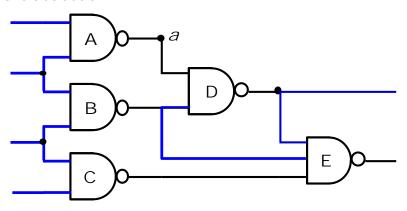


* 30 total faults \rightarrow 12 prime faults

47

Checkpoint Theorem

- Checkpoints for test generation
 - A test set detects every fault on the primary inputs and fanout branches is complete
 - □ I.e., this test set detects all other faults, too
 - Therefore, primary inputs and fanout branches form a sufficient set of checkpoints in test generation
 - ☐ In fanout-free combinational circuits (i.e., every gate has only one fanout), primary inputs are the checkpoints

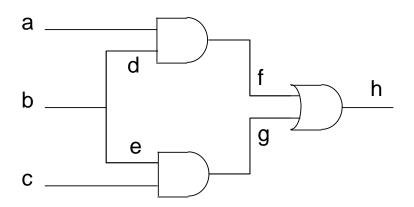


Stem is not a checkpoint!

Why Inputs + Branches Are Enough?

Example

- Checkpoints are marked in blue
- Sweeping the circuit from PI to PO to examine every gate, e.g., based on an order of (A->B->C->D->E)
- For each gate, output faults are detected if every input fault is detected



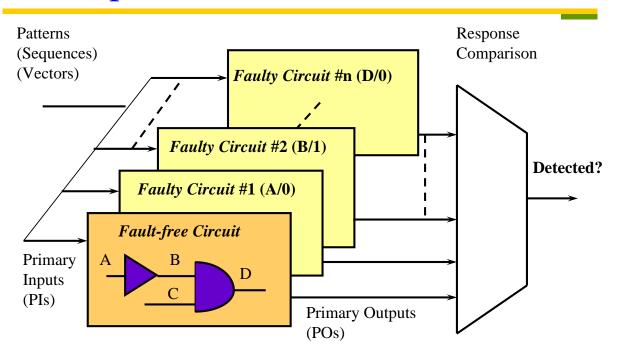
49

Fault Collapsing + Checkpoint

■ Example:

- 10 checkpoint faults
- a s-a-0 <=> d s-a-0 , c s-a-0 <=> e s-a-0
 b s-a-0 > d s-a-0 , b s-a-1 > d s-a-1
- 6 faults are enough

Outline

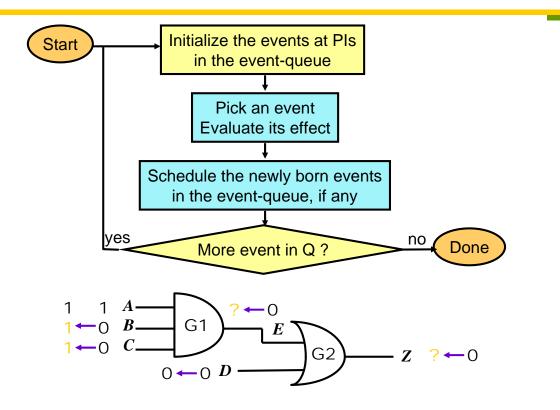

- Fault Modeling
- □ Fault Simulation
- ■Automatic Test Pattern Generation
- Design for Testability

51

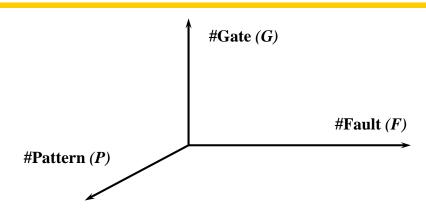
Why Fault Simulation?

- To evaluate the quality of a test set
 - I.e., to compute its fault coverage
- ■Part of an ATPG program
 - A vector usually detects multiple faults
 - Fault simulation is used to compute the faults that are accidentally detected by a particular vector
- ■To construct fault-dictionary
 - For post-testing diagnosis

Conceptual Fault Simulation


Logic simulation on both good (fault-free) and faulty circuits

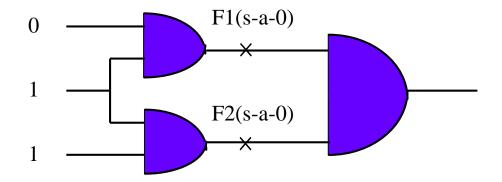
53


Some Basics for Logic Simulation

- In fault simulation, our main concern is functional faults; gate delays are assumed to be zero unless delay faults are considered
- □ Logic values can be either {0, 1} (for two-value simulation) or {0, 1, X} (for three-value simulation)
- Two simulation mechanisms:
 - Compiled-code valuation:
 - □ A circuit is translated into a program and all gates are executed for each pattern (may have redundant computation)
 - Event-driven valuation:
 - Simulating a vector is viewed as a sequence of value-change events propagating from PIs to POs
 - □ Only those logic gates affected by the events are re-evaluated

Event-Driven Simulation

Complexity of Fault Simulation



- □ Complexity ~ $F \cdot P \cdot G \sim O(G^3)$
- ☐ The complexity is higher than logic simulation by a factor of *F*, while it is usually much lower than ATPG
- The complexity can be greatly reduced using
 - fault collapsing and other advanced techniques

55

Characteristics of Fault Simulation

- □ Fault activity with respect to fault-free circuit
 - is often sparse both in time and space.
- For example
 - F1 is not activated by the given pattern, while F2 affects only the lower part of this circuit.

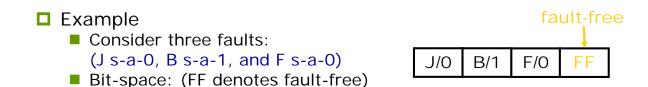
57

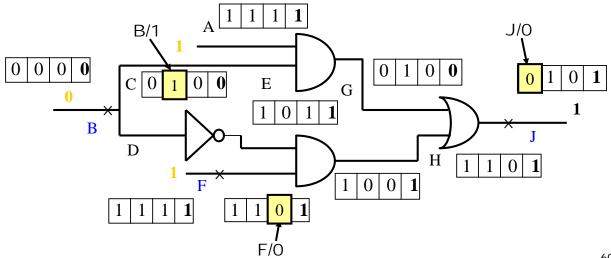
Fault Simulation Techniques

- Parallel Fault Simulation
- Deductive Fault Simulation

Parallel Fault Simulation

Simulate multiple circuits simultaneously


- The inherent parallel operation of computer words to simulate faulty circuits in parallel with fault-free circuit
- The number of faulty circuits or faults can be processed simultaneously is limited by the word length, e.g., 32 circuits for a 32-bit computer

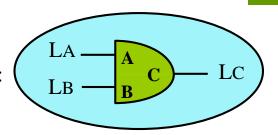

Complication

- An event or a value change of a single faulty or faultfree circuit leads to the computation of an entire word
- The fault-free logic simulation is repeated for each pass

59

Parallel Fault Simulation

60


Deductive Fault Simulation

- Simulate all faulty circuits in one pass
 - For each pattern, sweep the circuit from PIs to POs.
 - During the process, a list of faults is associated with each wire
 - The list contains faults that would produce a fault effect on this wire
 - The union fault list at every PO contains the detected faults by the simulated input vector
- Main operation is fault list propagation
 - Depending on gate types and values
 - The size of the list may grow dynamically, leading to the potential memory explosion problem

61

Illustration of Fault List Propagation

Consider a two-input AND-gate:

Non-controlling case: Case 1: A=1, B=1, C=1 at fault-free,

 $LC = LA \cup LB \cup \{C/0\}$

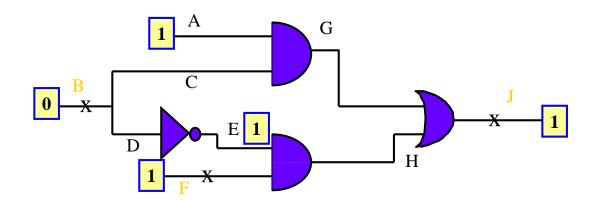
Controlling cases: Case 2: A=1, B=0, C=0 at fault-free,

 $LC = (LA \cap LB) \cup \{C/1\}$

Case 3: A=0, B=0, C=0 at fault-free,

 $LC = (LA \cap LB) \cup \{C/1\}$

LA is the set of all faults not in LA

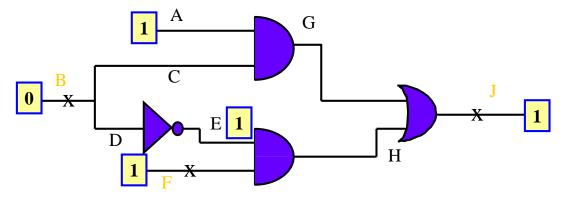

Rule of Fault List Propagation

	а	b	Z	Output fault list
AND	0	0	0	$\{L_a \cap L_b\} \cup Z_1$
	0	1	0	$\{L_a - L_b\} \cup Z_1$
	1	0	0	$\{L_b - L_a\} \cup Z_1$
	1	1	1	$\{L_a \cup L_b\} \cup Z_0$
OR	0	0	0	$\{L_a \cup L_b\} \cup Z_1$
	0	1	1	$\{L_b - L_a\} \cup Z_0$
	1	0	1	$\{L_a - L_b\} \cup Z_0$
	1	1	1	$\{L_a \cap L_b\} \cup Z_0$
NOT	0		1	$L_a \cup Z_0$
	1		0	$L_a \cup Z_1$

63

Deductive Fault Simulation

- Example (1/4)
 - Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (1,0,1)

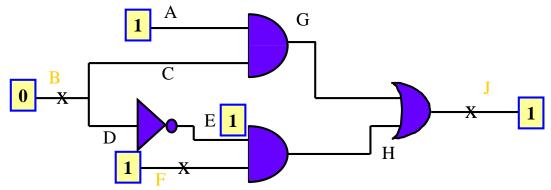


Fault list at PIs:

$$LB = \{B/1\}, LF = \{F/0\}, LA = \emptyset, LC = LD = \{B/1\}$$

Deductive Fault Simulation

- Example (2/4)
 - Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (1,0,1)


 $LB = \{B/1\}, \ LF = \{F/0\}, \ LA = \emptyset, \ LC = LD = \{B/1\}$ Fault lists at G and E:

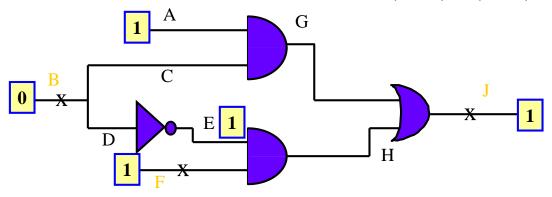
$$LG = (\overline{LA} \cap LC) \cup G/1 = \{B/1, G/1\}$$

 $LE = (LD) \cup E/0 = \{B/1, E/0\}$

65

Deductive Fault Simulation

- Example (3/4)
 - Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (1,0,1)

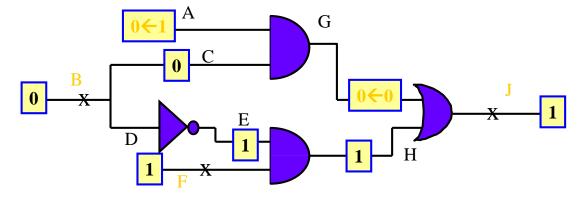


$$\begin{split} LB &= \{B/1\}, \ LF = \{F/0\}, \ LA = \varnothing, \ LC = LD = \{B/1\}, \\ LG &= \{B/1, \frac{G/1}\}, LE = \{B/1, \frac{E/0}\} \\ Fault \ list \ at \ H: \\ LH &= (LE \cup LF) \cup LH = \{B/1, \frac{E/0}, F/0, \frac{H/0}\} \end{split}$$

66

Deductive Fault Simulation

- Example (4/4)
 - Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (1,0,1)



LB = {B/1}, LF = {F/0}, LA = \emptyset , LC = LD = {B/1}, LG = {B/1, G/1}, LE = {B/1, E/0}, LH = {B/1, E/0, F/0, H/0} Final fault list at PO J:

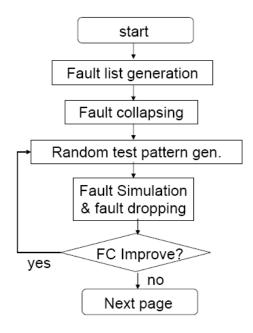
$$LJ = (LH - LG) \cup LJ = \{ E/0, F/0, J/0 \}$$

Deductive Fault Simulation

- Example (cont'd)
 - Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (0,0,1)

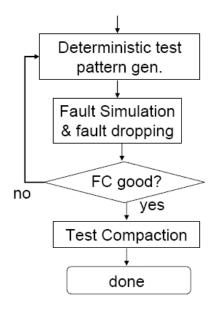
Event driven updates:

LB = {B/1}, LF = {F/0}, LA =
$$\emptyset$$
, LC = LD = LE = {B/1}, LG = {G/1}, LH = {B/1, F/0}, LJ = {B/1, F/0, J/0}


Outline

- Fault Modeling
- **□** Fault Simulation
- Automatic Test Pattern Generation (ATPG)
 - Functional approach
 - Boolean difference
 - Structural approach
 - □ D-algorithm
 - PODEM
- Design for Testability

69


Typical ATPG Flow

□ 1st phase: random test pattern generation

Typical ATPG Flow (cont'd)

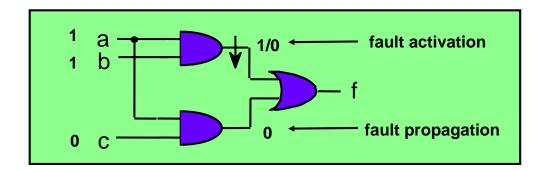
□ 2nd phase: deterministic test pattern generation

71

Test Pattern Generation

□ The test set T of a fault α with respect to some PO z can be computed by

$$T(x) = z(x) \oplus z_{\alpha}(x)$$

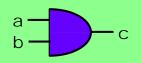

- □ A test pattern can be fully specified or partially specified depending on whether the values of PIs are all assigned
 - Example

abc	z	Z_{α}
000	0	0
001	0	0
010	0	0
011	0	0
100	0	0
101	1	1
110	1	0
111	1	0

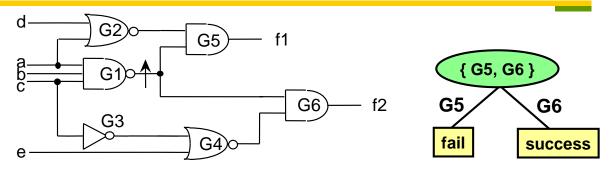
Input vectors (1,1,0) and (1,1,-) are fully and partially specified test patterns of fault α , respectively.

Structural Test Generation D-Algorithm

- Test generation from circuit structure
- Two basic goals
 - (1) Fault activation (FA)
 - (2) Fault propagation (FP)
 - Both of which requires Line Justification (LJ), i.e., finding input combinations that force certain signals to their desired values
- Notations:
 - 1/0 is denoted as D, meaning that good-value is 1 while faulty value is 0
 - Similarly, 0/1 is denoted D'
 - Both D and D' are called fault effects (FE)



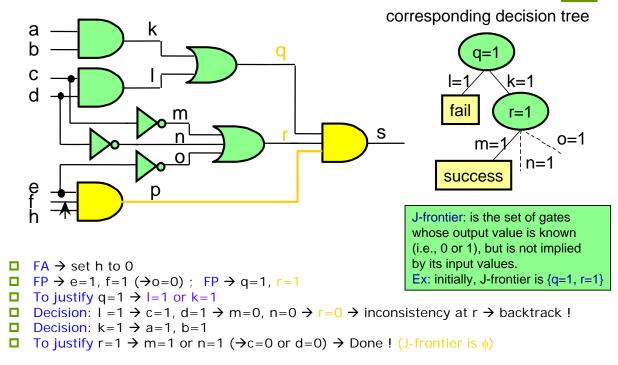
73


Structural Test Generation D-Algorithm

- Fault activation
 - Setting the faulty signal to either 0 or 1 is a Line Justification problem
- Fault propagation
 - select a path to a PO → decisions
 - once the path is selected → a set of line justification (LJ) problems are to be solved
- Line justification
 - Involves decisions or implications
 - Incorrect decisions: need backtracking

To justify $c=1 \rightarrow a=1$ and b=1 (implication) To justify $c=0 \rightarrow a=0$ or b=0 (decision)

Structural Test Generation D-Algorithm: Fault Propagation


decision tree

- Fault activation
 - $G1=0 \rightarrow \{ a=1, b=1, c=1 \} \rightarrow \{ G3=0 \}$
- Fault propagation: through G5 or G6
- Decision through G5:
 - G2=1 \rightarrow { d=0, a=0 } \rightarrow inconsistency at a \rightarrow backtrack!!
- Decision through G6:
 - \rightarrow G4=1 \rightarrow e=0 \rightarrow done!! The resulting test is (111x0)

D-frontiers: are the gates whose output value is x, while one or more Inputs are D or D'. For example, initially, the D-frontier is { G5, G6 }.

75

Structural Test Generation D-Algorithm: Line Justification

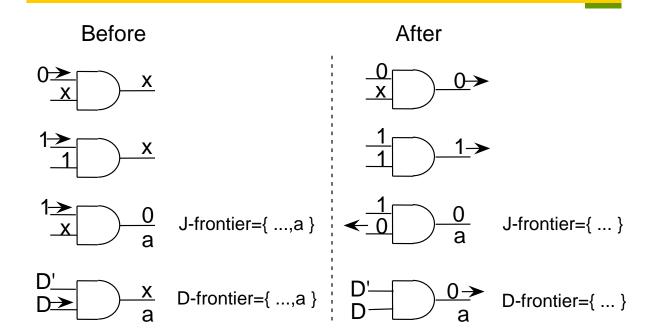
Test Generation

- A branch-and-bound search
- Every decision point is a branching point
- If a set of decisions lead to a conflict, a backtrack is taken to explore other decisions
- A test is found when
 - 1. fault effect is propagated to a PO, and
 - 2. all internal lines are justified
- No test is found after all possible decisions are tried → Then, target fault is undetectable
- □ Since the search is exhaustive, it will find a test if one exists

For a combinational circuit, an undetectable fault is also a redundant fault → Can be used to simplify circuit.

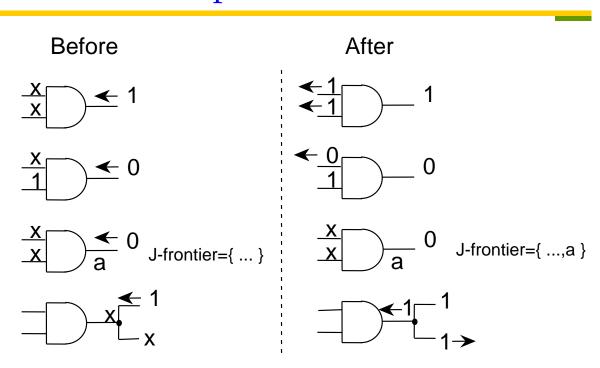
77

Implication

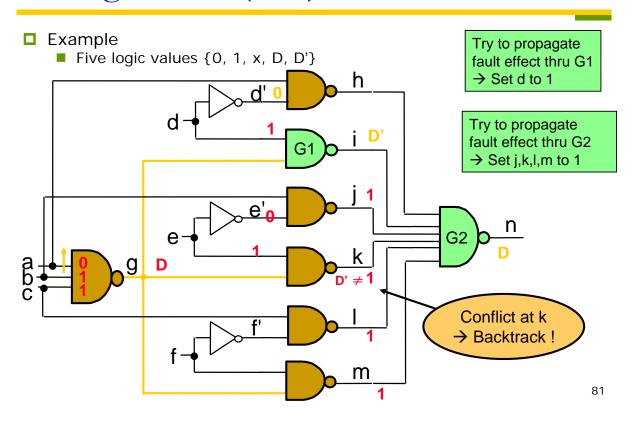

Implication

- Compute the values that can be uniquely determined
 - Local implication: propagation of values from one line to its immediate successors or predecessors
 - □ Global implication: the propagation involving a larger area of the circuit and re-convergent fanout

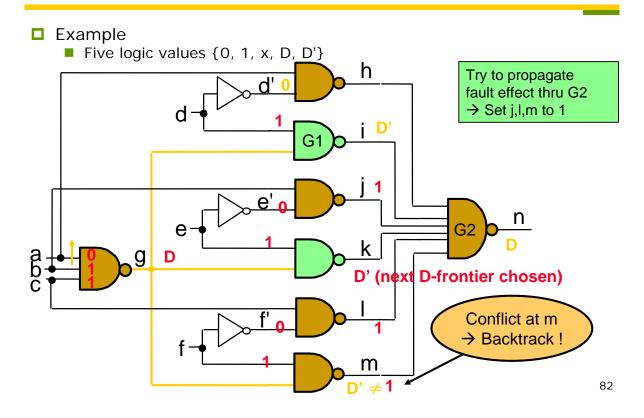
■ Maximum implication principle

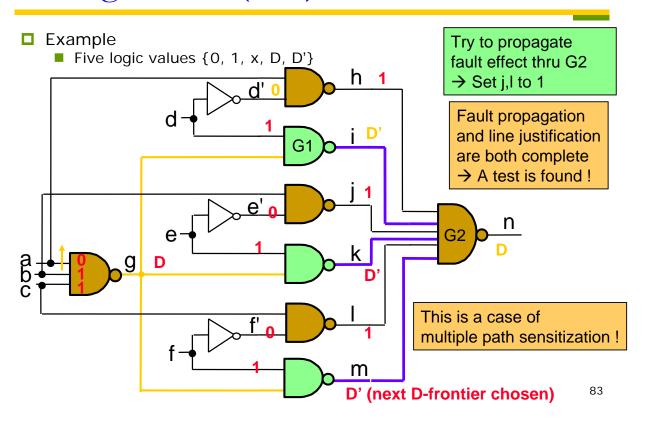

- Perform as many implications as possible
- It helps to either reduce the number of problems that need decisions or to reach an inconsistency sooner

Forward Implication



79

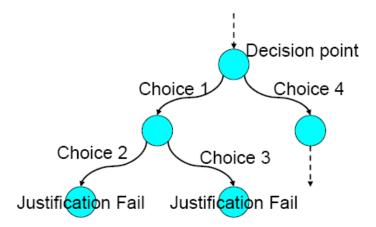

Backward Implication


D-Algorithm (1/4)

D-Algorithm (2/4)

D-Algorithm (3/4)

D-Algorithm (4/4)

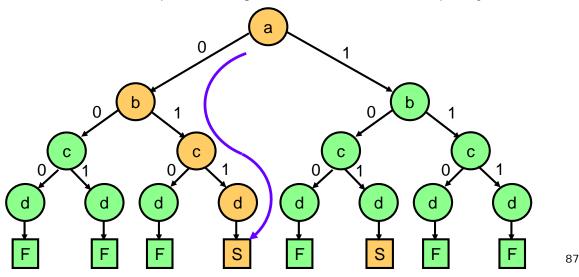

Decision	Implication	Comments
	a=0 h=1	Active the fault
	b=1 c=1	Unique D-drive
	g=D	
d=1		Propagate via i
	i=D' d'=0	
j=1 k=1		Propagate via n
l=1		
m=1		
	n=D e'=0 e=1 k=D'	Contradiction

e=1	k=D' e'=0 j=1	Propagate via k
l=1		Propagate via n
m=1		-
	n=D	
	f'=0	
	f=1	0 (
	m=D'	Contradiction
f=1		Propagate via m
	m=D'	-
	f'=0	
	I=1	
	n=D	
		·

Decision Tree on D-Frontier

■ The decision tree

- Node → D-frontier
- Branch → decision taken
- A Depth-First-Search (DFS) strategy is often used


85

PODEM Algorithm

- PODEM: Path-Oriented DEcision Making
- ☐ Fault Activation (FA) and Propagation (FP)
 - lead to sets of Line Justification (LJ) problems. The LJ problems can be solved via value assignments.
- In D-algorithm
 - TG is done through indirect signal assignment for FA, FP, and LJ, that eventually maps into assignments at PI's
 - The decision points are at internal lines
 - The worst-case number of backtracks is exponential in terms of the number of decision points (e.g., at least 2^k for k decision nodes)
- In PODEM
 - The test generation is done through a sequence of direct assignments at PI's
 - Decision points are at PIs, thus the number of backtracking might be fewer

PODEM Algorithm Search Space of PODEM

- Complete search space
 - A binary tree with 2ⁿ leaf nodes, where n is the number of PIs
- Fast test generation
 - Need to find a path leading to a SUCCESS terminal quickly

PODEM Algorithm Objective and Backtrace

PODEM

- Also aims at establishing a sensitization path based on fault activation and propagation like D-algorithm
- Instead of justifying the signal values required for sensitizing the selected path, objectives are setup to guide the decision process at PIs

Objective

- is a signal-value pair (w, v_w)
- Backtrace
 - Backtrace maps a desired objective into a PI assignment that is likely to contribute to the achievement of the objective
 - Is a process that traverses the circuit back from the objective signal to PIs
 - The result is a PI signal-value pair (x, v_x)
 - No signal value is actually assigned during backtrace (toward PI)!

PODEM Algorithm Objective

- Objective routine involves
 - selection of a D-frontier, G
 - selection of an unspecified input gate of G

```
Objective() {
    /* The target fault is ws-a-v*/
    /* Let variable obj be a signal-value pair */
    if (the value of w is x) obj = ( w, v');
    else {
        select a gate (G) from the D-frontier;
        select an input (j) of G with value x;
        c = controlling value of G;
        obj = (j, c');
    }
    return (obj);
}
```

PODEM Algorithm Backtrace

- Backtrace routine involves
 - finding an all-x path from objective site to a PI, i.e., every signal in this path has value x

```
Backtrace(w, v<sub>w</sub>) {

/* Maps objective into a PI assignment */

G = w; /* objective node */

v = v<sub>w</sub>; /* objective value */

while (G is a gate output) { /* not reached PI yet */

inv = inversion of G;

select an input (j) of G with value x;

G = j; /* new objective node */

v = v⊕inv; /* new objective value */

}

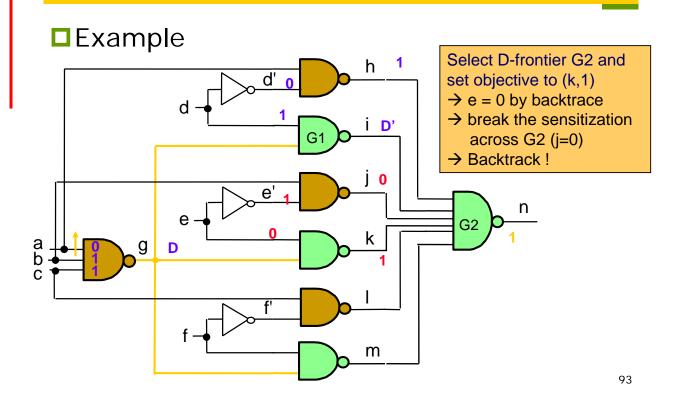
/* G is a PI */ return (G, v);

}
```

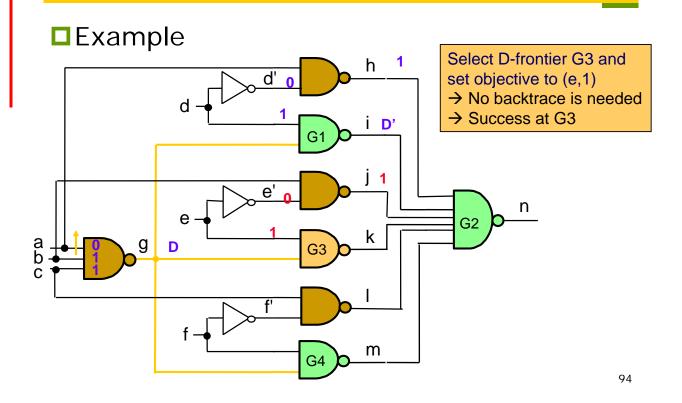
89

PODEM Algorithm PI Assignment

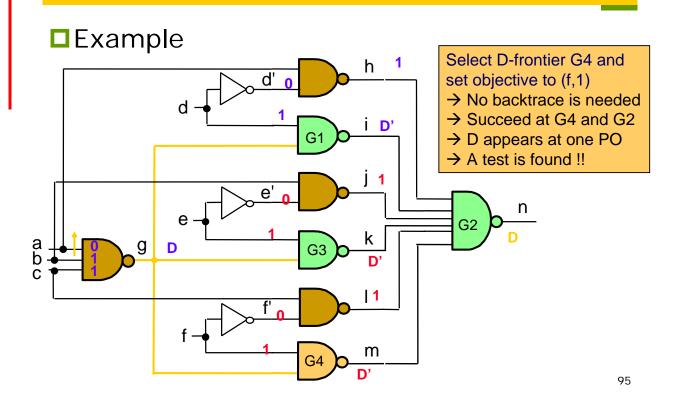
Pls: { a, b, c, d }
Current Assignments: { a=0 }
Decision: b=0 → objective fails
Reverse decision: b=1
Decision: c=0 → objective fails
Reverse decision: c=1
Decision: d=0


Failure means fault effect cannot be propagated to any PO under current
Pl assignments

91

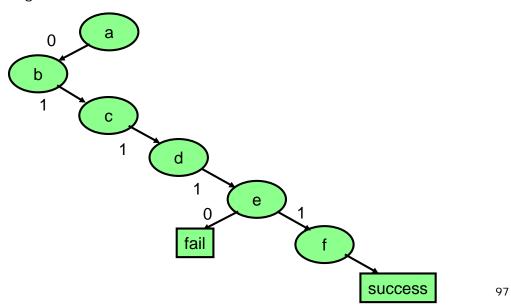

PODEM Algorithm

```
PODEM () /* using depth-first-search */
begin
     If(error at PO) return(SUCCESS);
     If(test not possible)
                              return(FAILURE);
     (k, v_k) = Objective();
                                        /* choose a line to be justified */
                                        /* choose the PI to be assigned */
     (j, v_i) = Backtrace(k, v_k);
     Imply (j, v_i);
                                        /* make a decision */
     If ( PODEM() = = SUCCESS )
                                        return (SUCCESS);
                                        /* reverse decision */
     Imply (j, v_i);
     If ( PODEM() = SUCCESS )
                                        return(SUCCESS);
     Imply (j, x);
     Return (FAILURE);
end
```


PODEM Algorithm (1/4)

PODEM Algorithm (2/4)

PODEM Algorithm (3/4)


PODEM Algorithm (4/4)

1	I		ı	
Objective	PI assignment	Implications	D-frontier	Comments
a=0	a=0	h=1	g	
b=1	b=1		g	
c=1	c=1	g=D	i,k,m	
d=1	d=1	d'=0		
		i=D'	k,m,n	
k=1	e=0	e'=1 j=0	Assignments need to be reversed during backtracking	
		k=1		
		n=1	m	no solutions! → backtrack
	e=1	e'=0		flip PI assignment
		j=1		d b h 1
		k=D'	m,n	d-t-Doin
l=1	f=1	f'=0	l Ir⊨	r r r r r r r r r r r r r r r r r r r
		l=1	 a <mark>#</mark>	
		m=D'	[C	
		n=D		9

PODEM Algorithm Decision Tree

- Decision node:
 - PI selected through backtrace for value assignment
- Branch:

value assignment to the selected PI

Termination Conditions

- D-algorithm
 - Success:
 - (1) Fault effect at an output (D-frontier may not be empty)
 - (2) J-frontier is empty
 - Failure:
 - (1) D-frontier is empty (all possible paths are false)
 - (2) J-frontier is not empty
- PODEM
 - Success:
 - ☐ Fault effect seen at an output
 - Failure:
 - Every PI assignment leads to failure, in which D-frontier is empty while fault has been activated

PODEM Overview

PODEM

- examines all possible input patterns implicitly but exhaustively (branch-and-bound) for finding a test
- complete like D-algorithm (i.e., will find a test if exists)

Other key features

- No J-frontier, since there are no values that require justification
- No consistency check, as conflicts can never occur
- No backward implication, because values are propagated only forward
- Backtracking is implicitly done by simulation rather than by an explicit and time-consuming save/restore process
- Experiments show that PODEM is generally faster than Dalgorithm

99

Outline

- **□**Fault Modeling
- **□** Fault Simulation
- ■Automatic Test Pattern Generation
- Design for Testability

Why DFT?

- □ Direct testing is way too difficult!
 - Large number of FFs
 - Embedded memory blocks
 - Embedded analog blocks

101

Design for Testability

Definition

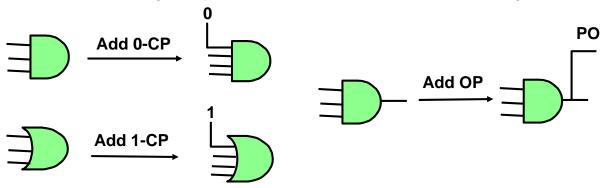
Design for testability (DFT) refers to those design techniques that make test generation and testing costeffective

DFT methods

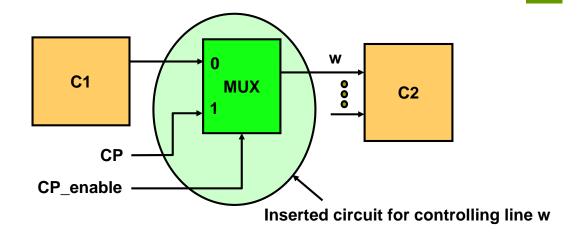
Ad-hoc methods, full and partial scan, built-in self-test (BIST), boundary scan

■ Cost of DFT

■ Pin count, area, performance, design-time, test-time, etc.


Important Factors

- Controllability
 - Measure the ease of controlling a line
- Observability
 - Measure the ease of observing a line at PO
- DFT deals with ways of improving
 - Controllability and observability


103

Test Point Insertion

- Employ test points to enhance controllability and observability
 - CP: Control Points
 - □Primary inputs used to enhance controllability
 - OP: Observability Points
 - □Primary outputs used to enhance observability

Control Point Insertion

- Normal operation:
 - When $CP_{enable} = 0$
- □ Inject 0:

Set $CP_{enable} = 1$ and CP = 0

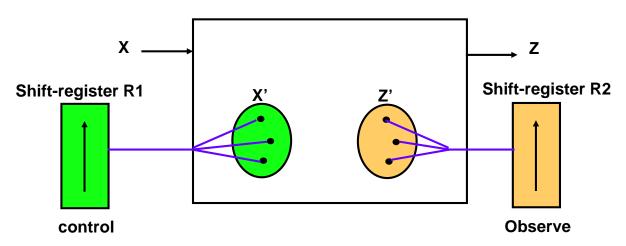
□ Inject 1:

Set $CP_{enable} = 1$ and CP = 1

105

Control Point Selection

- Goal
 - Controllability of the fanout-cone of the added point is improved
- Common selections
 - Control, address, and data buses
 - Enable/hold inputs
 - Enable and read/write inputs to memory
 - Clock and preset/clear signals of flip-flops
 - Data select inputs to multiplexers and demultiplexers

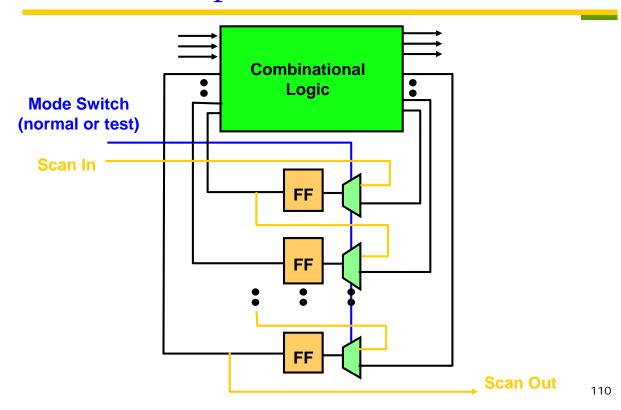

Observation Point Selection

- Goal
 - Observability of the transitive fanins of the added point is improved
- Common choice
 - Stem lines with more fanouts
 - Global feedback paths
 - Redundant signal lines
 - Output of logic devices having many inputsMUX, XOR trees
 - Output from state devices
 - Address, control and data buses

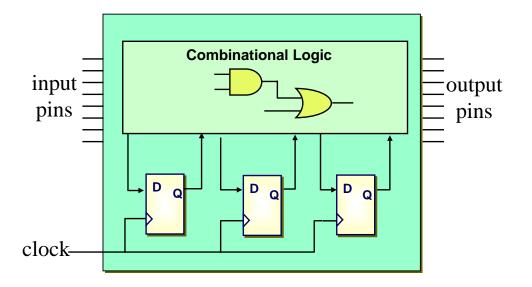
107

Problems with Test Point Insertion

- □ Large number of I/O pins
 - Can be resolved by adding MUXs to reduce the number of I/O pins, or by adding shift-registers to impose CP values

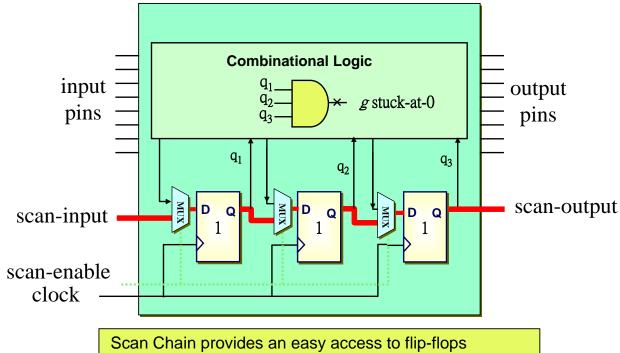


What Is Scan?


- Objective
 - To provide controllability and observability at internal state variables for testing
- Method
 - Add test mode control signal(s) to circuit
 - Connect flip-flops to form shift registers in test mode
 - Make inputs/outputs of the flip-flops in the shift register controllable and observable
- Types
 - Internal scan
 - □ Full scan, partial scan, random access
 - Boundary scan

109

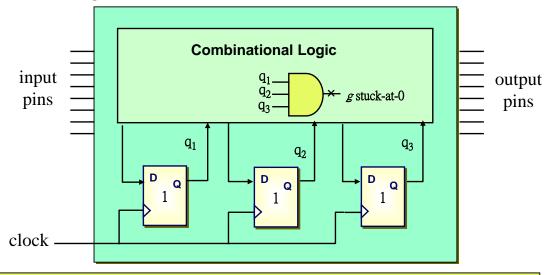
Scan Concept


Logic Design before Scan Insertion

Sequential ATPG is extremely difficult: due to the lack of controllability and observability at flip-flops.

111

Logic Design after Scan Insertion


Pattern generation is much easier!!

112

Scan Insertion

Example

■ 3-stage counter

It takes 8 clock cycles to set the flip-flops to be (1, 1, 1), for detecting the target fault g stuck-at-0 fault $(2^{20}$ cycles for a 20-stage counter!)

113

Overhead of Scan Design

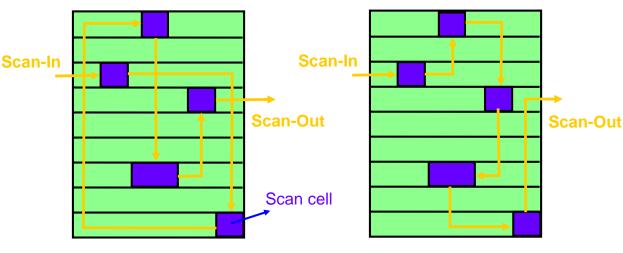
- Case study
 - #CMOS gates = 2000
 - Fraction of flip-flops = 0.478
 - Fraction of normal routing = 0.471

Scan implementation	Predicted overhead	Actual area overhead	Normalized operating frequency
None	0	0	1.0
Hierarchical	14.05%	16.93%	0.87
Optimized	14.05%	11.9%	0.91

Full Scan Problems

Problems

- Area overhead
- Possible performance degradation
- High test application time
- Power dissipation


■ Features of commercial tools

- Scan-rule violation check (e.g., DFT rule check)
- Scan insertion (convert a FF to its scan version)
- ATPG (both combinational and sequential)
- Scan chain reordering after layout

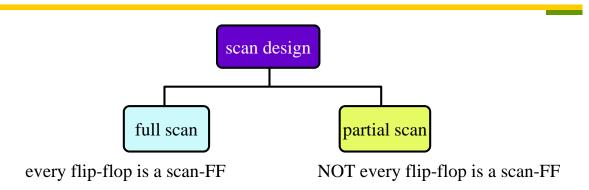
115

Scan-Chain Reordering

- Scan-chain order is often decided at gate-level without knowing the cell placement
- Scan-chain consumes a lot of routing resources, and could be minimized by re-ordering the flip-flops in the chain after layout is done

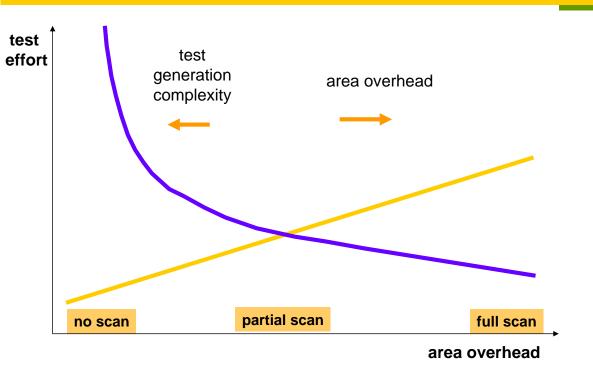
Layout of a cell-based design

A better scan-chain order


116

Partial Scan

- Basic idea
 - Select a subset of flip-flops for scan
 - Lower overhead (area and speed)
 - Relaxed design rules
- Cycle-breaking technique
 - Cheng & Agrawal, IEEE Trans. On Computers, April 1990
 - Select scan flip-flops to simplify sequential ATPG
 - Overhead is about 25% off than full scan
- □ Timing-driven partial scan
 - Jou & Cheng, ICCAD, Nov. 1991
 - Allow optimization of area, timing, and testability simultaneously


117

Full Scan vs. Partial Scan

scan time	longer	shorter
hardware overhead	more	less
fault coverage	~100%	unpredictable
ease-of-use	easier	harder

Area Overhead vs. Test Effort

119

Conclusions

- Testing
 - Conducted after manufacturing
 - Must be considered during the design process
- Major fault models
 - Stuck-at, bridging, stuck-open, delay fault, ...
- Major tools needed
 - Design-for-Testability
 - □ By scan chain insertion or built-in self-test
 - Fault simulation
 - ATPG
- Other Applications in CAD
 - ATPG is a way of Boolean reasoning and is applicable to may logic-domain CAD problems