
1

Introduction to Electronic
Design Automation

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

Spring 2012

2

Testing

Slides are by Courtesy of Prof. S.-Y. Huang and C.-M. Li

3

Testing

 Recap
 Design verification

Is what I specified really what I wanted?
 Property checking

 Implementation verification
Is what I implemented really what I specified?

 Equivalence checking

 Manufacture verification
Is what I manufactured really what I implemented?

 Testing; post manufacture verification
 Quality control

 Distinguish between good and bad chips

4

Design Flow

Idea

Architecture Design

Circuit & Layout Design

Block
diagram

Layout

IC Fabrication

Wafer
(hundreds of dies)

Sawing & Packaging

Final chips

Final Testing

Bad chips Good chips
customers

5

Manufacturing Defects

 Processing faults
 missing contact windows
 parasitic transistors
 oxide breakdown

Material defects
 bulk defects (cracks, crystal imperfections)
 surface impurities

 Time-dependent failures
 dielectric breakdown
 electro-migration

 Packaging failures
 contact degradation
 seal leaks

6

Faults, Errors and Failures

 Faults
 A physical defect within a circuit or a system

 May or may not cause a system failure

 Errors
 Manifestation of a fault that results in incorrect circuit (system)

outputs or states

 Caused by faults

 Failures
 Deviation of a circuit or system from its specified behavior

 Fail to do what is supposed to do

 Caused by errors
 Faults cause errors; errors cause failures

7

Testing and Diagnosis

Testing
 Exercise a system and analyze the response to

ensure whether it behaves correctly after
manufacturing

Diagnosis
 Locate the causes of misbehavior after the

incorrectness is detected

8

Scenario of Manufacturing Test

TEST VECTORS

Manufactured
Circuits

Comparator

CIRCUIT RESPONSE

PASS/FAILCORRECT
RESPONSES

9

Test Systems

10

Purpose of Testing

 Verify manufactured circuits
 Improve system reliability
 Reduce repair costs

Repair cost goes up by an order of magnitude each step
away from the fab. line

0.5

5

50

500

IC
Test

Board
Test

System
Test

Warranty
Repair

10

1

100

1000

Cost
per

fault
(Dollars)

B. Davis, “The Economics of Automatic Testing” McGraw-Hill 1982

IC Test Board
Test

System
Test

Warranty
Repair

Cost
Per

Fault
(dollars)

1

10

1000

100

11

Testing and Quality
 Quality of shipped part can be expressed as a function of

the yield Y and test (fault) coverage T.

ASIC
Fabrication

Testing
Yield:

Fraction of
Good parts

Rejects

Shipped Parts

Quality:
Defective parts
Per Million (DPM)

12

Fault Coverage

Fault coverage T
Measure of the ability of a test set to detect a

given set of faults that may occur on the
Design Under Test (DUT)

T =
detected faults

all possible faults

13

Defect Level

A defect level is the fraction of the
shipped parts that are defective

DL = 1 – Y(1-T)

Y: yield
T: fault coverage

14

Defect Level vs. Fault Coverage
Defect Level

Fault Coverage (%)

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0 Y = 0.01
Y = 0.1

Y = 0.25

Y = 0.5

Y = 0.75

Y = 0.9

(Williams IBM 1980)

High fault coverage Low defect level

15

DPM vs. Yield and Coverage

50% 90% 67,000
75% 90% 28,000
90% 90% 10,000
95% 90% 5,000
99% 90% 1,000

90% 90% 10,000
90% 95% 5,000
90% 99% 1,000
90% 99.9% 100

Fault CoverageYield DPM

16

Why Testing Is Difficult ?

 Test time explodes exponentially in exhaustive
testing of VLSI
 For a combinational circuit with 50 inputs, need 250 =

1.126 x 1015 test patterns.
 Assume one test per 10-7sec, it takes 1.125x108sec =

3.57years.
 Test generation for sequential circuits are even more

difficult due to the lack of controllability and
observability at flip-flops (latches)

 Functional testing
 may NOT be able to detect the physical faults

17

The Infamous Design/Test Wall
30-years of experience proves that

test after design does not work!

Functionally correct!
We're done!

Oops!
What does

this chip do?!

Design Engineer
Test Engineer

18

Outline

Fault Modeling

Fault Simulation

Automatic Test Pattern Generation

Design for Testability

19

Functional vs. Structural Testing

I/O functional testing is inadequate for
manufacturing
Need fault models

Exhaustive testing is daunting
Need abstraction and smart algorithms
Structural testing is more effective

20

Why Fault Model ?

 Fault model identifies target faults
 Model faults that are most likely to occur

 Fault model limits the scope of test generation
 Create tests only for the modeled faults

 Fault model makes testing effective
 Fault coverage can be computed for specific test

patterns to measure its effectiveness

 Fault model makes analysis possible
 Associate specific defects with specific test patterns

21

Fault Modeling vs. Physical Defects

Fault modeling
Model the effects of physical defects on the

logic function and timing

Physical defects
Silicon defects
 Photolithographic defects
Mask contamination
 Process variation
Defective oxides

22

Fault Modeling vs. Physical Defects
(cont’d)

 Electrical effects
 Shorts (bridging faults)
 Opens
 Transistor stuck-on/open
 Resistive shorts/opens
 Change in threshold voltages

 Logical effects
 Logical stuck-at-0/1
 Slower transition (delay faults)
 AND-bridging, OR-bridging

23

Typical Fault Types

Stuck-at faults
Bridging faults
Transistor stuck-on/open faults
Delay faults
IDDQ faults
State transition faults (for FSM)
Memory faults
PLA faults

24

Single Stuck-At Fault

 Assumptions:
 Only one wire is faulty
 Fault can be at an input or output of a gate
 Faulty wire permanently sticks at 0 or 1

0

1

1

1

0

1/0

1/0

stuck-at-0

ideal response
test vector

faulty response

25

Multiple Stuck-At Faults

Several stuck-at faults occur at the same
time
Common in high density circuits

For a circuit with k lines
 There are 2k single stuck-at faults
 There are 3k-1 multiple stuck-at faults

A line could be stuck-at-0, stuck-at-1, or fault-free
One out of 3k resulting circuits is fault-free

26

Why Single Stuck-At Fault Model ?

 Complexity is greatly reduced
 Many different physical defects may be modeled by the

same logical single stuck-at fault

 Stuck-at fault is technology independent
 Can be applied to TTL, ECL, CMOS, BiCMOS etc.

 Design style independent
 Gate array, standard cell, custom design

 Detection capability of un-modeled defects
 Empirically, many un-modeled defects can also be

detected accidentally under the single stuck-at fault
model

 Cover a large percentage of multiple stuck-at
faults

27

Why Logical Fault Modeling ?
 Fault analysis on logic rather than physical problem

 Complexity is reduced

 Technology independent
 Same fault model is applicable to many technologies
 Testing and diagnosis methods remain valid despite changes in

technology

 Wide applications
 The derived tests may be used for physical faults whose effect

on circuit behavior is not completely understood or too
complex to be analyzed

 Popularity
 Stuck-at fault is the most popular logical fault model

28

Definition of Fault Detection

 A test (vector) t detects a fault f iff t detects f
(i.e. z(t) ≠ zf(t))

 Example

x

X1

X2

X3

Z1

Z2

s-a-1 Z1=X1X2 Z2=X2X3

Z1f =X1 Z2f =X2X3

Test (x1,x2,x3) = (100) detects f because z1(100)=0 and z1f (100)=1

29

Fault Detection Requirement

 A test t that detects a fault f
 activates f (or generate a fault effect) by creating

different v and vf values at the site of the fault
 propagates the error to a primary output z by making all

the wires along at least one path between the fault site
and z have different v and vf values

 Sensitized wire
 A wire whose value in response to the test changes in

the presence of the fault f is said to be sensitized by the
test in the faulty circuit

 Sensitized path
 A path composed of sensitized wires is called a

sensitized path

30

Fault Sensitization

Input vector 1011 detects the fault f (G2 stuck-at-1)
v/vf : v = signal value in the fault free circuit

vf = signal value in the faulty circuit

X1
X2

X3

X4

G1

G2

G3

G4

1
0

1

1

1

s-a-1
0/1

1

0/1

0/1
z

z(1011) = 0
zf(1011) = 1

31

Detectability

A fault f is said to be detectable
 if there exists a test t that detects f
 otherwise, f is an undetectable fault

For an undetectable fault f
 no test can simultaneously activate f and

create a sensitized path to some primary
output

32

Undetectable Fault

 The stuck-at-0
fault at G1 output
is undetectable
 Undetectable faults

do not change the
function of the
circuit

 The related circuit
can be deleted to
simplify the circuit

s-a-0

a

b

c

z

can be removed !

x

G1

33

Test Set

 Complete detection test set
 A set of tests that detects any detectable fault in a

designated set of faults

Quality of a test set
 is measured by fault coverage

 Fault coverage
 Fraction of the faults detected by a test set
 can be determined by fault simulation
 >95% is typically required under the single stuck-at

fault model
 >99.9% required in the ICs manufactured by IBM

34

Typical Test Generation Flow

Select next target fault

Generate a test
for the target fault

Discard detected faults

More faults ? Done

Fault simulation

Start

yes no

(to be discussed)

(to be discussed)

35

Fault Equivalence

Distinguishing test
A test t distinguishes faults and  if z(t)

≠z(t) for some PO function z

Equivalent faults
 Two faults  and  are said to be equivalent in

a circuit iff the function under  is equal to the
function under  for every input assignment
(sequence) of the circuit.

 That is, no test can distinguish  and , i.e.,
test-set() = test-set()

36

Fault Equivalence
 AND gate:

 all s-a-0 faults are equivalent

 OR gate:
 all s-a-1 faults are equivalent

 NAND gate:
 all the input s-a-0 faults and the output s-

a-1 faults are equivalent

 NOR gate:
 all input s-a-1 faults and the output s-a-0

faults are equivalent

 Inverter:
 input s-a-1 and output s-a-0 are equivalent
 input s-a-0 and output s-a-1 are equivalent

x
x

s-a-0
s-a-0

same effect

37

Equivalence Fault Collapsing

n+2, instead of 2(n+1), single stuck-at
faults need to be considered for n-input
AND (or OR) gates

s-a-1

s-a-1

s-a-1

s-a-1

s-a-1

s-a-1

s-a-1

s-a-1

s-a-0

s-a-0

s-a-0

s-a-0

s-a-0

s-a-0

s-a-0

s-a-0

38

Equivalent Fault Group

 In a combinational circuit
 Many faults may form an equivalence group
 These equivalent faults can be found in a reversed

topological order from POs to PIs

s-a-1

s-a-0 s-a-1

x

x x

Three faults shown are equivalent !

39

Fault Dominance

 Dominance relation
 A fault  is said to dominate another fault  in an

irredundant circuit iff every test (sequence) for  is also
a test (sequence) for i.e., test-set()  test-set()

 No need to consider fault  for fault detection

Test() Test()  is dominated by 

40

Fault Dominance
 AND gate

 Output s-a-1 dominates any input s-a-1

 NAND gate
 Output s-a-0 dominates any input s-a-1

 OR gate
 Output s-a-0 dominates any input s-a-0

 NOR gate
 Output s-a-1 dominates any input s-a-0

 Dominance fault collapsing
 Reducing the set of faults to be analyzed based on the

dominance relation

x
x

s-a-1
s-a-1

easier to test

harder to test

41

Stem vs. Branch Faults
 Detect A s-a-1:

z(t)zf(t) = (CDCE)(DCE)
= DCD  (C=0,D=1)

 Detect C s-a-1:
z(t)zf(t) = (CDCE)(DE)
 (C=0,D=1,E=0) or
(C=0,D=0,E=1)

 Hence, C s-a-1 does not
dominate A s-a-1

 In general, there might be no
equivalence or dominance
relations between stem and
branch faults

A

B

C

D

E
x

x

x

C: stem of a multiple fanout
A, B: branches

42

Analysis of a Single Gate

 Fault Equivalence Class
 (A s-a-0, B s-a-0, C s-a-0)

 Fault Dominance Relations
 (C s-a-1 > A s-a-1) and

(C s-a-1 > B s-a-1)

 Faults that can be ignored:
 A s-a-0, B s-a-0, and C s-

a-1

A

B
C

11

10

01

00

AB

0

A
sa0

0

B
sa0

110

01

110

10

C
sa0

C
sa1

B
sa1

A
sa1

C

43

Fault Collapsing

 Collapse faults by fault equivalence and
dominance
 For an n-input gate, we only need to consider n+1 faults

in test generation

s-a-0s-a-1

s-a-1

44

Dominance Graph

 Rule
 When fault  dominates fault , then an arrow is

pointing from  to 

 Application
 Find out the transitive dominance relations among faults

d s-a-0
d s-a-1

e s-a-0
e s-a-1

a
b d

c e

a s-a-0
a s-a-1

45

Fault Collapsing Flow

Select a representative fault from
each remaining equivalence group

Done

Discard the dominating faults

Start Sweeping the netlist from PO to PI
to find the equivalent fault groups

Equivalence
analysis

Sweeping the netlist
to construct the dominance graph

Dominance
analysis

Generate collapsed fault list

46

Prime Fault

 is a prime fault if every fault that is
dominated by  is also equivalent to 

Representative Set of Prime Fault (RSPF)
A set that consists of exactly one prime fault

from each equivalence class of prime faults
 True minimal RSPF is difficult to find

47

Why Fault Collapsing ?

 Save memory and CPU time
 Ease testing generation and fault simulation

 Exercise

* 30 total faults  12 prime faults

48

Checkpoint Theorem

 Checkpoints for test generation
 A test set detects every fault on the primary inputs and

fanout branches is complete
I.e., this test set detects all other faults, too

 Therefore, primary inputs and fanout branches form a
sufficient set of checkpoints in test generation
In fanout-free combinational circuits (i.e., every gate has

only one fanout), primary inputs are the checkpoints

Stem is not a checkpoint !

49

Why Inputs + Branches Are Enough ?

 Example
 Checkpoints are marked in blue
 Sweeping the circuit from PI to PO to examine every

gate, e.g., based on an order of (A->B->C->D->E)
 For each gate, output faults are detected if every input

fault is detected

A

B

C

D

E

a

50

Fault Collapsing + Checkpoint

 Example:
 10 checkpoint faults
 a s-a-0 <=> d s-a-0 , c s-a-0 <=> e s-a-0

b s-a-0 > d s-a-0 , b s-a-1 > d s-a-1
 6 faults are enough

a

b

c

d

e

f

g

h

51

Outline

Fault Modeling

Fault Simulation

Automatic Test Pattern Generation

Design for Testability

52

Why Fault Simulation ?

To evaluate the quality of a test set
 I.e., to compute its fault coverage

Part of an ATPG program
A vector usually detects multiple faults
 Fault simulation is used to compute the faults

that are accidentally detected by a particular
vector

To construct fault-dictionary
 For post-testing diagnosis

53

Conceptual Fault Simulation

Fault-free Circuit

Faulty Circuit #1 (A/0)

Faulty Circuit #2 (B/1)

Faulty Circuit #n (D/0)

Primary
Inputs
(PIs)

Primary Outputs
(POs)

Patterns
(Sequences)
(Vectors)

Response
Comparison

Detected?

A B

C
D

Logic simulation on both good (fault-free) and faulty circuits

54

Some Basics for Logic Simulation
 In fault simulation, our main concern is functional faults;

gate delays are assumed to be zero unless delay faults are
considered

 Logic values can be either {0, 1} (for two-value simulation)
or {0, 1, X} (for three-value simulation)

 Two simulation mechanisms:
 Compiled-code valuation:

 A circuit is translated into a program and all gates are executed for
each pattern (may have redundant computation)

 Event-driven valuation:
 Simulating a vector is viewed as a sequence of value-change

events propagating from PIs to POs
Only those logic gates affected by the events are re-evaluated

55

Event-Driven Simulation
Initialize the events at PIs

in the event-queue

Pick an event
Evaluate its effect

More event in Q ? Done

Schedule the newly born events
in the event-queue, if any

Start

yes no

A
B
C

E

Z
D

1
0
0

1
1
1

0 0

? 0

? 0

G1
G2

56

Complexity of Fault Simulation

 Complexity ~ F‧P‧G ~ O(G3)
 The complexity is higher than logic simulation by a factor of

F, while it is usually much lower than ATPG
 The complexity can be greatly reduced using

 fault collapsing and other advanced techniques

#Gate (G)

#Pattern (P)

#Fault (F)

57

Characteristics of Fault Simulation

 Fault activity with respect to fault-free circuit
 is often sparse both in time and space.

 For example
 F1 is not activated by the given pattern, while F2 affects

only the lower part of this circuit.

0

1

1

F1(s-a-0)

F2(s-a-0)
×

×

58

Fault Simulation Techniques

Parallel Fault Simulation
Deductive Fault Simulation

59

Parallel Fault Simulation

 Simulate multiple circuits simultaneously
 The inherent parallel operation of computer words to

simulate faulty circuits in parallel with fault-free circuit
 The number of faulty circuits or faults can be processed

simultaneously is limited by the word length, e.g., 32
circuits for a 32-bit computer

 Complication
 An event or a value change of a single faulty or fault-

free circuit leads to the computation of an entire word
 The fault-free logic simulation is repeated for each pass

60

Parallel Fault Simulation
 Example

 Consider three faults:
(J s-a-0, B s-a-1, and F s-a-0)

 Bit-space: (FF denotes fault-free)

A

B

C

D

E

F

G

H

J

1

0

1

1

0 0 0 0
0 1 0 0

1 1 1 1

1 0 0 1

0 1 0 0 0 1 0 1

1 1 0 11 1 1 1

1 1 0 1

1 0 1 1

J/0 B/1 F/0 FF

F/0

J/0B/1

fault-free

×

×
×

1

0

0

61

Deductive Fault Simulation

 Simulate all faulty circuits in one pass
 For each pattern, sweep the circuit from PIs to POs.
 During the process, a list of faults is associated with

each wire
 The list contains faults that would produce a fault effect

on this wire
 The union fault list at every PO contains the detected

faults by the simulated input vector

Main operation is fault list propagation
 Depending on gate types and values
 The size of the list may grow dynamically, leading to the

potential memory explosion problem

62

Illustration of Fault List Propagation

Case 1: A=1, B=1, C=1 at fault-free,
LC = LA  LB  {C/0}

Case 2: A=1, B=0, C=0 at fault-free,
LC = (LA  LB)  {C/1}

Case 3: A=0, B=0, C=0 at fault-free,
LC = (LA  LB)  {C/1}

Consider a two-input AND-gate:

LA is the set of all faults not in LA

A

B
C

LA

LB
LC

Non-controlling case:

Controlling cases:

63

Rule of Fault List Propagation

64

Deductive Fault Simulation
 Example (1/4)

 Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (1,0,1)

Fault list at PIs:
LB = {B/1}, LF = {F/0}, LA = , LC=LD = {B/1}

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

A

65

Deductive Fault Simulation
 Example (2/4)

 Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (1,0,1)

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

A

LB = {B/1}, LF = {F/0}, LA = , LC = LD = {B/1}
Fault lists at G and E:
LG = (LA  LC)  G/1 = {B/1, G/1}
LE = (LD)  E/0 = {B/1, E/0}

66

Deductive Fault Simulation
 Example (3/4)

 Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (1,0,1)

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

A

LB = {B/1}, LF = {F/0}, LA = , LC = LD = {B/1},
LG = {B/1, G/1} , LE = {B/1, E/0}
Fault list at H:
LH = (LE  LF)  LH = {B/1, E/0, F/0, H/0}

67

Deductive Fault Simulation
 Example (4/4)

 Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (1,0,1)

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

A

LB = {B/1}, LF = {F/0}, LA = , LC = LD = {B/1}, LG =
{B/1, G/1} , LE = {B/1, E/0}, LH = {B/1, E/0, F/0, H/0}
Final fault list at PO J:
LJ = (LH – LG)  LJ = {E/0, F/0, J/0}

68

Deductive Fault Simulation
 Example (cont’d)

 Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (0,0,1)

Event driven updates:
LB = {B/1}, LF = {F/0}, LA = , LC = LD = LE = {B/1},
LG = {G/1}, LH = {B/1, F/0}, LJ = {B/1, F/0, J/0}

A

x

x

x
B

C

D
E

F

G

H

J

01

0

1

1

1

00

1

0

69

Outline

 Fault Modeling

 Fault Simulation

 Automatic Test Pattern Generation (ATPG)
 Functional approach

Boolean difference
 Structural approach

D-algorithm
PODEM

 Design for Testability

70

Typical ATPG Flow

 1st phase: random test pattern generation

71

Typical ATPG Flow (cont’d)

 2nd phase: deterministic test pattern generation

72

Test Pattern Generation
 The test set T of a fault  with respect to some PO z can be

computed by
T(x) = z(x)  z(x)

 A test pattern can be fully specified or partially specified
depending on whether the values of PIs are all assigned
 Example

abc z z

000
001
010
011
100
101
110
111

0
0
0
0
0
1
1
1

0
0
0
0
0
1
0
0

Input vectors (1,1,0) and (1,1,-) are fully
and partially specified test patterns of
fault , respectively.

73

Structural Test Generation
D-Algorithm
 Test generation from circuit structure
 Two basic goals

 (1) Fault activation (FA)
 (2) Fault propagation (FP)
 Both of which requires Line Justification (LJ), i.e., finding input combinations that

force certain signals to their desired values
 Notations:

 1/0 is denoted as D, meaning that good-value is 1 while faulty value is 0
 Similarly, 0/1 is denoted D’
 Both D and D’ are called fault effects (FE)

fault propagation

fault activation

c

a

f
b

1/0

0

1

1

0

74

Structural Test Generation
D-Algorithm

 Fault activation
 Setting the faulty signal to either 0 or 1 is a Line Justification

problem
 Fault propagation

1. select a path to a PO  decisions
2. once the path is selected  a set of line justification (LJ)

problems are to be solved
 Line justification

 Involves decisions or implications
 Incorrect decisions: need backtracking

a
b cTo justify c=1  a=1 and b=1 (implication)

To justify c=0  a=0 or b=0 (decision)

75

Structural Test Generation
D-Algorithm: Fault Propagation

 Fault activation
 G1=0  { a=1, b=1, c=1 }  { G3=0 }

 Fault propagation: through G5 or G6
 Decision through G5:

 G2=1  { d=0, a=0 }  inconsistency at a  backtrack !!
 Decision through G6:

  G4=1  e=0  done !! The resulting test is (111x0)

f1

f2

G5

G6

G1

G2

G3
G4

a
b
c

d

e

G5 G6

decision tree

fail success

{ G5, G6 }

D-frontiers: are the gates whose output value is x, while one or more
Inputs are D or D’. For example, initially, the D-frontier is { G5, G6 }.

76

Structural Test Generation
D-Algorithm: Line Justification

 FA  set h to 0
 FP  e=1, f=1 (o=0) ; FP  q=1, r=1
 To justify q=1  l=1 or k=1
 Decision: l =1  c=1, d=1  m=0, n=0  r=0  inconsistency at r  backtrack !
 Decision: k=1  a=1, b=1
 To justify r=1  m=1 or n=1 (c=0 or d=0)  Done ! (J-frontier is )

a
b
c
d

e
f
h

p

k

l
q

r
m
n
o

s

corresponding decision tree

l=1 k=1

m=1 o=1
n=1

J-frontier: is the set of gates
whose output value is known
(i.e., 0 or 1), but is not implied
by its input values.
Ex: initially, J-frontier is {q=1, r=1}

fail

success

q=1

r=1

77

Test Generation
 A branch-and-bound search
 Every decision point is a branching point
 If a set of decisions lead to a conflict, a backtrack is taken

to explore other decisions
 A test is found when

1. fault effect is propagated to a PO, and
2. all internal lines are justified

 No test is found after all possible decisions are tried 
Then, target fault is undetectable

 Since the search is exhaustive, it will find a test if one
exists

For a combinational circuit, an undetectable fault is also a redundant fault
 Can be used to simplify circuit.

78

Implication

 Implication
 Compute the values that can be uniquely determined

Local implication: propagation of values from one line to its
immediate successors or predecessors

Global implication: the propagation involving a larger area
of the circuit and re-convergent fanout

Maximum implication principle
 Perform as many implications as possible
 It helps to either reduce the number of problems that

need decisions or to reach an inconsistency sooner

79

Forward Implication

0
x

1
1

1
x a

0

x

x

J-frontier={ ...,a }

Before

D'
D a

x D-frontier={ ...,a }

0
x

1
1

1
0 a

0

1

0

J-frontier={ ... }

After

D'
D a

0 D-frontier={ ... }

80

Backward Implication

x
x

x
1

x
x J-frontier={ ... }

1

0

x
1

x

a
0

1
1

0
1

x
x a

0

0

1

J-frontier={ ...,a }

1 1

1

Before After

81

D-Algorithm (1/4)
 Example

 Five logic values {0, 1, x, D, D’}

h

Try to propagate
fault effect thru G1
 Set d to 1

Try to propagate
fault effect thru G2
 Set j,k,l,m to 1

1

1

1

1

D

n

d

e

f
f'

e'

d'

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2
0

1

D’ ≠

Conflict at k
 Backtrack !

82

D-Algorithm (2/4)
 Example

 Five logic values {0, 1, x, D, D’}

n

d

e

f
f'

e'

d'
h

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2

1

1

1

D

0

1

0

1

D’ ≠

Conflict at m
 Backtrack !

D’ (next D-frontier chosen)

Try to propagate
fault effect thru G2
 Set j,l,m to 1

83

D-Algorithm (3/4)
 Example

 Five logic values {0, 1, x, D, D’}

n

d

e

f
f'

e'

d'
h

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2

D’

1

1

D

0

1

D’ (next D-frontier chosen)

0

1

Fault propagation
and line justification
are both complete
 A test is found !

This is a case of
multiple path sensitization !

Try to propagate
fault effect thru G2
 Set j,l to 11

84

D-Algorithm (4/4)

Decision Implication Comments

a=0 Active the fault
h=1
b=1 Unique D-drive
c=1
g=D

d=1 Propagate via i
i=D’
d’=0

j=1 Propagate via n
k=1
l=1
m=1

n=D
e’=0
e=1
k=D’ Contradiction

e=1 Propagate via k
k=D’
e’=0
j=1

l=1 Propagate via n
m=1

n=D
f’=0
f=1
m=D’ Contradiction

f=1 Propagate via m
m=D’
f’=0
l=1
n=D

85

Decision Tree on D-Frontier

 The decision tree
 Node  D-frontier
 Branch  decision taken
 A Depth-First-Search (DFS) strategy is often used

86

PODEM Algorithm
 PODEM: Path-Oriented DEcision Making

 Fault Activation (FA) and Propagation (FP)

 lead to sets of Line Justification (LJ) problems. The LJ problems can be solved via
value assignments.

 In D-algorithm

 TG is done through indirect signal assignment for FA, FP, and LJ, that eventually
maps into assignments at PI’s

 The decision points are at internal lines

 The worst-case number of backtracks is exponential in terms of the number of
decision points (e.g., at least 2k for k decision nodes)

 In PODEM
 The test generation is done through a sequence of direct assignments at PI’s

 Decision points are at PIs, thus the number of backtracking might be fewer

87

PODEM Algorithm
Search Space of PODEM

 Complete search space

 A binary tree with 2n leaf nodes, where n is the number of PIs

 Fast test generation

 Need to find a path leading to a SUCCESS terminal quickly

0 1

c

d

0

d

1

d

0 1

b
0 1

c

d

0

d

1
c

d

0

d

1

0 1

F F F F

b

c

d

a

S S F F

88

PODEM Algorithm
Objective and Backtrace

 PODEM
 Also aims at establishing a sensitization path based on fault

activation and propagation like D-algorithm
 Instead of justifying the signal values required for sensitizing

the selected path, objectives are setup to guide the decision
process at PIs

 Objective
 is a signal-value pair (w, vw)

 Backtrace
 Backtrace maps a desired objective into a PI assignment that

is likely to contribute to the achievement of the objective
 Is a process that traverses the circuit back from the objective

signal to PIs
 The result is a PI signal-value pair (x, vx)
 No signal value is actually assigned during backtrace (toward

PI) !

89

PODEM Algorithm
Objective

Objective routine involves
 selection of a D-frontier, G
 selection of an unspecified input gate of G

Objective() {
/* The target fault is w s-a-v */
/* Let variable obj be a signal-value pair */
if (the value of w is x) obj = (w, v’);
else {

select a gate (G) from the D-frontier;
select an input (j) of G with value x;
c = controlling value of G;
obj = (j, c’);

}
return (obj);

}

fault activation

fault propagation

90

PODEM Algorithm
Backtrace

 Backtrace routine involves
 finding an all-x path from objective site to a PI, i.e.,

every signal in this path has value x

Backtrace(w, vw) {
/* Maps objective into a PI assignment */
G = w; /* objective node */
v = vw; /* objective value */
while (G is a gate output) { /* not reached PI yet */

inv = inversion of G;
select an input (j) of G with value x;
G = j; /* new objective node */
v = v⊕inv; /* new objective value */

}
/* G is a PI */ return (G, v);

}

91

PODEM Algorithm
PI Assignment

0 1

0 1

0

b

c

d

a

S

failure

PIs: { a, b, c, d }
Current Assignments: { a=0 }
Decision: b=0  objective fails
Reverse decision: b=1
Decision: c=0  objective fails
Reverse decision: c=1
Decision: d=0

0

failureFailure means fault effect cannot be
propagated to any PO under current
PI assignments

92

PODEM Algorithm
PODEM () /* using depth-first-search */

begin

If(error at PO) return(SUCCESS);

If(test not possible) return(FAILURE);

(k, vk) = Objective(); /* choose a line to be justified */

(j, vj) = Backtrace(k, vk); /* choose the PI to be assigned */

Imply (j, vj); /* make a decision */

If (PODEM()==SUCCESS) return (SUCCESS);

Imply (j, vj’); /* reverse decision */

If (PODEM()==SUCCESS) return(SUCCESS);

Imply (j, x);

Return (FAILURE);

end

93

PODEM Algorithm (1/4)

Example

n

d

e

f

f'

e'

d'
h

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2

1

0

1

1

0

1 Select D-frontier G2 and
set objective to (k,1)
 e = 0 by backtrace
 break the sensitization

across G2 (j=0)
 Backtrack !

94

PODEM Algorithm (2/4)

Example

n

d

e

f

f'

e'

d'
h

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2

1 Select D-frontier G3 and
set objective to (e,1)
 No backtrace is needed
 Success at G3

G3

G4

1
0

1

95

PODEM Algorithm (3/4)

Example

n

d

e

f

f'

e'

d'
h

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2

1

D’

D

0

1

1 Select D-frontier G4 and
set objective to (f,1)
 No backtrace is needed
 Succeed at G4 and G2
 D appears at one PO
 A test is found !!

G3

G4

1
0

1

D’

96

PODEM Algorithm (4/4)
Objective PI assignment Implications D-frontier Comments

a=0 a=0 h=1 g
b=1 b=1 g
c=1 c=1 g=D i,k,m
d=1 d=1 d’=0

i=D’ k,m,n
k=1 e=0 e’=1

j=0
k=1
n=1 m no solutions!  backtrack

e=1 e’=0 flip PI assignment

j=1
k=D’ m,n

l=1 f=1 f’=0
l=1
m=D’
n=D

n

d

e

f
f'

e'

d' h

i

j

k

l

m

gabc

1
0

D’

D0
1
1

1

D’

1

D

0

1

0

1
D’

1

Assignments need to be
reversed during backtracking

97

PODEM Algorithm
Decision Tree
 Decision node:

PI selected through backtrace for value assignment
 Branch:

value assignment to the selected PI

a

b

c

d

e

0

0

1

1

1

f

1

fail

success

98

Termination Conditions

 D-algorithm
 Success:

(1) Fault effect at an output (D-frontier may not be empty)
(2) J-frontier is empty

 Failure:
(1) D-frontier is empty (all possible paths are false)
(2) J-frontier is not empty

 PODEM
 Success:

Fault effect seen at an output
 Failure:

Every PI assignment leads to failure, in which D-frontier is
empty while fault has been activated

99

PODEM Overview
 PODEM

 examines all possible input patterns implicitly but exhaustively
(branch-and-bound) for finding a test

 complete like D-algorithm (i.e., will find a test if exists)

 Other key features
 No J-frontier, since there are no values that require

justification
 No consistency check, as conflicts can never occur
 No backward implication, because values are propagated only

forward
 Backtracking is implicitly done by simulation rather than by an

explicit and time-consuming save/restore process
 Experiments show that PODEM is generally faster than D-

algorithm

100

Outline

Fault Modeling

Fault Simulation

Automatic Test Pattern Generation

Design for Testability

101

Why DFT ?

Direct testing is way too difficult !
 Large number of FFs
 Embedded memory blocks
 Embedded analog blocks

102

Design for Testability

 Definition
 Design for testability (DFT) refers to those design

techniques that make test generation and testing cost-
effective

 DFT methods
 Ad-hoc methods, full and partial scan, built-in self-test

(BIST), boundary scan

 Cost of DFT
 Pin count, area, performance, design-time, test-time,

etc.

103

Important Factors

Controllability
Measure the ease of controlling a line

Observability
Measure the ease of observing a line at PO

DFT deals with ways of improving
Controllability and observability

104

Test Point Insertion

 Employ test points to enhance controllability
and observability
 CP: Control Points

Primary inputs used to enhance controllability
 OP: Observability Points

Primary outputs used to enhance observability
0

1

Add 0-CP

Add 1-CP

Add OP

PO

105

Control Point Insertion

 Normal operation:
When CP_enable = 0

 Inject 0:
Set CP_enable = 1 and CP = 0

 Inject 1:
Set CP_enable = 1 and CP = 1

C1
C2MUX

0

1

CP

CP_enable

Inserted circuit for controlling line w

w

106

Control Point Selection

Goal
Controllability of the fanout-cone of the added

point is improved

Common selections
Control, address, and data buses
 Enable/hold inputs
 Enable and read/write inputs to memory
Clock and preset/clear signals of flip-flops
Data select inputs to multiplexers and

demultiplexers

107

Observation Point Selection

 Goal
 Observability of the transitive fanins of the added point

is improved

 Common choice
 Stem lines with more fanouts
 Global feedback paths
 Redundant signal lines
 Output of logic devices having many inputs

MUX, XOR trees

 Output from state devices
 Address, control and data buses

108

Problems with Test Point Insertion

 Large number of I/O pins
 Can be resolved by adding MUXs to reduce the number

of I/O pins, or by adding shift-registers to impose CP
values

X Z

X’ Z’Shift-register R1

control Observe

Shift-register R2

109

What Is Scan ?

Objective
 To provide controllability and observability at internal

state variables for testing

Method
 Add test mode control signal(s) to circuit
 Connect flip-flops to form shift registers in test mode
 Make inputs/outputs of the flip-flops in the shift register

controllable and observable

 Types
 Internal scan

Full scan, partial scan, random access
 Boundary scan

110

Scan Concept

Combinational
Logic

FF

FF

FF

Mode Switch
(normal or test)

Scan In

Scan Out

111

Logic Design before Scan Insertion

Sequential ATPG is extremely difficult:
due to the lack of controllability and observability at flip-flops.

D Q

input
pins

clock

output
pins

D Q D Q

Combinational Logic

112

Logic Design after Scan Insertion

Scan Chain provides an easy access to flip-flops
Pattern generation is much easier !!

11
D Q

input
pins

clock

output
pins

11
D Q

11
D Q

Combinational Logic

scan-input scan-outputM
U

X

M
U

X

M
U

X

scan-enable

 g stuck-at-0

q1
q2
q3

q1 q2
q3

113

Scan Insertion

 Example
 3-stage counter

11

D
Q

input
pins

clock

output
pins

11

D
Q

11

D
Q

Combinational Logic

q1 q2
q3

 g stuck-at-0

q1
q2
q3

It takes 8 clock cycles to set the flip-flops to be (1, 1, 1), for detecting
the target fault g stuck-at-0 fault (220 cycles for a 20-stage counter !)

114

Overhead of Scan Design

Case study
#CMOS gates = 2000
 Fraction of flip-flops = 0.478
 Fraction of normal routing = 0.471

0.9111.9%14.05%Optimized

0.8716.93%14.05%Hierarchical

1.000None

Normalized
operating
frequency

Actual area
overhead

Predicted
overhead

Scan
implementation

115

Full Scan Problems

 Problems
 Area overhead
 Possible performance degradation
 High test application time
 Power dissipation

 Features of commercial tools
 Scan-rule violation check (e.g., DFT rule check)
 Scan insertion (convert a FF to its scan version)
 ATPG (both combinational and sequential)
 Scan chain reordering after layout

116

Scan-Chain Reordering
 Scan-chain order is often decided at gate-level without knowing

the cell placement
 Scan-chain consumes a lot of routing resources, and could be

minimized by re-ordering the flip-flops in the chain after layout is
done

Scan-In

Scan-Out Scan-Out

Scan-In

Layout of a cell-based design A better scan-chain order

Scan cell

117

Partial Scan

 Basic idea
 Select a subset of flip-flops for scan
 Lower overhead (area and speed)
 Relaxed design rules

 Cycle-breaking technique
 Cheng & Agrawal, IEEE Trans. On Computers, April 1990
 Select scan flip-flops to simplify sequential ATPG
 Overhead is about 25% off than full scan

 Timing-driven partial scan
 Jou & Cheng, ICCAD, Nov. 1991
 Allow optimization of area, timing, and testability

simultaneously

118

Full Scan vs. Partial Scan

scan design

full scan partial scan

every flip-flop is a scan-FF NOT every flip-flop is a scan-FF

scan time

hardware overhead

fault coverage

ease-of-use

longer

more

~100%

easier

shorter

less

unpredictable

harder

119

Area Overhead vs. Test Effort

test
effort

area overhead

no scan partial scan full scan

area overhead

test
generation
complexity

120

Conclusions
 Testing

 Conducted after manufacturing
 Must be considered during the design process

 Major fault models
 Stuck-at, bridging, stuck-open, delay fault, …

 Major tools needed
 Design-for-Testability

 By scan chain insertion or built-in self-test
 Fault simulation
 ATPG

 Other Applications in CAD
 ATPG is a way of Boolean reasoning and is applicable to may

logic-domain CAD problems

