Proofs and Types Sums in Natural Deduction

Bow-Yaw Wang

Academia Sinica

Spring 2012

Hypothesis and Introduction Rules

- Hypothesis: A
- Introductions:

$$
\begin{array}{ccc}
\vdots & \vdots & \vdots \\
\frac{\dot{A}}{A}{ }^{B} \\
A \wedge B \\
& A \vee B \\
\hline & & \vdots \\
{[A]} & \vdots & \vdots \\
\vdots & \frac{A}{A} & \vdots B \\
\frac{B}{A \Rightarrow B} \Rightarrow \mathcal{I} & \frac{A[a / \xi]}{\exists \xi \cdot A} \exists \mathcal{I}
\end{array}
$$

- In $\forall \mathcal{I}, \xi$ is not free in any hypothesis.

Elimination Rules

- Eliminations:

$$
\frac{A \dot{\wedge} B}{A} \wedge 1 \mathcal{E}
$$

$\frac{A \wedge B}{B} \wedge 2 \mathcal{E}$

- ξ must not be free in the hypotheses or the conclusion after ucing 고

Defects

- The introduction rules $\vee 1 \mathcal{I}, \vee 2 \mathcal{I}$, and $\exists \mathcal{I}$ are nice.
- They are symmetric to $\wedge 1 \mathcal{E}, \wedge 2 \mathcal{E}$, and $\forall \mathcal{E}$ respectively.
- The elimination rules $\perp \mathcal{E}, \vee \mathcal{E}$, and $\exists \mathcal{E}$ are bad.
- They are not symmetric.
- The formula C comes out of nowhere.
- They also introduce more deductions to the same "proof."

$$
\begin{array}{cccccc}
& {[A]} & {[B]} & & & {[A]} \\
\vdots & \vdots & \vdots & & & \vdots B] \\
A \stackrel{ }{\vee} B & \dot{C} & \dot{C} \\
\frac{C}{D} r & & & \vdots & \vdots & \vdots \\
& & \text { "equal" } & \frac{A \dot{C}}{D} r & \frac{\dot{C}}{D} r \\
D & &
\end{array}
$$

Standard Conversions

- New conversions are needed for new rules:

Principal Premise

- Not every introduction followed by elimination is a redex. Consider

$$
\frac{\begin{array}{c}
{[A]} \\
\vdots \\
\frac{B}{A \Rightarrow B} \Rightarrow \mathcal{I}
\end{array} \quad \begin{array}{c}
\vdots \\
\\
C
\end{array}(A \Rightarrow B) \Rightarrow C}{}=\mathcal{E}
$$

- For elimination rules with multiple premises $(\Rightarrow \mathcal{E}, \vee \mathcal{E}, \exists \mathcal{E})$, a redex has an introduction ending in the principal premise.

$$
\begin{array}{ccccccc}
& & & {[A]} & {[B]} & & {[A]} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\frac{A}{A} A \Rightarrow B \\
B
\end{array} \Rightarrow \mathcal{E} \quad \frac{A \vee B}{C} \begin{array}{ll}
C & \frac{\exists \dot{C} \cdot A}{C} \\
C & \mathcal{C}
\end{array}
$$

- A principal branch of a deduction is a sequence of formulae $A_{0}, A_{1}, \ldots, A_{n}$ that
- A_{0} is an (undischarged) hypothesis;
- A_{n} is the conclusion;

Subformula Property

Theorem 1

Let δ be a normal deduction in the $(\wedge, \Rightarrow, \forall)$ fragment. Then

- every formula in δ is a subformula of the conclusion or a hypothesis of δ;
- if δ ends in an elimination, it has a principal branch. (particularly, the conclusion is a subformula of a hypothesis.)

Proof.

- If δ is a hypothesis, trivil.
- If δ ends in an introduction, the premises are subformulae of the conclusion. IH gives the result. For example, $\frac{A \quad B}{A \wedge B} \wedge \mathcal{I}$.
- If δ ends in an elimination, then the proof above the

Subformula Property

- For the full fragment, the subformula property does not hold.
- The "bad" eliminations can have an arbitrary C.
- Here is a concrete example:

$$
\frac{A \vee A}{\left.\frac{[A]}{A \wedge A} \wedge A\right]} \wedge \mathcal{I} \quad \frac{[A]}{A \wedge A} \frac{[A]}{A} \wedge \mathcal{I}
$$

- Observe that two consecutive eliminations can be exchanged without changing the nature of the "proof."

$$
\begin{gathered}
A \vee A \\
\frac{\frac{[A]}{}[A]}{A} \wedge \mathcal{I} \\
A
\end{gathered} \frac{[A]}{} \quad \frac{A \wedge A}{A} \wedge 1 \mathcal{E}(\mathcal{E}
$$

- More conversions are needed!

Standard conversions

Commuting Conversions

- $\frac{C \quad \vdots}{D} \mathrm{r}$ is an elimination of principal premise C with conclusion D.
- Commutation of $\perp \mathcal{E}$.
$\frac{\frac{\perp}{C} \perp \mathcal{E} \quad \vdots}{D} \mathrm{r}$
converts to

$$
\frac{\perp}{D} \perp \mathcal{E}
$$

- Commutation of $\vee \mathcal{E}$.

- Commutation of $\exists \mathcal{E}$.

Example

converts to

Properties of Conversion

- Church-Rosser property still holds.
- The strong normalisation theorem also holds.
- The extension to the full fragment however is very technical.
- Just count how many rules and conversions we have!
- We will not give the details here.

Curry-Howard Isomorphism

- The full fragment has its corresponding calculus.
- For \perp and \vee, we will add a new type and terms to represent deductions.
- Observe that conversion rules for terms are derived from conversions of deductions.
- For \perp, let Emp be the empty type and $\epsilon_{U}:$ Emp $\rightarrow U$.

$$
\begin{array}{rll}
\pi^{1}\left(\epsilon_{U \times V} t\right) & \rightsquigarrow \epsilon_{U} t \\
\pi^{2}\left(\epsilon_{U \times V} t\right) & \rightsquigarrow \epsilon_{V} t \\
\left(\epsilon_{U \rightarrow V} t\right) u & \rightsquigarrow \epsilon_{V} t \\
\epsilon_{U}\left(\epsilon_{\mathrm{Emp}} t\right) & \rightsquigarrow \epsilon_{U} t \\
\delta x . u y . v\left(\epsilon_{R+S} t\right) & \rightsquigarrow \epsilon_{U} t \quad(u, v: U)
\end{array}
$$

Curry-Howard Isomorphism

- For example, consider the following conversion in deductions:

$$
\frac{\frac{\vdots}{\perp} \perp V \perp \mathcal{E} \quad U}{V} \Rightarrow \mathcal{E} \quad \begin{gathered}
\text { converts to } \\
\\
\frac{\vdots}{V} \perp \mathcal{E}
\end{gathered}
$$

- Its corresponding conversion is

$$
\left(\epsilon_{U \rightarrow V} t\right) u \rightsquigarrow \epsilon_{V} t
$$

Curry-Howard Isomorphism

- For $U \vee V$, let $U+V$ be the sum type, $\iota^{1}: U \rightarrow U+V$ and $\iota^{2}: V \rightarrow U+V$. If $x: R$ and $y: S$ are variables, and $u: U, v: V, t: R+S$ are terms, then $\delta x . u$ y.v $t: U$. The standard conversions are

$$
\delta x . u y . v\left(\iota^{1} r\right) \rightsquigarrow u[r / x] \quad \delta x . u y . v\left(\iota^{2} s\right) \rightsquigarrow v[s / x]
$$

The commuting conversions are

$$
\begin{array}{rllrl}
\pi^{1}(\delta x . u y \cdot v t) & \rightsquigarrow & \delta x .\left(\pi^{1} u\right) y \cdot\left(\pi^{1} v\right) t & U=V \times W \\
\pi^{2}(\delta x \cdot u y \cdot v t) & \rightsquigarrow & \delta x \cdot\left(\pi^{2} u\right) y \cdot\left(\pi^{2} v\right) t & U=V \times W \\
(\delta x \cdot u y \cdot v t) w & \rightsquigarrow & \delta x .(u w) y \cdot(v w) t & U=V \rightarrow W \\
\epsilon_{W}(\delta x \cdot u y \cdot v t) & \rightsquigarrow & \left(\delta x .\left(\epsilon_{W} u\right) y \cdot\left(\epsilon_{W} v\right) t\right) & U=\operatorname{Emp} \\
\delta x^{\prime} \cdot u^{\prime} y^{\prime} \cdot v^{\prime}(\delta x . u y \cdot v t) & \rightsquigarrow & \delta x \cdot\left(\delta x^{\prime} \cdot u^{\prime} y^{\prime} \cdot v^{\prime} u\right) y \cdot\left(\delta x^{\prime} \cdot u^{\prime} y^{\prime} \cdot v^{\prime} v\right) t \\
& & & U=V+W
\end{array}
$$

Curry-Howard Isomorphism

- Consider the following conversion in deductions:

- Its corresponding conversion is

$$
\epsilon_{W}(\delta x . u y . v t) \rightsquigarrow\left(\delta x \cdot\left(\epsilon_{W} u\right) y \cdot\left(\epsilon_{W} v\right) t\right)
$$

