Proofs and Types Cut Elimination (Hauptsatz)

Bow-Yaw Wang

Academia Sinica

Spring 2012

Cut

Recall the cut rule:

$$\frac{\underline{A} \vdash C, \underline{B} \quad \underline{A'}, C \vdash \underline{B'}}{\underline{A}, \underline{A'} \vdash \underline{B}, \underline{B'}} Cut$$

- If the cut rule were necessary, proof search would be difficult.
 - ► How can a theorem prover "guess" the cut formula *C*?
- Gentzen showed that the cut rule is redundant in sequent calculus.
- More precisely, a proof with cuts in sequent calculus can be transformed to a proof without cuts.
- ▶ We begin by considering the forms of the cut formula.

▶ A conjunction ($\mathcal{R} \land$ and $\mathcal{L} 1 \land$).

$$\frac{\underline{A}\vdash C,\underline{B}\quad \underline{A}'\vdash D,\underline{B}'}{\underline{A},\underline{A}'\vdash C\land D,\underline{B},\underline{B}'}\ \mathcal{R}\land\ \frac{\underline{A}'',C\vdash \underline{B}''}{\underline{A}'',C\land D\vdash \underline{B}''}\ \mathcal{L}1\land\\ \underline{A},\underline{A}',\underline{A}''\vdash \underline{B},\underline{B}',\underline{B}''$$

is transformed to

$$\frac{\underline{A} \vdash C, \underline{B} \quad \underline{A}'', C \vdash \underline{B}''}{\underline{\underline{A}, \underline{A}'' \vdash \underline{B}, \underline{B}''}} \ Cut$$

▶ A conjunction ($\mathcal{R} \land$ and $\mathcal{L} 2 \land$).

$$\frac{\underline{A} \vdash C, \underline{B} \quad \underline{A}' \vdash D, \underline{B}'}{\underline{A}, \underline{A}' \vdash C \land D, \underline{B}, \underline{B}'} \quad \mathcal{R} \land \quad \frac{\underline{A}'', D \vdash \underline{B}''}{\underline{A}'', C \land D \vdash \underline{B}''} \quad \mathcal{L} 2 \land \\ A, A', A'' \vdash B, B', B''} \quad Cut$$

$$\frac{\underline{A} \vdash D, \underline{B} \quad \underline{A'}, D \vdash \underline{B'}}{\underline{A, \underline{A'}} \vdash \underline{B, \underline{B'}}} \quad Cut$$

▶ A disjunction ($\mathcal{R}1\lor$ and $\mathcal{L}\lor$).

$$\frac{\underline{\underline{A}} \vdash C, \underline{\underline{B}}}{\underline{\underline{A}} \vdash C \lor D, \underline{\underline{B}}} \ \mathcal{R} 1 \lor \quad \frac{\underline{\underline{A}}', \underline{C} \vdash \underline{\underline{B}}' \quad \underline{\underline{A}}'', \underline{D} \vdash \underline{\underline{B}}''}{\underline{\underline{A}}', \underline{\underline{A}}'', \underline{C} \lor \underline{D} \vdash \underline{\underline{B}}', \underline{\underline{B}}''} \ \mathcal{L} \lor \\ \underline{\underline{A}, \underline{A}', \underline{A}''} \vdash \underline{\underline{B}}, \underline{\underline{B}}', \underline{\underline{B}}''$$

is transformed to

$$\frac{\underline{A} \vdash C, \underline{B} \quad \underline{A'}, C \vdash \underline{B'}}{\underline{A}, \underline{A'} \vdash \underline{B}, \underline{B'}} \quad Cut$$

$$\underline{A, \underline{A'}, \underline{A''} \vdash \underline{B}, \underline{B'}, \underline{B''}}$$

▶ A disjunction ($\mathcal{R}2\lor$ and $\mathcal{L}\lor$).

$$\frac{\underline{\underline{A}} \vdash D, \underline{\underline{B}}}{\underline{\underline{A}} \vdash C \lor D, \underline{\underline{B}}} \ \mathcal{R} 2 \lor \quad \frac{\underline{\underline{A}}', C \vdash \underline{\underline{B}}' \quad \underline{\underline{A}}'', D \vdash \underline{\underline{B}}''}{\underline{\underline{A}}', \underline{\underline{A}}'', C \lor D \vdash \underline{\underline{B}}', \underline{\underline{B}}''} \ \underline{\mathcal{L}} \lor \\ \underline{\underline{A}, \underline{A}', \underline{\underline{A}}'' \vdash \underline{\underline{B}}, \underline{\underline{B}}', \underline{\underline{B}}''} \ Cut$$

$$\frac{\underline{A} \vdash D, \underline{B} \quad \underline{A''}, D \vdash \underline{B''}}{\underline{A} \quad \underline{A'} \quad \underline{A''} \vdash \underline{B} \quad \underline{B''}} \quad Cut$$

▶ A negation ($\mathcal{R}\neg$ and $\mathcal{L}\neg$).

$$\frac{\underline{\underline{A}}, C \vdash \underline{\underline{B}}}{\underline{\underline{A}} \vdash \neg C, \underline{\underline{B}}} \mathcal{R} \neg \frac{\underline{\underline{A}'} \vdash C, \underline{\underline{B}'}}{\underline{\underline{A}'}, \neg C \vdash \underline{\underline{B}'}} \mathcal{L} \neg$$

$$\underline{\underline{A}, \underline{A'} \vdash \underline{B}, \underline{\underline{B}'}} Cut$$

is transformed to

$$\frac{\underline{\underline{A}'} \vdash \underline{C}, \underline{\underline{B}'} \quad \underline{\underline{A}}, \underline{C} \vdash \underline{\underline{B}}}{\underline{\underline{A}'}, \underline{\underline{A}} \vdash \underline{\underline{B}'}, \underline{\underline{B}}} \quad Cut$$

▶ An implication ($\mathcal{R} \Rightarrow$ and $\mathcal{L} \Rightarrow$).

$$\frac{\underline{A}, C \vdash D, \underline{B}}{\underline{A} \vdash C \Rightarrow D, \underline{B}} \mathcal{R} \Rightarrow \frac{\underline{A}' \vdash C, \underline{B}' \quad \underline{A}'', D \vdash \underline{B}''}{\underline{A}', \underline{A}'', C \Rightarrow D \vdash \underline{B}', \underline{B}''} \mathcal{L} \Rightarrow \underline{A}, \underline{A}', \underline{A}'' \vdash \underline{B}, \underline{B}', \underline{B}''} Cut$$

$$\frac{\underline{A'} \vdash C, \underline{B'} \quad \underline{A}, C \vdash D, \underline{B}}{\underline{\underline{A'}, \underline{A} \vdash \underline{B'}, D, \underline{B}}} \ Cut$$

▶ A universal quantification ($\mathcal{R}\forall$ and $\mathcal{L}\forall$).

$$\frac{\underline{\underline{A} \vdash C, \underline{B}}}{\underline{\underline{A} \vdash \forall \xi. C, \underline{B}}} \ \mathcal{R} \forall \quad \frac{\underline{A'}, C[a/\xi] \vdash \underline{B'}}{\underline{A'}, \forall \xi. C \vdash \underline{B'}} \ \mathcal{L} \forall \\ \underline{\underline{A}, \underline{A'} \vdash \underline{B}, \underline{B'}} \ Cut$$

is transformed to

$$\frac{\underline{A} \vdash C[a/\xi], \underline{B} \quad \underline{A}', C[a/\xi] \vdash \underline{B}'}{\underline{A}, \underline{A}' \vdash \underline{B}, \underline{B}'} \quad Cut$$

▶ An existential quantification ($\mathcal{R}\exists$ and $\mathcal{L}\exists$).

$$\frac{\underline{A} \vdash C[a/\xi], \underline{B}}{\underline{A} \vdash \exists \xi. C, \underline{B}} \ \mathcal{R} \exists \ \frac{\underline{A}', C \vdash \underline{B}'}{\underline{A}', \exists \xi. C, \underline{B}'} \ Cut$$

$$\frac{\underline{A} \vdash C[a/\xi], \underline{B} \quad \underline{A}', C[a/\xi] \vdash \underline{B}'}{A, A' \vdash B, B'} \quad Cut$$

Principal Lemma

- ▶ Let *A* be a formula. The *degree* $\partial(A)$ is defined as follows.
 - ▶ If *A* is atomic, $\partial(A) = 1$.
 - $\partial(A \wedge B) = \partial(A \vee B) = \partial(A \Rightarrow B) = \max(\partial(A), \partial(B)) + 1.$
 - $\rightarrow \partial(\neg A) = \partial(\forall \xi.A) = \partial(\exists \xi.A) = \partial(A) + 1.$
- ▶ Observe that $\partial(A[a/\xi]) = \partial(A)$.
- ▶ The *degree* of a cut rule is the degree of the cut formula.
 - The key cases show how to replace a cut with at most two cuts with lower degree.
- ▶ The degree $d(\pi)$ for a proof π is the sup of the degrees of its cuts.
 - Hence $d(\pi) = 0$ if π is cut-free.
- ▶ The height $h(\pi)$ of a proof π is the height of its associated tree.
 - If π ends in a rule with premises $\pi_1, \pi_2, \dots, \pi_n$, then $h(\pi) = \sup(h(\pi_i)) + 1.$
- ▶ If *A* is a sequence of formulae, \underline{A} − C denotes the sequence obtained by removing all occurrences of C from A.

Principal Lemma

Lemma 1

Let C be a formula of degree d, and π, π' proofs of $\underline{A} \vdash \underline{B}$ and $\underline{A}' \vdash \underline{B}'$ of degrees less than d. Then there is a proof ϖ of $\underline{A}, \underline{A}' - C \vdash \underline{B} - C, \underline{B}'$ of degree less than d.

Proof.

By induction on $h(\pi) + h(\pi')$. Suppose the last rule r of π has premises $\pi_i : \underline{A}_i \vdash \underline{B}_i$, and the last rule r' of π' has premises $\pi_i' : \underline{A}_i \vdash \underline{B}_i$. Consider

- $\blacktriangleright \pi$ is an axiom.
 - ▶ π proves $C \vdash C$. Then $\varpi : C, \underline{A}' C \vdash \underline{B}'$ is obtained from π' through structural rules.
 - ▶ π proves $D \vdash D$. Then $\varpi : D, \underline{A}' C \vdash D, \underline{B}'$ is obtained from π through structural rules.
- $ightharpoonup \pi'$ is an axiom. Handled as in the previous case.
- ▶ r is a structural rule. By IH on π_1 and π' , there is $\varpi_1 : \underline{A}_1, \underline{A}' C \vdash \underline{B}_1 C, \underline{B}'$. ϖ is obtained from ϖ_1 through structural rules.
- ► r' is a structural rule. Dual of the previous case.

Principal Lemma

Proof (cont'd).

- ▶ r is a logical rule other than an \mathcal{R} -rule with the principal formula C. By IH on π_i and π' , there are $\varpi_i : \underline{A}_i, \underline{A}' C \vdash \underline{B}_i C, \underline{B}'$. Since the rule r does not create any C from \underline{B}_i , ϖ is obtained by applying the rule r to ϖ_i .
- r' is a logical rule other than an *L*-rule with the principal formula *C*. Dual of the previous case.
- ▶ r is a logical \mathcal{R} -rule with the principal formula C and r is a logical \mathcal{L} -rule with the principal formula C. By IH on π_i and π' , π and π'_i , there are

$$\varpi_i : \underline{A}_i, \underline{A}' - C \vdash \underline{B}_i - C, \underline{B}' \quad (\pi_i \text{ and } \pi')$$

 $\varpi_i' : \underline{A}, \underline{A}_i' - C \vdash \underline{B} - C, \underline{B}_i' \quad (\pi \text{ and } \pi_i')$

Apply r to ϖ_i and r' to ϖ'_i and obtain

$$\underline{A}, \underline{A}' - C \vdash C, \underline{B} - C, \underline{B}'$$
 (apply the \mathcal{R} -rule r to ϖ_i)
$$\underline{A}, \underline{A}' - C, C \vdash \underline{B} - C, \underline{B}'$$
 (apply the \mathcal{L} -rule r' to ϖ'_i)

We obtain $\underline{A}, \underline{A}' - C, \underline{A}, \underline{A}' - C \vdash \underline{B} - C, \underline{B}', \underline{B} - C, \underline{B}'$ through the cut rule

Hauptsatz

Lemma 2

If π is a proof of a sequent of degree d > 0, a proof ϖ of the same sequent with a lower degree can be constructed.

Proof.

Induction on $h(\pi)$. Let r be the last rule of π with premises π_i .

- ▶ r is not a cut of degree d. By IH on π_i , we have ϖ_i of degree < d. ϖ is obtained by applying r to ϖ_i .
- r is a cut of degree *d*:

$$\frac{\underline{A} \vdash C, \underline{B} \quad \underline{A'}, C \vdash \underline{B'}}{A, A' \vdash B, B'} Cut$$

By IH on π_i , we have ϖ_i of degree < d. Apply the principal lemma to obtain ϖ of degree < d.

Theorem 3 (Gentzen, 1934)

The cut rule is redundant in sequent calculus.

Complexity of Cut Elimination

- We give a simple bound on the height of the cut-free proof obtained from cut elimination.
- The principal lemma is linear.
 - Eliminating a cut multiplies the height by 4 in the worst case.
 - Prove by induction.
- Lemma 2 is exponential.
 - ▶ Reducing the degree by 1 increases the height *h* of the proof by 4^h .
 - ▶ Apply the principal lemma to *h* cuts.

► Hauptsatz is hyperexponential. That is, 4⁴.

Resolution

- Consider proper axioms that models domain knowledge.
 - Say, for example, parent(x,y), parent(y,z) ⊢ grandparent(x,z)
- If a cut has an instance of a proper axiom as a premise, the cut cannot be eliminated.
- ▶ In other words, the cut rule (restricted to those sequents obtained from proper axioms) is not redundant.
- Moreover, if we have only atomic sequents as proper axioms, logical rules are not needed.
 - ▶ An *atomic* sequent is uilt from atomic formulae.
 - ► Example.
 parent(x,y),parent(y,z) ⊢ grandparent(x,z)
 - Counterexample. parent(x,y) ⊢ father(x,y) ∨ mother(x,y)

PROLOG

- ▶ In PROLOG, proper axioms are atomic intuitionistic sequents (or *Horn clauses*) $\underline{A} \vdash B$.
- ▶ We want to prove \vdash *B* (a *goal*).
- ► The PROLOG proof system has the following rules
 - ▶ instances $\underline{A} \vdash B$ of proper axioms;
 - ▶ identity axioms $A \vdash A$ with A atomic;
 - cut; and
 - the structural rules.
- We will show contraction and weakening are redundant in the PROLOG proof system.
 - ▶ Hence only exchange rules are needed.

PROLOG

Lemma 4

If the atomic sequent $\underline{A} \vdash \underline{B}$ *is provable in PROLOG, there is an intuitionistic* sequent $A' \vdash B'$ proved without contraction nor weakening with $A' \subseteq A$ and $B' \in B$.

Proof.

Induction on $\pi : A \vdash B$.

- ▶ If π is an axiom, then $A \vdash B$ is intuitionistic (that is, |B| = 1).
- ▶ If π ends in a structural rule with the premise $\underline{A}_1 \vdash \underline{B}_1$, we have $\underline{A}_1' \vdash \underline{B}_1'$ with $A_1' \subseteq A_1$ and $B_1' \in B_1$. Take $A' = A_1'$ and $B' = B_1'$.
- \blacktriangleright If π ends in a cut

$$\frac{\underline{A}_1 \vdash C, \underline{B}_1 \quad \underline{A}_2, C \vdash \underline{B}_2}{A_1, A_2 \vdash B_1, B_2} \quad Cut$$

By IH, we have $\underline{A}'_1 \vdash B'_1$ and $\underline{A}'_2 \vdash B'_2$. There are two cases:

- $B'_1 \neq C$. Take $A' = A'_1$ and $B' = B'_1$.
- $B'_1 = C$. If C occurs n times in \underline{A}'_2 , obtain $A_1, A_1, \dots, \underline{A_1}, \underline{A_2} - C \vdash B_2$ through exchanges and n cuts.

PROLOG

- ▶ Recall the goals are of the form \vdash *B*.
- Contraction and weakening rules are hence redundant (Lemma 4).
- Note that the deduction must be in the intuitionistic fragment.
 - $ightharpoonup \mathcal{R}X$ is never applicable.
- ▶ But then, $\mathcal{L}X$ can always be eliminated by reordering cuts.
- Moreover, cuts with an identity axiom is redundant.

$$\frac{\underline{A} \vdash C \quad C \vdash C}{\underline{A} \vdash C} \quad Cut$$

▶ In summary, we have

Theorem 5

In order to prove a goal, one only needs to use cut with instances of proper axioms.