Proofs and Types Cut Elimination (Hauptsatz)

Bow-Yaw Wang

Academia Sinica
Spring 2012

Cut

- Recall the cut rule:

$$
\frac{\underline{A} \vdash C, \underline{B} \quad \underline{A}^{\prime}, C \vdash \underline{B}^{\prime}}{\underline{A}, \underline{A}^{\prime} \vdash \underline{B}, \underline{B}^{\prime}} C u t
$$

- If the cut rule were necessary, proof search would be difficult.
- How can a theorem prover "guess" the cut formula C?
- Gentzen showed that the cut rule is redundant in sequent calculus.
- More precisely, a proof with cuts in sequent calculus can be transformed to a proof without cuts.
- We begin by considering the forms of the cut formula.

Key Cases

- A conjunction $(\mathcal{R} \wedge$ and $\mathcal{L} 1 \wedge)$.

$$
\begin{aligned}
& \frac{\underline{A} \vdash C, \underline{B} \quad \underline{A^{\prime}} \vdash D, \underline{B^{\prime}}}{\underline{A}, \underline{A^{\prime}} \vdash C \wedge D, \underline{B}, \underline{B}^{\prime}} \mathcal{R} \wedge \frac{\underline{A}^{\prime \prime}, C \vdash \underline{B^{\prime \prime}}}{\underline{A}^{\prime \prime}, C \wedge D \vdash \underline{B}^{\prime \prime}} \mathcal{L} 1 \wedge \\
& \underline{A}, \underline{,}^{\prime}, \underline{A}^{\prime \prime} \vdash \underline{B}, \underline{B}^{\prime}, \underline{B}^{\prime \prime}
\end{aligned}
$$

is transformed to

$$
\frac{\underline{A} \vdash \mathrm{C}, \underline{\underline{B}} \quad \underline{\underline{A}}^{\prime \prime}, C \vdash \underline{B}^{\prime \prime}}{\underline{A}, \underline{A}^{\prime \prime} \vdash \underline{B}, \underline{B}^{\prime \prime}} C u t
$$

- A conjunction $(\mathcal{R} \wedge$ and $\mathcal{L} 2 \wedge)$.

$$
\frac{\underline{A} \vdash C, \underline{B} \quad \underline{A}^{\prime} \vdash D, \underline{B}^{\prime}}{\underline{\underline{A}}, \underline{\underline{A}^{\prime} \vdash C \wedge D, \underline{B}, \underline{B}^{\prime}} \mathcal{R} \wedge \frac{\underline{A}^{\prime \prime}, D \vdash \underline{B}^{\prime \prime}}{\underline{A}^{\prime \prime}, C \wedge D \vdash \underline{B}^{\prime \prime}}} \underset{\underline{A}, \underline{A}^{\prime}, \underline{A}^{\prime \prime} \vdash \underline{B}, \underline{\underline{B}}^{\prime}, \underline{B}^{\prime \prime}}{C u t}
$$

is transformed to

$$
\frac{\underline{A} \vdash D, \underline{B} \quad \underline{A^{\prime}}, D \vdash \underline{B}^{\prime}}{\frac{\underline{A}, \underline{A^{\prime}} \vdash \underline{B}, \underline{B}^{\prime}}{\Delta \Lambda^{\prime} \Lambda^{\prime \prime} \vdash R R^{\prime} R^{\prime \prime}}} C u t
$$

Key Cases

- A disjunction ($\mathcal{R} 1 \vee$ and $\mathcal{L} \vee$).

$$
\frac{\frac{\underline{A} \vdash C, \underline{B}}{\underline{A} \vdash C \vee D, \underline{B}} \mathcal{R} 1 \vee \frac{\underline{A}^{\prime}, C \vdash \underline{B^{\prime}}}{\underline{A}^{\prime}} \underline{A}^{\prime \prime}, D \vdash \underline{B}^{\prime \prime}}{\underline{A^{\prime}}, \underline{A}^{\prime \prime}, C \vee D \vdash \underline{B}^{\prime}, \underline{B}^{\prime \prime}} \mathcal{L} \vee \stackrel{\underline{A}^{\prime \prime} \vdash \underline{B}, \underline{B}^{\prime}, \underline{B}^{\prime \prime}}{C u t}
$$

is transformed to

$$
\begin{aligned}
& \frac{\underline{A} \vdash C, \underline{B} \quad \underline{A^{\prime}}, C \vdash \underline{B}^{\prime}}{\underline{A}, \underline{A}^{\prime} \vdash \underline{B}, \underline{B}^{\prime}} C u t \\
& \overline{\underline{A}, \underline{A}^{\prime}, \underline{A^{\prime \prime}} \vdash \underline{B}, \underline{B}^{\prime}, \underline{B}^{\prime \prime}}
\end{aligned}
$$

- A disjunction ($\mathcal{R} 2 \vee$ and $\mathcal{L} \vee$).

$$
\left.\frac{\frac{\underline{A} \vdash D, \underline{B}}{\underline{A} \vdash C \vee D, \underline{B}} \mathcal{R} 2 \vee \frac{\underline{A}^{\prime}, C \vdash \underline{B}^{\prime}}{} \quad \underline{A}^{\prime \prime}, D \vdash \underline{B}^{\prime \prime}}{\underline{A}^{\prime}, \underline{A}^{\prime \prime}, C \vee D \vdash \underline{B}^{\prime}, \underline{B}^{\prime \prime}} \mathcal{L} \vee, \underline{A}^{\prime} \vdash \underline{B}, \underline{B}^{\prime}, \underline{B}^{\prime \prime}\right]
$$

is transformed to

$$
\frac{\underline{A} \vdash D, \underline{B} \quad \underline{A^{\prime \prime}}, D \vdash \underline{B}^{\prime \prime}}{\frac{\underline{A}, \underline{A^{\prime \prime}} \vdash \underline{B}, \underline{B}^{\prime \prime}}{A \Lambda^{\prime} \Lambda^{\prime \prime} \vdash R R^{\prime} R^{\prime \prime}}} C u t
$$

Key Cases

- A negation $(\mathcal{R} \neg$ and $\mathcal{L} \neg)$.

$$
\frac{\frac{\underline{A}, C \vdash \underline{B}}{\underline{A} \vdash \neg C, \underline{B}} \mathcal{R} \neg \frac{\underline{A^{\prime}} \vdash C, \underline{B}^{\prime}}{\underline{A^{\prime}}, \neg C \vdash \underline{B}^{\prime}}}{\underline{\mathcal{A}}, \underline{A^{\prime}} \vdash \underline{L}, \underline{B}^{\prime}} \mathrm{Cut}
$$

is transformed to

$$
\frac{\underline{A}^{\prime} \vdash C, \underline{B}^{\prime} \underline{A}, C \vdash \underline{B}}{\underline{\underline{A^{\prime}}, \underline{A} \vdash \underline{B}^{\prime}, \underline{B}}} \underset{\underline{A}, \underline{A^{\prime}} \vdash \underline{B^{\prime}}}{ }
$$

- An implication $(\mathcal{R} \Rightarrow$ and $\mathcal{L} \Rightarrow)$.

$$
\frac{\frac{\underline{A}, C \vdash D, \underline{B}}{\underline{A} \vdash C \Rightarrow D, \underline{B}} \mathcal{R} \Rightarrow \frac{\underline{A}^{\prime} \vdash C, \underline{B}^{\prime} \quad \underline{A}^{\prime \prime}, D \vdash \underline{B}^{\prime \prime}}{\underline{A^{\prime}}, \underline{A}^{\prime \prime}, C \Rightarrow D \vdash \underline{B}^{\prime}, \underline{B}^{\prime \prime}} \mathcal{L} \Rightarrow}{\underline{A}, \underline{A}^{\prime \prime} \vdash \underline{B}, \underline{B}^{\prime}, \underline{B}^{\prime \prime}} C u t
$$

is transformed to

$$
\frac{\underline{A^{\prime} \vdash C, \underline{B^{\prime}}} \underline{\underline{A}, C \vdash D, \underline{B}}}{\underline{\underline{A^{\prime}}, \underline{A} \vdash \underline{B}^{\prime}, D, \underline{B}}} \text { Cut }
$$

Key Cases

- A universal quantification ($\mathcal{R} \forall$ and $\mathcal{L} \forall$).

$$
\frac{\frac{\underline{A} \vdash C, \underline{B}}{\underline{A} \vdash \forall \xi \cdot C, \underline{B}} \mathcal{R} \forall \frac{\underline{A}^{\prime}, C[a / \xi] \vdash \underline{B}^{\prime}}{\underline{A^{\prime}}, \forall \xi \cdot C \vdash \underline{B}^{\prime}}}{\underline{A} \forall, \underline{A^{\prime}} \vdash \underline{B}, \underline{B}^{\prime}} C u t
$$

is transformed to

$$
\frac{\underline{A} \vdash C[a / \xi], \underline{B} \quad \underline{A}^{\prime}, C[a / \xi] \vdash \underline{B}^{\prime}}{\underline{A}, \underline{A^{\prime}} \vdash \underline{B}, \underline{B}^{\prime}} C u t
$$

- An existential quantification ($\mathcal{R} \exists$ and $\mathcal{L} \exists$).

$$
\frac{\underline{A} \vdash C[a / \xi], \underline{B}}{\underline{A} \vdash \exists \xi \cdot C, \underline{B} \exists \frac{\underline{A}^{\prime}, C \vdash \underline{B}^{\prime}}{\underline{A}^{\prime}, \exists \xi \cdot C, \underline{,}^{\prime}}} \underset{\underline{A}, \underline{A^{\prime}} \vdash \underline{B}, \underline{\underline{\prime}}^{\prime}}{\mathcal{C u t}}
$$

is transformed to

$$
\frac{\underline{A} \vdash C[a / \xi], \underline{B} \quad \underline{A}^{\prime}, C[a / \xi] \vdash \underline{B}^{\prime}}{\underline{A}, \underline{A^{\prime}} \vdash \underline{B}, \underline{B}^{\prime}} C u t
$$

Principal Lemma

- Let A be a formula. The degree $\partial(A)$ is defined as follows.
- If A is atomic, $\partial(A)=1$.
- $\partial(A \wedge B)=\partial(A \vee B)=\partial(A \Rightarrow B)=\max (\partial(A), \partial(B))+1$.
- $\partial(\neg A)=\partial(\forall \xi \cdot A)=\partial(\exists \xi \cdot A)=\partial(A)+1$.
- Observe that $\partial(A[a / \xi])=\partial(A)$.
- The degree of a cut rule is the degree of the cut formula.
- The key cases show how to replace a cut with at most two cuts with lower degree.
- The degree $d(\pi)$ for a proof π is the sup of the degrees of its cuts.
- Hence $d(\pi)=0$ if π is cut-free.
- The height $h(\pi)$ of a proof π is the height of its associated tree.
- If π ends in a rule with premises $\pi_{1}, \pi_{2}, \ldots, \pi_{n}$, then $h(\pi)=\sup \left(h\left(\pi_{i}\right)\right)+1$.
- If \underline{A} is a sequence of formulae, $\underline{A}-C$ denotes the sequence obtained by removing all occurrences of $-C$ from A.

Principal Lemma

Lemma 1
Let C be a formula of degree d, and π, π^{\prime} proofs of $\underline{A} \vdash \underline{B}$ and $\underline{A}^{\prime} \vdash \underline{B}^{\prime}$ of degrees less than d. Then there is a proof ϖ of $\underline{A}, \underline{A}^{\prime}-C \vdash \underline{B}-C, \underline{B}^{\prime}$ of degree less than d.
Proof.
By induction on $h(\pi)+h\left(\pi^{\prime}\right)$. Suppose the last rule r of π has premises $\pi_{i}: \underline{A}_{i} \vdash \underline{B}_{i}$, and the last rule r^{\prime} of π^{\prime} has premises $\pi_{j}^{\prime}: \underline{A}_{j} \vdash \underline{B}_{j}$. Consider

- π is an axiom.
- π proves $C \vdash C$. Then $\varpi: C, \underline{A}^{\prime}-C \vdash \underline{B}^{\prime}$ is obtained from π^{\prime} through structural rules.
- π proves $D \vdash D$. Then $\varpi: D, \underline{A}^{\prime}-C \vdash D, \underline{B^{\prime}}$ is obtained from π through structural rules.
- π^{\prime} is an axiom. Handled as in the previous case.
- r is a structural rule. By IH on π_{1} and π^{\prime}, there is $\varpi_{1}: \underline{A}_{1}, \underline{A}^{\prime}-C \vdash \underline{B}_{1}-C, \underline{B^{\prime}} . \varpi$ is obtained from ϖ_{1} through structural rules.
$-r^{\prime}$ is a structural rule. Dual of the previous case.

Principal Lemma

Proof (cont'd).

- r is a logical rule other than an \mathcal{R}-rule with the principal formula C. By IH on π_{i} and π^{\prime}, there are $\varpi_{i}: \underline{A}_{i}, \underline{A}^{\prime}-C \vdash \underline{B}_{i}-C, \underline{B}^{\prime}$. Since the rule r does not create any C from $\underline{B}_{i}, \varpi$ is obtained by applying the rule r to ϖ_{i}.
- r^{\prime} is a logical rule other than an \mathcal{L}-rule with the principal formula C. Dual of the previous case.
- r is a logical \mathcal{R}-rule with the principal formula C and r is a logical \mathcal{L}-rule with the principal formula C. By IH on π_{i} and π^{\prime}, π and π_{j}^{\prime}, there are

$$
\begin{array}{ll}
\varpi_{i}: \underline{A}_{i}, \underline{A}^{\prime}-C \vdash \underline{B}_{i}-C, \underline{B}^{\prime} & \left(\pi_{i} \text { and } \pi^{\prime}\right) \\
\varpi_{j}^{\prime}: \underline{A}, \underline{A}_{j}^{\prime}-C \vdash \underline{B}-C, \underline{B}_{j}^{\prime} & \left(\pi \text { and } \pi_{j}^{\prime}\right)
\end{array}
$$

Apply r to ϖ_{i} and r^{\prime} to ϖ_{j}^{\prime} and obtain

$$
\begin{array}{ll}
\underline{A}, \underline{A}^{\prime}-C \vdash C, \underline{B}-C, \underline{B}^{\prime} & \left(\text { apply the } \mathcal{R} \text {-rule } r \text { to } \varpi_{i}\right) \\
\underline{A}, \underline{A}^{\prime}-C, C \vdash \underline{B}-C, \underline{B}^{\prime} & \text { (apply the } \left.\mathcal{L} \text {-rule } r^{\prime} \text { to } \varpi_{j}^{\prime}\right)
\end{array}
$$

We obtain $\underline{A}, \underline{A}^{\prime}-C, \underline{A}, \underline{A}^{\prime}-C \vdash \underline{B}-C, \underline{B}^{\prime}, \underline{B}-C, \underline{B}^{\prime}$ through the cut rule

Hauptsatz

Lemma 2
If π is a proof of a sequent of degree $d>0$, a proof ϖ of the same sequent with a lower degree can be constructed.

Proof.

Induction on $h(\pi)$. Let r be the last rule of π with premises π_{i}.
-r is not a cut of degree d. By IH on π_{i}, we have ϖ_{i} of degree $<d$. ϖ is obtained by applying r to ϖ_{i}.

- r is a cut of degree d :

$$
\frac{\underline{A} \vdash C, \underline{B} \quad \underline{A}^{\prime}, C \vdash \underline{B}^{\prime}}{\underline{A}, \underline{A}^{\prime} \vdash \underline{B}, \underline{B}^{\prime}} C u t
$$

By IH on π_{i}, we have ϖ_{i} of degree $<d$. Apply the principal lemma to obtain ϖ of degree $<d$.

Theorem 3 (Gentzen, 1934)
The cut rule is redundant in sequent calculus.

Complexity of Cut Elimination

- We give a simple bound on the height of the cut-free proof obtained from cut elimination.
- The principal lemma is linear.
- Eliminating a cut multiplies the height by 4 in the worst case.
- Prove by induction.
- Lemma 2 is exponential.
- Reducing the degree by 1 increases the height h of the proof by 4^{h}.
- Apply the principal lemma to h cuts.

- Hauptsatz is hyperexponential. That is, $4^{4 .}$.

Resolution

- Consider proper axioms that models domain knowledge.
- Say, for example, parent (x, y), parent $(y, z) \vdash$ grandparent (x, z)
- If a cut has an instance of a proper axiom as a premise, the cut cannot be eliminated.
- In other words, the cut rule (restricted to those sequents obtained from proper axioms) is not redundant.
- Moreover, if we have only atomic sequents as proper axioms, logical rules are not needed.
- An atomic sequent is uilt from atomic formulae.
- Example.

```
parent (x,y), parent (y,z)\vdashgrandparent (x,z)
```

- Counterexample.

$$
\operatorname{parent}(x, y) \vdash \text { father }(x, y) \vee \operatorname{mother}(x, y)
$$

PROLOG

- In PROLOG, proper axioms are atomic intuitionistic sequents (or Horn clauses) $\underline{A} \vdash B$.
- We want to prove $\vdash B$ (a goal).
- The PROLOG proof system has the following rules
- instances $\underline{A} \vdash B$ of proper axioms;
- identity axioms $A \vdash A$ with A atomic;
- cut; and
- the structural rules.
- We will show contraction and weakening are redundant in the PROLOG proof system.
- Hence only exchange rules are needed.

PROLOG

Lemma 4

If the atomic sequent $\underline{A} \vdash \underline{B}$ is provable in PROLOG, there is an intuitionistic sequent $\underline{A^{\prime}} \vdash B^{\prime}$ proved without contraction nor weakening with $\underline{A^{\prime}} \subseteq \underline{A}$ and
$B^{\prime} \in \underline{B}$.
Proof.
Induction on $\pi: \underline{A} \vdash \underline{B}$.

- If π is an axiom, then $\underline{A} \vdash \underline{B}$ is intuitionistic (that is, $|\underline{B}|=1$).
- If π ends in a structural rule with the premise $\underline{A}_{1} \vdash \underline{B}_{1}$, we have $\underline{A}_{1}^{\prime} \vdash B_{1}^{\prime}$ with $\underline{A}_{1}^{\prime} \subseteq \underline{A}_{1}$ and $B_{1}^{\prime} \in \underline{B}_{1}$. Take $\underline{A}^{\prime}=\underline{A}_{1}^{\prime}$ and $B^{\prime}=B_{1}^{\prime}$.
- If π ends in a cut

$$
\frac{\underline{A}_{1} \vdash C, \underline{B}_{1} \underline{A}_{2}, C \vdash \underline{B}_{2}}{\underline{A}_{1}, \underline{A}_{2} \vdash \underline{B}_{1}, \underline{B}_{2}}
$$

Cut
By IH, we have $\underline{A}_{1}^{\prime} \vdash B_{1}^{\prime}$ and $\underline{A}_{2}^{\prime} \vdash B_{2}^{\prime}$. There are two cases:

- $B_{1}^{\prime} \neq C$. Take $\underline{A}^{\prime}=\underline{A}_{1}^{\prime}$ and $B^{\prime}=B_{1}^{\prime}$.
- $B_{1}^{\prime}=C$. If C occurs n times in $\underline{A}_{2}^{\prime}$, obtain $\underline{A}_{1}^{\prime}, \underline{A}_{1}^{\prime}, \ldots, \underline{A}_{1}^{\prime}, \underline{A}_{2}^{\prime}-C \vdash B_{2}^{\prime}$ through exchanges and n cuts. \equiv

PROLOG

- Recall the goals are of the form $\vdash B$.
- Contraction and weakening rules are hence redundant (Lemma 4).
- Note that the deduction must be in the intuitionistic fragment.
- $\mathcal{R X}$ is never applicable.
- But then, $\mathcal{L X}$ can always be eliminated by reordering cuts.
- Moreover, cuts with an identity axiom is redundant.

$$
\frac{\underline{A} \vdash C \quad C \vdash C}{\underline{A} \vdash C} C u t
$$

- In summary, we have

Theorem 5

In order to prove a goal, one only needs to use cut with instances of proper axioms.

