Proofs and Types Strong Normalisation for F

Bow-Yaw Wang

Academia Sinica

Spring 2012

Reducibility

- ▶ Let us try to prove **F** by reducibility.
- ▶ We first need to define what terms in a type *T* are reducible.
 - Reducible terms of the types without universal quantification are defined as before.
 - ▶ *t* of the type $\Pi X.T$ is *reducible* if for all types U, t U (of the type T[U/X]) is reducible.
- ▶ Consider t of the type $\Pi X.X$.
- ▶ *t* is reducible if *t U* is reducible for all *U*.
- ▶ Particularly, take $U = \Pi X.X$. We need to check if t ($\Pi X.X$) of the type $\Pi X.X$ is reducible.
- But we have a circularity.
 - ► To check t of the type $\Pi X.X$ is reducible, we need to check if $t(\Pi X.X)$ of the type $\Pi X.X$ is reducible;
 - ▶ To check $t(\Pi X.X)$ of the type $\Pi X.X$ is reducible, we need to check if $t(\Pi X.X)(\Pi X.X)$ of the type $\Pi X.X$ is reducible;
 - ad infinitum

Reducibility Candidates

- Instead of defining reducibility, we introduce reducibility candidates.
- Reducibility candidates do not define reducibility.
 - ▶ Hence we avoid the circularity.
- ► However, we intend to find the definition of reducibility among reducibility candidates.
 - ► Thus we can prove the strong normalisation for **F**.
- ▶ More concretely, a reducibility candidate of the type *U* is a reducibility predicate (set of terms of the type *U*) satisfying **CR 1-3**.
- ▶ A term of the type $\Pi X.T$ is reducible if for every the type U and every reducible candidate \mathcal{R} of the type U, t U of the type T[U/X] is reducible with respect to \mathcal{R} .
 - ▶ That is, using \mathcal{R} as the definition of reducibility of U.
 - ▶ If \mathcal{R} happens to be the "true" reducibility of the type U, it yields the "true" reducibility of the type T[U/X].

Reducibility Candidates

- ► Consider the term $\Pi X.\lambda x^X.x$ of the type $\Pi X.X \to X$.
- ▶ $\Pi X.\lambda x^X.x$ is reducible if for every reducibility candidate \mathcal{R} for U, $(\Pi X.\lambda x^X.x)$ U of the type $U \to U$ is reducible wrt \mathcal{R} .
- ▶ That is, for every $u \in \mathcal{R}$, $(\Pi X.\lambda x^X.x)$ U $u \in \mathcal{R}$.
- ▶ Recall that \mathcal{R} satisfies **CR 1-3**.
 - $ightharpoonup \mathcal{R}$ is a reducibility candidate.
- ▶ We will use **CR 1-3** to show

$$u \in \mathcal{R}$$
 implies $(\Pi X.\lambda x^X.x) \ U \ u \in \mathcal{R}$

- ▶ Observe how to avoid the circularity!
- ▶ Note that the properties **CR 1-3** are crucial.

Definitions

▶ A term *t* is *neutral* if it has one of the following forms:

- A reducibility candidate of the type U is a set \mathcal{R} of terms of the type U that
 - **CR 1** If $t \in \mathcal{R}$, t is strongly normalisable.
 - **CR 2** If $t \in \mathcal{R}$ and $t \rightsquigarrow t', t' \in \mathcal{R}$.
 - **CR 3** If *t* is neutral and we obtain a term $t' \in \mathcal{R}$ whenever a redex of *t* is converted, then $t \in \mathcal{R}$.
 - ▶ Particularly, if *t* is neutral and normal, $t \in \mathcal{R}$ by **CR** 3.
- ► For example, the set of strongly normalisable terms of the type *U* is a reducibility candidate of tyep *U*.
- ▶ If \mathcal{R} and \mathcal{S} are reducibility candidates of the types U and V, define a set $\mathcal{R} \to \mathcal{S}$ of terms of the type $U \to V$ by

$$t \in \mathcal{R} \to \mathcal{S}$$
 if $t u \in \mathcal{S}$ for every $u \in \mathcal{R}$.

Reducibility with Parameters

- ▶ Let T[X] denote a type T with all free variables in X.
- ▶ Let \underline{U} be a sequence of types. Define $T[\underline{U}/\underline{X}]$ to be the type obtained by simultaneous substitution of \underline{U} for \underline{X} .
- ▶ Let $\underline{\mathcal{R}}$ be a sequence of reducibility candidates of types \underline{U} .
- ▶ Define a set $RED_T[\underline{\mathcal{R}}/\underline{X}]$ of terms of the type $T[\underline{U}/\underline{X}]$ as follows.
 - If $T = X_i$, $\mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}] = \mathcal{R}_i$;
 - If $T = V \to W$, $\mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}] = \mathsf{RED}_V[\underline{\mathcal{R}}/\underline{X}] \to \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}]$;
 - ▶ If $T = \Pi Y.W$, $\mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}]$ is the set of terms t of the type $T[\underline{U}/\underline{X}]$ such that for every type V and reducibility candidate S of V, t $V \in \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}, S/Y]$.

Properties of Reducibility with Parameters

Lemma 1

 $\mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}]$ is a reducibility candidate of the type $T[\underline{\mathcal{U}}/\underline{X}]$.

Proof.

Induction on T. Recall that $\nu(t)$ bounds the length of every normalisation sequence from t. We consider $T=\Pi Y.W$.

- **CR 1** Let $t \in \mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}]$, V a type, and \mathcal{S} a reducibility candidate of the type V. t $V \in \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}, \mathcal{S}/Y]$ by definition. By IH (**CR 1**), t V is strongly normalisable. Observe that $\nu(t) \leq \nu(t \ V)$. Hence t is strongly normalisable.
- **CR 2** Let $t \in \mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}]$ and $t \leadsto t'$. Consider any type V and a reducibility candidate \mathcal{S} of the type V. t $V \in \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}, \mathcal{S}/Y]$ and t $V \leadsto t'$ V. By IH (**CR 2**), t' $V \in \mathsf{RED}_W[\underline{\mathcal{R}}/X, \mathcal{S}/Y]$. Hence $t' \in \mathsf{RED}_T[\underline{\mathcal{R}}/X]$.
- **CR 3** Let t be neutral and suppose all t' one step from t are in $\mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}]$. Let V be a type and \mathcal{S} a reducibility candidate of the type V. We have t $V \leadsto t'V$ for some t' one step from t since t is neutral. Since $t' \in \mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}]$, t' $V \in \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X},\mathcal{S}/Y]$. By IH (**CR 3**), t $V \in \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X},\mathcal{S}/Y]$. Hence $t \in \mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}]$.

Properties of Reducibility with Parameters

Proof (cont'd).

Consider $T = X_i$.

- **CR 1** Let $t \in \mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}] = \mathcal{R}_i$. t is strongly normalisable since \mathcal{R}_i is a reducibility candidate.
- **CR 2** Let $t \in \mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}] = \mathcal{R}_i$ and $t \leadsto t'$. Clearly, t' is strongly normalisable. Hence $t' \in \mathcal{R}_i$ provided \mathcal{R}_i contains all strongly normalisable terms of type X_i .
- **CR 3** Let t be neutral and $t' \in \mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}] = \mathcal{R}_i$ for every t' obtained by converting a redex in t. Since $\nu(t) = 1 + \max_{t'} \nu(t')$, t is strongly normalisable. $t \in \mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}] = \mathcal{R}_i$ provided \mathcal{R}_i contains all strongly normalisable terms of type X_i .

Properties of Reducibility with Parameters

Proof (cont'd).

Consider $T = V \rightarrow W$.

- **CR 1** Let $t \in \mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}] = \mathsf{RED}_V[\underline{\mathcal{R}}/\underline{X}] \to \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}]$. Let x be a variable of the type V. $x \in \mathsf{RED}_V[\underline{\mathcal{R}}/\underline{X}]$ for x is neutral and normal (**CR 3**). Hence t $x \in \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}]$. By IH (**CR 1**), t x is strongly normalisable. Since v(t) < v(t|x), t is strongly normalisable.
- **CR 2** Let $t \in \mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}] = \mathsf{RED}_V[\underline{\mathcal{R}}/\underline{X}] \to \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}]$ and $t \leadsto t'$. For every $v \in \mathsf{RED}_V[\underline{\mathcal{R}}/\underline{X}]$, $t \ v \leadsto t' \ v$. Since $t \ v \in \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}]$, $t' \ v \in \mathsf{RED}_W[\mathcal{R}/X]$ by IH (**CR 2**). Hence $t' \in \mathsf{RED}_T[\mathcal{R}/X]$.
- **CR 3** Let t be neutral and $t' \in \mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}]$ for every t' obtained by converting a redex in t. Let $v \in \mathsf{RED}_V[\underline{\mathcal{R}}/\underline{X}]$. By IH (**CR 1**), v is strongly normalisable. In one step, t v converts to
 - (1) t' v with t' one step from t. t' $v \in \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}]$ for $t' \in \mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}]$ by assumption.
 - (2) t v' with v' one step from v. By IH (CR 2), $v' \in \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}]$ and $\nu(v') < \nu(v)$. Hence t $v' \in \mathsf{RED}_W[\mathcal{R}/X]$ by IH ($\nu(v)$).

Substitution

Lemma 2

 $\mathsf{RED}_{T[V/Y]}[\underline{\mathcal{R}}/\underline{X}] = \mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}, \mathsf{RED}_V[\underline{\mathcal{R}}/\underline{X}]/Y].$

Proof.

By induction on *T*.

- ▶ On the left hand side, we have a reducibility candidate of the type T[V/Y] with parameters $\underline{\mathcal{R}}$ for \underline{X} .
- ▶ On the right hand side, we have a reducibility candidate of the type T with parameters $\underline{\mathcal{R}}$, $\mathsf{RED}_V[\underline{\mathcal{R}}/\underline{X}]$ for \underline{X} , Y.
- ► The reducibility candidate for the type *Y* is the reducibility candidate
- ► This lemma says that reducibility with parameters respects substitutions.

Universal Abstraction

Lemma 3

If $w[V/Y] \in \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}, \mathcal{S}/Y]$ for every type V and reducibility candidate \mathcal{S} , then $\Lambda Y.w \in \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}]$.

Proof.

We want to show $(\Lambda Y.w)$ $V \in \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}, \mathcal{S}/Y]$ for every type V and reducibility candidate \mathcal{S} of V. By induction on $\nu(w)$, converting a redex in $(\Lambda Y.w)$ V gives:

- $(\Lambda Y.w')$ V with $\nu(w') < \nu(w)$. By IH, $(\Lambda Y.w')$ $V \in \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}, \mathcal{S}/Y];$
- ▶ w[V/Y]. By assumption, $w[V/Y] \in \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}, \mathcal{S}/Y]$.

 $(\Lambda Y.w)$ V is neutral and every one-step conversion gives a term in $\mathsf{RED}_W[\mathcal{R}/X, \mathcal{S}/Y]$. The result follows by **CR 3**.

Universal Application

Lemma 4

If $t \in \mathsf{RED}_{\Pi Y.W}[\underline{\mathcal{R}}/\underline{X}]$, $t \ V \in \mathsf{RED}_{W[V/Y]}[\underline{\mathcal{R}}/\underline{X}]$ for every type V.

Proof.

Since $t \in \mathsf{RED}_{\Pi Y.W}[\underline{\mathcal{R}}/\underline{X}]$, $t \ V \in \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}, \mathcal{S}/Y]$ for every reducibility candidate \mathcal{S} of V. Take $\mathcal{S} = \mathsf{RED}_V[\underline{\mathcal{R}}/\underline{X}]$. The result follows by Lemma 2.

Abstraction

Lemma 5

If $v[u/x] \in \mathsf{RED}_V[\underline{\mathcal{R}}/\underline{X}]$ for all $u \in \mathsf{RED}_U[\underline{\mathcal{R}}/\underline{X}]$, then $\lambda x^U \cdot v \in \mathsf{RED}_{U \to V}[\underline{\mathcal{R}}/\underline{X}]$.

Proof.

Recall $x \in \mathsf{RED}_U[\underline{\mathcal{R}}/\underline{X}]$ and $v[x/x] = v \in \mathsf{RED}_V[\underline{\mathcal{R}}/\underline{X}]$. Let $u \in \mathsf{RED}_U[\underline{\mathcal{R}}/\underline{X}]$. By induction on v(v) + v(u), converting a redex in $(\lambda x^U.v)u$ gives:

- ▶ v[u/x]. $v[u/x] \in \mathsf{RED}_V[\underline{\mathcal{R}}/\underline{X}]$ by assumption.
- ▶ $(\lambda x^{U}.v)u'$ with u' one step from u. By **CR 2**, $u' \in \mathsf{RED}_{U}[\underline{\mathcal{R}}/\underline{X}]$ and $\nu(u') < \nu(u)$. By IH, $(\lambda x^{U}.v)u' \in \mathsf{RED}_{V}[\underline{\mathcal{R}}/\underline{X}]$.
- ▶ $(\lambda x^{U}.v')u$ with v' one step from v. By **CR 2**, $v' \in \mathsf{RED}_{V}[\underline{\mathcal{R}}/\underline{X}]$ and $\nu(v') < \nu(v)$. By IH, $(\lambda x^{U}.v')u \in \mathsf{RED}_{V}[\mathcal{R}/X]$.

Reducibility Theorem

Lemma 6

Let t be a term of type T. Suppose all free variables of t are among x_i of types U_i $(i=1,\ldots,n)$, and all free type variables of T,U_1,\ldots,U_n are among X_j $(j=1,\ldots,m)$. If \mathcal{R}_j are reducibility candidates of types V_j $(j=1,\ldots,m)$, and $u_i \in \mathsf{RED}_{U_i}[\underline{\mathcal{R}}/\underline{X}]$, is a term of the type $U_i[\underline{V}/\underline{X}]$ $(i=1,\ldots,n)$, then $t[\underline{V}/\underline{X}][\underline{u}/\underline{x}] \in \mathsf{RED}_T[\underline{\mathcal{R}}/\underline{X}]$.

Proof.

Induction on t.

- ▶ t is x_i . Trivial since $u_i \in \mathsf{RED}_{U_i}[\underline{\mathcal{R}}/\underline{X}]$.
- ▶ t is vw. By IH, $v[\underline{V}/\underline{X}][\underline{u}/\underline{x}] \in \mathsf{RED}_{W \to V}[\underline{\mathcal{R}}/\underline{X}]$ and $w[\underline{V}/\underline{X}][\underline{u}/\underline{x}] \in \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}]$. By the definition of $\mathsf{RED}_{W \to V}[\underline{\mathcal{R}}/\underline{X}]$, $(v[\underline{V}/\underline{X}][\underline{u}/\underline{x}])(w[\underline{V}/\underline{X}][\underline{u}/\underline{x}]) \in \mathsf{RED}_V[\underline{\mathcal{R}}/\underline{X}]$.
- ▶ t is $\lambda y^V.w$. By IH, $w[\underline{V}/\underline{X}][\underline{u}/\underline{x}, v/y] \in \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}] = \mathsf{RED}_{W[\underline{V}/\underline{X}]}[\underline{\mathcal{R}}/\underline{X}]$ for all $v \in \mathsf{RED}_{V[\underline{V}/\underline{X}]}[\underline{\mathcal{R}}/\underline{X}] = \mathsf{RED}_V[\underline{\mathcal{R}}/\underline{X}]$. By Lemma 5, $\lambda y^{V[\underline{V}/\underline{X}]}.(w[\underline{V}/\underline{X}][\underline{u}/\underline{x}]) \in \mathsf{RED}_{V[\underline{V}/\underline{X}]} \to w[\underline{V}/\underline{X}][\underline{\mathcal{R}}/\underline{X}] = \mathsf{RED}_{V[\underline{V}/\underline{X}]}[\underline{\mathcal{R}}/\underline{X}] = \mathsf{RED}_{V[\underline{V}/\underline{X}]}[\underline{\mathcal{R}}/\underline{X}]$.
- ▶ t is $\Lambda Y.w$. By IH, $w[\underline{V}/\underline{X}, V/Y][\underline{u}/\underline{x}] \in \mathsf{RED}_W[\underline{\mathcal{R}}/\underline{X}, \mathcal{S}/Y]$ for every type V and reducibility candidate \mathcal{S} of V. By Lemma 3, $\Lambda Y.w[\underline{V}/\underline{X}][\underline{u}/\underline{x}] \in \mathsf{RED}_{\Pi Y.W}[\underline{\mathcal{R}}/\underline{X}]$.
- ▶ t is v W. By IH, $v[\underline{V}/\underline{X}][\underline{u}/\underline{x}] \in \mathsf{RED}_{\Pi Y.V}[\underline{\mathcal{R}}/\underline{X}]$. By Lemma 4, $(v[\underline{V}/\underline{X}][\underline{u}/\underline{x}])$ ($W[\underline{V}/\underline{X}]) \in \mathsf{RED}_{V[\underline{W}[\underline{V}/\underline{X}]/Y]}[\underline{\mathcal{R}}/\underline{X}] = \mathsf{RED}_{V}[\underline{\mathcal{R}}/\underline{X}]$, $\mathsf{RED}_{W[V/X]}[\underline{\mathcal{R}}/\underline{X}]/Y] = \mathsf{RED}_{V}[\underline{\mathcal{R}}/\underline{X}]$, $\mathsf{RED}_{W}[\underline{\mathcal{R}}/\underline{X}]/Y$ = $\mathsf{RED}_{V}[\underline{\mathcal{R}}/\underline{X}]/Y$ = $\mathsf{RED}_{V}[\underline{\mathcal{R}}/\underline{X}]/Y$

Strong Normalisation Theorem

▶ A term of type T is *reducible* if it is in $\mathsf{RED}_T[\underline{\mathcal{SN}}/\underline{X}]$ where X_i are free type variables of T (i = 1, ..., n) and \mathcal{SN}_i is the set of strongly normalisable terms of type X_i (i = 1, ..., n).

Theorem 7

All terms of F are reducible.

Proof.

Take $\underline{u} = \underline{x}$ and $\underline{\mathcal{R}} = \underline{\mathcal{S}}\underline{\mathcal{N}}$ in Lemma 6.

Corollary 8

All terms of **F** are strongly normalisable.

Proof.

By **CR 1**.

