Proofs and Types Natural Deduction

Bow-Yaw Wang

Academia Sinica

Spring 2012

Deduction

• A *deduction* of *A* is a finite tree with root *A*.

- The tree will have leaves labelled by sentences.
 - ► Two types of leaves: *dead* or *alive*.

Leaves

- An alive leaf is a *hypothesis*.
- Here is a deduction of *A* with a hypothesis *A*:

A

- A dead leaf does not play an active role in the deduction.
- Here is a deduction of $A \Rightarrow B$ with a dead leaf A:

$$\begin{array}{c}
[A] \\
\vdots \\
B \\
A \Rightarrow B
\end{array} \Rightarrow \mathcal{I}$$

• Note that a number of leaves with the same label can be *discharged* while other leaves with the same label remain alive.

$$A \quad [A]$$

$$\vdots$$

$$B$$

$$A \Rightarrow B \Rightarrow I$$

Rules

- Hypothesis: A
- Introductions:

$$\begin{array}{ccc} \vdots & \vdots \\ \frac{A}{A} & \frac{B}{B} \end{array} \wedge \mathcal{I}$$

$$\begin{array}{c}
[A] \\
\vdots \\
B \\
A \Rightarrow B
\end{array} \Rightarrow \mathcal{I}$$

$$\frac{\vdots}{\overset{\cdot}{\forall \xi.A}} \ \forall \mathcal{I}$$

• *Eliminations*:

$$\frac{\vdots}{A \wedge B} \wedge 1\mathcal{I}$$

$$\frac{A \wedge B}{B} \wedge 2\mathcal{E}$$

$$\vdots$$

$$\frac{\forall \xi.A}{A \lceil a/\xi \rceil} \forall \mathcal{E}$$

$$\frac{\vdots}{A} \quad \frac{\vdots}{B} \Rightarrow B$$

$$B \Rightarrow \mathcal{E}$$

• In $\forall \mathcal{I}$, ξ is not free in any hypothesis.

• A deduction of $A \Rightarrow (B \Rightarrow A)$:

$$\frac{[A] \quad [B]}{A \land B} \land \mathcal{I}$$

$$\frac{A \land B}{A} \land 1\mathcal{E}$$

$$\frac{B \Rightarrow A}{A \Rightarrow (B \Rightarrow A)} \Rightarrow \mathcal{I}$$

• A deduction of $A \Rightarrow (B \land C)$ from hypotheses $(A \Rightarrow B) \land (A \Rightarrow C)$:

$$\underbrace{ \begin{bmatrix} A \end{bmatrix} \quad \frac{(A \Rightarrow B) \land (A \Rightarrow C)}{A \Rightarrow B} \Rightarrow \mathcal{E} \quad \frac{[A]}{C} \quad \frac{(A \Rightarrow B) \land (A \Rightarrow C)}{A \Rightarrow C} \Rightarrow \mathcal{E} } \\ \frac{B \land C}{A \Rightarrow (B \land C)} \Rightarrow \mathcal{I}$$

More Examples

• A deduction of $(\forall xPx) \Rightarrow (\forall yPy)$.

$$\frac{\frac{\left[\forall xPx\right]}{Py}}{\frac{\forall yPy}{\forall yPy}} \, \forall \mathcal{E}$$

$$\frac{\forall xPx \Rightarrow \forall yPy}{\forall xPx \Rightarrow \forall yPy} \Rightarrow \mathcal{I}$$

• Find the problem in the "deduction" of $Px \Rightarrow Py$.

$$\frac{\frac{[Px]}{\forall x Px}}{Py} \ \forall \mathcal{I} \\ \frac{Py}{Px \Rightarrow Py} \Rightarrow \mathcal{I}$$

Interpretation a la Heyting

- A formula *A* is seen as the set of its possible deductions.
 - ▶ If δ is a deduction of A (δ "proves" A), we write $\delta \in A$.
 - ▶ *A* is a theorem if and only if $A \neq \emptyset$.
- A deduction of A on the hypothesis B_1, \ldots, B_n is a function $t[x_1, \ldots, x_n]$ with parameters x_1, \ldots, x_n such that $t[b_1, \ldots, b_n] \in A$ if $b_i \in B_i$ for all $1 \le i \le n$.
 - ▶ Recall that a hypothesis B_i may have several occurrences. The set of occurrences corresponding to B_i is called a *parcel*.

In this example, a deduction of A on B_1 , B_2 , B_3 is $t[x_1, x_2, x_3, x_4]$. The parcels of x_1 , x_2 , x_3 , and x_4 have 1, 2, 2, and 1 occurrences respectively.

Interpretation of the Rules

- A deduction of a single hypothesis *A* is represented by a variable *x* for an element of *A*.
- A deduction ending in $\wedge \mathcal{I}$ is represented by $\langle u[x_1,\ldots,x_n],v[x_1,\ldots,x_n]\rangle$ where $u[x_1,\ldots,x_n]$ and $v[x_1,\ldots,x_n]$ are deductions of the two children.
- A deduction ending in $\land 1\mathcal{E}$ is represented by $\pi^1 t[x_1, \dots, x_n]$ where $t[x_1, \dots, x_n]$ is a deduction of the child and π^1 the *first projection*. A deduction ending in $\land 2\mathcal{E}$ is represented by $\pi^2 t[x_1, \dots, x_n]$ similarly. We will use the following equations:

$$\pi^1 \langle u, v \rangle = u$$
 $\pi^2 \langle u, v \rangle = v$ $\langle \pi^1 t, \pi^2 t \rangle = t$

Interpretation of the Rules

- A deduction ending in $\Rightarrow \mathcal{I}$ is represented by $t[x_1, \dots, x_n] = \lambda x.v[x, x_1, \dots, x_n]$ where $v[x, x_1, \dots, x_n]$ is a deduction of the child.
 - $\lambda x.v[x, x_1, \dots, x_n]$ is a function which maps a to $v[a, x_1, \dots, x_n]$.
- A deduction ending in $\Rightarrow \mathcal{E}$ is represented by $t[x_1, \dots, x_n]u[x_1, \dots, x_n]$ where $t[x_1, \dots, x_n]$ and $u[x_1, \dots, x_n]$ are deductions of the children $A \Rightarrow B$ and A respectively.
 - ▶ $t[x_1,...,x_n]u[x_1,...,x_n]$ means applying the argument $u[x_1,...,x_n]$ to the function $t[x_1,...,x_n]$. We will need the following equations:

$$(\lambda x.v)u = v[u/x]$$

 $\lambda x.tx = t$ when x is not free in t

• Interpretations of $\forall \mathcal{I}$ and $\forall \mathcal{E}$ will be discussed later.

Find a representation of the following deduction:

$$\frac{ [A] \quad [B]}{\frac{A \wedge B}{A} \wedge 1\mathcal{E}} \wedge 1\mathcal{E}$$

$$\frac{\frac{B \Rightarrow A}{A \Rightarrow (B \Rightarrow A)} \Rightarrow \mathcal{I}$$

• Find a representation of the following deduction:

$$\underbrace{ \begin{bmatrix} A \end{bmatrix} \quad \frac{(A \Rightarrow B) \land (A \Rightarrow C)}{A \Rightarrow B} \Rightarrow \mathcal{E} \quad \frac{[A]}{C} \quad \frac{(A \Rightarrow B) \land (A \Rightarrow C)}{A \Rightarrow C} \Rightarrow \mathcal{E} } \\ \frac{B \land C}{A \Rightarrow (B \land C)} \Rightarrow \mathcal{I}$$

Find a representation of the following deduction:

$$\frac{ \begin{bmatrix} A \end{bmatrix} \quad \begin{bmatrix} B \end{bmatrix}}{\frac{A \land B}{A} \land 1\mathcal{E}} \land 1\mathcal{E} \\ \frac{B \Rightarrow A}{A \Rightarrow (B \Rightarrow A)} \Rightarrow \mathcal{I}$$

$$\lambda x.\lambda y.\pi_1\langle x,y\rangle$$

Find a representation of the following deduction:

$$\underbrace{ \begin{bmatrix} A \end{bmatrix} \quad \frac{(A \Rightarrow B) \land (A \Rightarrow C)}{A \Rightarrow B} \Rightarrow \mathcal{E}}_{\qquad \qquad \underbrace{\begin{bmatrix} A \end{bmatrix} \quad \frac{(A \Rightarrow B) \land (A \Rightarrow C)}{A \Rightarrow C}}_{\qquad \qquad C \land \mathcal{I}} \Rightarrow \mathcal{E}$$

$$\underbrace{ \frac{B \land C}{A \Rightarrow (B \land C)} \Rightarrow \mathcal{I}}_{\qquad \qquad }$$

 $\lambda x.\langle (\pi_1 y)x, (\pi_2 y)x\rangle$

10 / 13

Untyped λ -Calculus

- λ -terms Λ is defined as follows.
 - $\mathbf{x} \in \Lambda$;
 - ▶ $M \in \Lambda$ implies $\lambda x.M \in \Lambda$; and
 - ▶ $M, N \in \Lambda$ implies $MN \in \Lambda$.
- Consider the β -conversion:

$$(\lambda x.M)N \to M[N/x]$$

- A variable x is *bound* if it is in the scope of λx ; otherwise x is *free*.
 - x is bound and y is free in $\lambda x.yx$;
 - x and y are bound in $\lambda y.\lambda x.yx$.

- Church numbers: $[i] = \lambda f . \lambda x . f^i x$.
- Addition: $[+] = \lambda m. \lambda n. \lambda f. \lambda x. mf(nfx)$.
- $\lceil + \rceil \lceil i \rceil \lceil j \rceil = [\lambda m.\lambda n.\lambda f.\lambda x.mf(nfx)][\lambda f.\lambda x.f^i x][\lambda f.\lambda x.f^j x] \rightarrow \lambda f.\lambda x.(\lambda f.\lambda x.f^i x)f((\lambda f.\lambda x.f^j x)fx) \rightarrow \lambda f.\lambda x.(\lambda f.\lambda x.f^i x)f(f^j x) \rightarrow \lambda f.\lambda x.f^i(f^j x) = \lambda f.\lambda x.f^{i+j} x = \lceil i+j \rceil.$
- $Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx)).$
- For any $F \in \Lambda$, $YF = (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))F \rightarrow (\lambda x.F(xx))(\lambda x.F(xx)) \rightarrow F[(\lambda x.F(xx))(\lambda x.F(xx))] = F[YF].$
- Church-Turing Thesis:

Effectively computable functions are λ *-definable.*

Equivalent Deductions

• Deductions may be simplified. For instance,

$$\frac{\stackrel{\vdots}{A} \stackrel{\vdots}{B}}{\stackrel{A}{A} \wedge B} \wedge \mathcal{I}$$
"equals" $\stackrel{\vdots}{A}$

$$\frac{\stackrel{\vdots}{A} \stackrel{\vdots}{B}}{\stackrel{A}{B}} \wedge \mathcal{I}$$
"equals" $\stackrel{\vdots}{B}$

$$\frac{\stackrel{\vdots}{A}}{\stackrel{B}{B}} \wedge \mathcal{I}$$
"equals" $\stackrel{\vdots}{B}$

$$\stackrel{\vdots}{\stackrel{\vdots}{A}} \stackrel{\stackrel{\vdots}{B}}{\stackrel{B}{A} \Rightarrow B} \Rightarrow \mathcal{I}$$
"equals" $\stackrel{\vdots}{B}$
"equals" $\stackrel{\vdots}{B}$