Proofs and Types
 Natural Deduction

Bow-Yaw Wang

Academia Sinica
Spring 2012

Deduction

- A deduction of A is a finite tree with root A.

- The tree will have leaves labelled by sentences.
- Two types of leaves: dead or alive.

Leaves

- An alive leaf is a hypothesis.
- Here is a deduction of A with a hypothesis A :

$$
A
$$

- A dead leaf does not play an active role in the deduction.
- Here is a deduction of $A \Rightarrow B$ with a dead leaf A :

$$
\begin{gathered}
{[A]} \\
\vdots \\
\frac{\dot{B}}{A \Rightarrow B} \Rightarrow \mathcal{I}
\end{gathered}
$$

- Note that a number of leaves with the same label can be discharged while other leaves with the same label remain alive.

$$
\begin{gathered}
A \quad[A] \\
\vdots \\
\frac{\dot{B}}{A \Rightarrow B} \Rightarrow \mathcal{I}
\end{gathered}
$$

Rules

- Hypothesis: A
- Introductions:

$$
\begin{array}{cc}
\vdots & \vdots \\
\dot{A} \quad \dot{B} \\
\hline A \wedge B
\end{array} \mathcal{I}
$$

$$
\begin{gathered}
{[A]} \\
\vdots \\
\frac{\dot{B}}{A \Rightarrow B} \Rightarrow \mathcal{I}
\end{gathered}
$$

$$
\frac{\vdots}{\forall \xi \cdot A} \forall \mathcal{I}
$$

- Eliminations:

$$
\begin{array}{ccc}
\vdots & \vdots & \vdots \\
A
\end{array} 1 \mathcal{I} \quad \frac{A \grave{\wedge}}{B} \wedge 2 \mathcal{E} \quad \frac{\vdots}{B} \quad \begin{aligned}
& \text { A } \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& A[a / \xi]
\end{aligned} \forall \mathcal{E}
$$

- In $\forall \mathcal{I}, \xi$ is not free in any hypothesis.

Examples

- A deduction of $A \Rightarrow(B \Rightarrow A)$:

$$
\begin{gathered}
\frac{[A][B]}{\frac{A \wedge B}{A}} \wedge \mathcal{I} \\
\frac{B}{B \Rightarrow A} \Rightarrow \mathcal{I} \\
A \Rightarrow(B \Rightarrow A)
\end{gathered}
$$

- A deduction of $A \Rightarrow(B \wedge C)$ from hypotheses $(A \Rightarrow B) \wedge(A \Rightarrow C)$:

$$
\frac{[A] \quad \frac{(A \Rightarrow B) \wedge(A \Rightarrow C)}{A \Rightarrow B} \nRightarrow \mathcal{E}}{\frac{B}{B} \quad \frac{[A] \quad \frac{(A \Rightarrow B) \wedge(A \Rightarrow C)}{A \Rightarrow C}}{\frac{B \wedge C}{A \Rightarrow(B \wedge C)} \Rightarrow \mathcal{I}} \wedge 2 \mathcal{E}}
$$

More Examples

- A deduction of $(\forall x P x) \Rightarrow(\forall y P y)$.

$$
\frac{\frac{[\forall x P x]}{P y} \forall \mathcal{E}}{\frac{\forall y P y}{\mathcal{I}}} \underset{\forall x P x \Rightarrow \forall y P y}{ } \Rightarrow \mathcal{I}
$$

- Find the problem in the "deduction" of $P x \Rightarrow P y$.

$$
\begin{gathered}
\frac{[P x]}{\frac{\forall x P x}{P y} \forall \mathcal{I}} \\
P x \Rightarrow P y
\end{gathered} \mathcal{E}
$$

Interpretation a la Heyting

- A formula A is seen as the set of its possible deductions.
- If δ is a deduction of $A(\delta$ "proves" $A)$, we write $\delta \in A$.
- A is a theorem if and only if $A \neq \emptyset$.
- A deduction of A on the hypothesis B_{1}, \ldots, B_{n} is a function $t\left[x_{1}, \ldots, x_{n}\right]$ with parameters x_{1}, \ldots, x_{n} such that $t\left[b_{1}, \ldots, b_{n}\right] \in A$ if $b_{i} \in B_{i}$ for all $1 \leq i \leq n$.
- Recall that a hypothesis B_{i} may have several occurrences. The set of occurrences corresponding to B_{i} is called a parcel.

In this example, a deduction of A on $B_{1}, B_{1}, B_{2}, B_{3}$ is $t\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$. The parcels of x_{1}, x_{2}, x_{3}, and x_{4} have $1,2,2$, and 1 occurrences respectively.

Interpretation of the Rules

- A deduction of a single hypothesis A is represented by a variable x for an element of A.
- A deduction ending in $\wedge \mathcal{I}$ is represented by $\left\langle u\left[x_{1}, \ldots, x_{n}\right], v\left[x_{1}, \ldots, x_{n}\right]\right\rangle$ where $u\left[x_{1}, \ldots, x_{n}\right]$ and $v\left[x_{1}, \ldots, x_{n}\right]$ are deductions of the two children.
- A deduction ending in $\wedge 1 \mathcal{E}$ is represented by $\pi^{1} t\left[x_{1}, \ldots, x_{n}\right]$ where $t\left[x_{1}, \ldots, x_{n}\right]$ is a deduction of the child and π^{1} the first projection. A deduction ending in $\wedge 2 \mathcal{E}$ is represented by $\pi^{2} t\left[x_{1}, \ldots, x_{n}\right]$ similarly. We will use the following equations:

$$
\pi^{1}\langle u, v\rangle=u \quad \pi^{2}\langle u, v\rangle=v \quad\left\langle\pi^{1} t, \pi^{2} t\right\rangle=t
$$

Interpretation of the Rules

- A deduction ending in $\Rightarrow \mathcal{I}$ is represented by $t\left[x_{1}, \ldots, x_{n}\right]=\lambda x . v\left[x, x_{1}, \ldots, x_{n}\right]$ where $v\left[x, x_{1}, \ldots, x_{n}\right]$ is a deduction of the child.
- $\lambda x . v\left[x, x_{1}, \ldots, x_{n}\right]$ is a function which maps a to $v\left[a, x_{1}, \ldots, x_{n}\right]$.
- A deduction ending in $\Rightarrow \mathcal{E}$ is represented by $t\left[x_{1}, \ldots, x_{n}\right] u\left[x_{1}, \ldots, x_{n}\right]$ where $t\left[x_{1}, \ldots, x_{n}\right]$ and $u\left[x_{1}, \ldots, x_{n}\right]$ are deductions of the children $A \Rightarrow B$ and A respectively.
- $t\left[x_{1}, \ldots, x_{n}\right] u\left[x_{1}, \ldots, x_{n}\right]$ means applying the argument $u\left[x_{1}, \ldots, x_{n}\right]$ to the function $t\left[x_{1}, \ldots, x_{n}\right]$.
We will need the following equations:

$$
(\lambda x \cdot v) u=v[u / x]
$$

$$
\lambda x . t x=t \quad \text { when } x \text { is not free in } t
$$

- Interpretations of $\forall \mathcal{I}$ and $\forall \mathcal{E}$ will be discussed later.

Examples

- Find a representation of the following deduction:

$$
\begin{gathered}
\frac{[A][B]}{\frac{A \wedge B}{A} \wedge \mathcal{I}} \wedge 1 \mathcal{E} \\
\overline{B \Rightarrow A} \Rightarrow \mathcal{I} \\
A \Rightarrow(B \Rightarrow A)
\end{gathered} \mathrm{I}
$$

- Find a representation of the following deduction:

$$
\frac{[A] \quad \frac{(A \Rightarrow B) \wedge(A \Rightarrow C)}{A \Rightarrow B} \nRightarrow \mathcal{E} \quad \frac{[A]}{\frac{B}{B} \quad \frac{(A \Rightarrow B) \wedge(A \Rightarrow C)}{A \Rightarrow C}} \wedge 2 \mathcal{E}}{\frac{B \wedge C}{A \Rightarrow(B \wedge C)} \Rightarrow \mathcal{E}} \Rightarrow \mathcal{I}
$$

Examples

- Find a representation of the following deduction:

$$
\begin{gathered}
\frac{[A][B]}{\frac{A \wedge B}{A}} \wedge \mathcal{I} \\
\frac{\mathcal{E}}{B \Rightarrow A} \Rightarrow \mathcal{I} \\
A \Rightarrow(B \Rightarrow A)
\end{gathered} \mathcal{I} \text { } \quad \begin{gathered}
\lambda x \cdot \lambda y \cdot \pi_{1}\langle x, y\rangle
\end{gathered}
$$

- Find a representation of the following deduction:

$$
\begin{gathered}
\frac{[A] \frac{(A \Rightarrow B) \wedge(A \Rightarrow C)}{A \Rightarrow B}}{\frac{(A \mathcal{E}}{B} \quad \frac{[A]}{} \quad \frac{(A \Rightarrow B) \wedge(A \Rightarrow C)}{A \Rightarrow C}} \wedge 2 \mathcal{E} \\
\frac{B \wedge C}{A \Rightarrow(B \wedge C)} \Rightarrow \mathcal{I} \\
\quad \lambda x \cdot\left\langle\left(\pi_{1} y\right) x,\left(\pi_{2} y\right) x\right\rangle
\end{gathered}
$$

Untyped λ-Calculus

- λ-terms Λ is defined as follows.
- $x \in \Lambda$;
- $M \in \Lambda$ implies $\lambda x \cdot M \in \Lambda$; and
- $M, N \in \Lambda$ implies $M N \in \Lambda$.
- Consider the β-conversion:

$$
(\lambda x \cdot M) N \rightarrow M[N / x]
$$

- A variable x is bound if it is in the scope of λx; otherwise x is free.
- x is bound and y is free in $\lambda x . y x$;
- x and y are bound in $\lambda y . \lambda x . y x$.

Examples

- Church numbers: $\lceil i\rceil=\lambda f . \lambda x . f^{i} x$.
- Addition: $\lceil+\rceil=\lambda m \cdot \lambda n \cdot \lambda f \cdot \lambda x \cdot m f(n f x)$.
- $\lceil+\rceil\lceil i\rceil\lceil j\rceil=[\lambda m . \lambda n . \lambda f . \lambda x . m f(n f x)]\left[\lambda f . \lambda x . f^{i} x\right]\left[\lambda f . \lambda x . f^{j} x\right] \rightarrow$ $\lambda f . \lambda x .\left(\lambda f . \lambda x . f^{i} x\right) f\left(\left(\lambda f . \lambda x . f^{j} x\right) f x\right) \rightarrow \lambda f . \lambda x .\left(\lambda f . \lambda x . f^{i} x\right) f\left(f^{j} x\right) \rightarrow$ $\lambda f \cdot \lambda x . f^{i}\left(f^{j} x\right)=\lambda f \cdot \lambda x . f^{i+j} x=\lceil i+j\rceil$.
- $Y=\lambda f \cdot(\lambda x . f(x x))(\lambda x . f(x x))$.
- For any $F \in \Lambda, Y F=(\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))) F \rightarrow$ $(\lambda x . F(x x))(\lambda x . F(x x)) \rightarrow F[(\lambda x . F(x x))(\lambda x . F(x x))]=F[Y F]$.
- Church-Turing Thesis:

Effectively computable functions are λ-definable.

Equivalent Deductions

- Deductions may be simplified. For instance,

$$
\begin{aligned}
& \begin{array}{c}
\vdots \quad \vdots \\
\frac{A \quad B}{A} \wedge^{A} \\
\\
\wedge \mathcal{I} \\
\end{array} \\
& \begin{array}{c}
\vdots \quad \vdots \\
\frac{A^{A} \quad \dot{B}}{A \wedge B} \\
\hline
\end{array} \wedge \mathcal{I} \\
& \text { "equals" } \\
& \begin{array}{c}
\vdots \\
B
\end{array} \\
& \text { [A] } \\
& \begin{array}{c}
\\
\vdots \quad \frac{\vdots}{B} \\
\frac{A}{A} \Rightarrow B
\end{array} \Rightarrow \mathcal{I} \\
& \begin{array}{c}
\vdots \\
\text { A } \\
\vdots \\
\vdots \\
B
\end{array}
\end{aligned}
$$

