Proofs and Types
 The Curry-Howard Isomorphism

Bow-Yaw Wang

Academia Sinica
Spring 2012

Dichotomy between Sense and Denotation

- Recall

$$
\begin{array}{cccc}
& {[A]} \\
& & & \vdots \\
\vdots & \frac{B}{A} & & \vdots \\
\frac{A}{A \Rightarrow B} & \Rightarrow \mathcal{I} & & \vdots \\
& \Rightarrow & & \vdots \\
& & & \text { "equals" } \\
& & \\
& \left(\lambda x . t_{B}\right) t_{A} & & = \\
& & & \\
& \left(\lambda x . t_{B}\right) t_{A}\left[t_{A} / x\right] \\
& & \rightarrow & t_{B}\left[t_{A} / x\right]
\end{array}
$$

- Equations define the equality of terms (the static view).
- Rewrite rules calculate terms by reduction (the dynamic view).

Typed λ-Calculus

- Formulae are types.
- T_{1}, \ldots, T_{n} are types; and
- If U and V are types, $U \times V$ and $U \rightarrow V$ are types.
- Proofs are terms.
- The variables $x_{0}^{T}, \ldots, x_{n}^{T}, \ldots$ are terms of type $T ;$
- If u and v are terms of types U and V respectively, $\langle u, v\rangle$ is a term of type $U \times V$;
- If t is a term of type $U \times V, \pi^{1} t$ and $\pi^{2} t$ are of types U and V respectively;
- If v is a term of type V and x_{n}^{U} is a variable of type $U, \lambda x_{n}^{U} \cdot v$ is a term of type $U \rightarrow V$;
- If t and u are terms of types $U \rightarrow V$ and U respectively, $t u$ is a term of type V.

Static View

- Consider the following (primary) equations

$$
\pi^{1}\langle u, v\rangle=u \quad \pi^{2}\langle u, v\rangle=v \quad\left(\lambda x^{U} . v\right) u=v[u / x]
$$

- And the secondary equations

$$
\left\langle\pi^{1} t, \pi^{2} t\right\rangle=t \quad \lambda x^{U} \cdot t x=t
$$

- A system is consistent if the equality $x=y$ for distinct x and y cannot be proved.

Theorem 1

The system of typed λ-calculus with the primary equations is consistent and decidable.

Dynamic View

- Terms represent programs; and programs compute.
- To give a dynamic view, we consider rewrite rules derived by the primary equations.
- A term t (called redex) converts to a term t^{\prime} (called contractum) when

$$
\begin{array}{c|ccc}
t & \pi^{1}\langle u, v\rangle & \pi^{2}\langle u, v\rangle & \left(\lambda x^{U} . v\right) u \\
t^{\prime} & \downarrow & \downarrow & \downarrow \\
u & v & v[u / x]
\end{array}
$$

- A term u reduces to a term v (written $u \rightsquigarrow v$) if there is a sequence $u=t_{0}, t_{1}, \ldots, t_{n}=v$ such that t_{i+1} is obtained by replacing a redex with its contractum.
- Recall $\lceil i\rceil=\lambda f^{U \rightarrow U} . \lambda x^{U} . f^{i} x$ and $\lceil+\rceil=\lambda m{ }^{(U \rightarrow U) \rightarrow U \rightarrow U} . \lambda n^{(U \rightarrow U) \rightarrow U \rightarrow U} \cdot \lambda f^{U \rightarrow U} \cdot \lambda x^{U} . m f(n f x)$. We have $\lceil+\rceil\lceil i\rceil\lceil j\rceil \rightsquigarrow\lceil i+j\rceil$.

Normal Form

- A term is normal if none of its subterms is of the form

$$
\pi^{1}\langle u, v\rangle \quad \pi^{2}\langle u, v\rangle \quad\left(\lambda x^{U}, v\right) u
$$

- A normal form for t is a term u such that $t \rightsquigarrow u$ and u is normal.
- $\lceil i\rceil$ and $\lceil+\rceil$ are normal terms.
- The normal form for $\lceil+\rceil\lceil i\rceil\lceil j\rceil$ is $\lceil i+j\rceil$.
- An untyped term may not have a normal form. Let $\omega=\lambda x \cdot x x$. Then $\omega \omega$ has no normal form.

Head Normal Form

- The following lemma for untyped λ-calculus will be useful.

Lemma 2

A term t is normal if and only if it is in head normal form:

$$
\lambda x_{1} \cdot \lambda x_{2} . \cdots \lambda x_{n} . y u_{1} u_{2} \cdots u_{m}
$$

and u_{j} are normal for $1 \leq j \leq m$.

Proof.

By induction on t. If t is a variable x or an abstraction $\lambda x . u$, we are done. If t is $u v$, then u must be normal. By IH, u is in head normal form. But t is normal, u can only be $y u_{1} u_{2} \cdots u_{m}$. Thus $u v$ is in hnf.

Corollary 3

If the types of the free variables of a normal term t are strictly simpler than the type of t, then t is an abstraction.

Curry-Howard Isomorphism

- We now give a precise description of the isomorphism.
- The deduction A (A in parcel i) corresponds to the variable x_{i}^{A}.
- The deduction $\frac{\dot{A} \quad \dot{B}}{A \wedge B} \wedge \mathcal{I}$ corresponds to $\langle u, v\rangle$ where u and v correspond to the deduction of A and B respectively.
- The deductions $\frac{A \dot{\wedge} B}{A} \wedge 1 \mathcal{E}$ and $\frac{A \dot{\wedge} B}{B} \wedge 2 \mathcal{E}$ correspond to $\pi^{1} t$ and $\pi^{2} t$ respectively, where t corresponds to the deductionof $A \wedge B$.

$$
[A]
$$

- The deduction $\frac{\stackrel{\dot{B}}{A \Rightarrow B}}{\text { - }} \Rightarrow \mathcal{I}$ corresponds to $\lambda x_{i}^{A} . v$ where the discharged hypotheses form parcel i and v corresponds to the deduction of B.
- The deduction $\frac{\dot{A} A \dot{A} B}{B} \Rightarrow \mathcal{E}$ corresponds to $t u$ where t and u corresnond to the deductions of $A \Rightarrow B$ and A respectively.

Examples (revised)

- Find a representation of the following deduction:

$$
\begin{gathered}
\frac{[A][B]}{\frac{A \wedge B}{A}} \wedge \mathcal{I} \\
\stackrel{\mathcal{E}}{B \Rightarrow A} \Rightarrow \mathcal{I} \\
A \Rightarrow(B \Rightarrow A)
\end{gathered} \Rightarrow \mathcal{I} \text {. }
$$

- Find a representation of the following deduction:

$$
\begin{aligned}
& \frac{[A] \quad \frac{(A \Rightarrow B) \wedge(A \Rightarrow C)}{A \Rightarrow B} \Rightarrow \mathcal{E}}{\frac{B}{} \quad \frac{[A] \quad \frac{(A \Rightarrow B) \wedge(A \Rightarrow C)}{A \Rightarrow C}}{\frac{B}{C}} \wedge 2 \mathcal{E}} \begin{array}{l}
\frac{B \wedge C}{A \Rightarrow(B \wedge C)} \Rightarrow \mathcal{I} \\
\quad \lambda x_{1}^{A} \cdot\left\langle\left(\pi_{1} x_{1}^{(A \Rightarrow B) \wedge(A \Rightarrow C)}\right) x_{1}^{A},\left(\pi_{2} x_{2}^{(A \Rightarrow B) \wedge(A \Rightarrow C)}\right) x_{1}^{A}\right\rangle
\end{array},=\mathcal{I}
\end{aligned}
$$

Normal Proofs

- A proof is normal if it does not contain any sequence of an introduction followed by an elimination rule:

$$
\begin{aligned}
& \text { [A] }
\end{aligned}
$$

- Recall a λ-term is normal if it does not contain subterm of the form $\pi^{1}\langle u, v\rangle, \pi^{2}\langle u, v\rangle$, and ($\lambda x^{U} . v$) u.
- It is possible to define proof conversion as well.
- In fact, the notions of conversion, normality, and reduction exist independently in natural deduction.
- In other words, proofs have not only static interpretations (A has a deduction) but also dynamic operations (normalizing the deduction of A).

