Proofs and Types The Curry-Howard Isomorphism

Bow-Yaw Wang

Academia Sinica

Spring 2012

Dichotomy between Sense and Denotation

Recall

$$\begin{array}{ccc}
 \begin{bmatrix}
A \\
\vdots \\
B \\
A \Rightarrow B
\end{array} \Rightarrow \mathcal{I} \\
B \Rightarrow \mathcal{E}$$
"equals"
$$\begin{array}{ccc}
 \vdots \\
A \\
\vdots \\
B
\end{array}$$

$$(\lambda x.t_B)t_A = t_B[t_A/x]$$

$$(\lambda x.t_B)t_A \rightarrow t_B[t_A/x]$$

- Equations define the equality of terms (the static view).
- Rewrite rules calculate terms by reduction (the dynamic view).

Typed λ -Calculus

- Formulae are *types*.
 - $ightharpoonup T_1, \ldots, T_n$ are types; and
 - ▶ If *U* and *V* are types, $U \times V$ and $U \rightarrow V$ are types.
- Proofs are *terms*.
 - ▶ The variables $x_0^T, \ldots, x_n^T, \ldots$ are terms of type T;
 - ▶ If *u* and *v* are terms of types *U* and *V* respectively, $\langle u, v \rangle$ is a term of type $U \times V$;
 - ▶ If *t* is a term of type $U \times V$, $\pi^1 t$ and $\pi^2 t$ are of types *U* and *V* respectively;
 - ▶ If v is a term of type V and x_n^U is a variable of type U, $\lambda x_n^U.v$ is a term of type $U \to V$;
 - ▶ If *t* and *u* are terms of types $U \rightarrow V$ and *U* respectively, *tu* is a term of type *V*.

Static View

• Consider the following (*primary*) equations

$$\pi^1 \langle u, v \rangle = u$$
 $\pi^2 \langle u, v \rangle = v$ $(\lambda x^U \cdot v)u = v[u/x]$

• And the secondary equations

$$\langle \pi^1 t, \pi^2 t \rangle = t$$
 $\lambda x^U . t x = t$

• A system is *consistent* if the equality x = y for distinct x and y cannot be proved.

Theorem 1

The system of typed λ -calculus with the primary equations is consistent and decidable.

Dynamic View

- Terms represent programs; and programs compute.
- To give a dynamic view, we consider rewrite rules derived by the primary equations.
- A term t (called *redex*) *converts* to a term t' (called *contractum*) when

$$\begin{array}{c|cccc} t & \pi^1\langle u,v\rangle & \pi^2\langle u,v\rangle & (\lambda x^U.v)u \\ & \downarrow & \downarrow & \downarrow \\ t' & u & v & v[u/x] \end{array}$$

- A term u reduces to a term v (written $u \rightsquigarrow v$) if there is a sequence $u = t_0, t_1, \dots, t_n = v$ such that t_{i+1} is obtained by replacing a redex with its contractum.
- Recall $\lceil i \rceil = \lambda f^{U \to U} . \lambda x^U . f^i x$ and $\lceil + \rceil = \lambda m^{(U \to U) \to U \to U} . \lambda n^{(U \to U) \to U \to U} . \lambda f^{U \to U} . \lambda x^U . m f(n f x)$. We have $\lceil + \rceil \lceil i \rceil \lceil j \rceil \leadsto \lceil i + j \rceil$.

5 / 10

Normal Form

• A term is *normal* if none of its subterms is of the form

$$\pi^1 \langle u, v \rangle$$
 $\pi^2 \langle u, v \rangle$ $(\lambda x^U, v) u$

- A *normal form* for t is a term u such that $t \rightsquigarrow u$ and u is normal.
- [i] and [+] are normal terms.
- The normal form for $\lceil + \rceil \lceil i \rceil \lceil j \rceil$ is $\lceil i + j \rceil$.
- An untyped term may not have a normal form. Let $\omega = \lambda x.xx$. Then $\omega \omega$ has no normal form.

Head Normal Form

The following lemma for untyped λ-calculus will be useful.

Lemma 2

A term t is normal if and only if it is in head normal form:

$$\lambda x_1.\lambda x_2.\cdots \lambda x_n.yu_1u_2\cdots u_m$$

and u_i are normal for $1 \le j \le m$.

Proof.

By induction on t. If t is a variable x or an abstraction $\lambda x.u$, we are done. If t is uv, then u must be normal. By IH, u is in head normal form. But t is normal, u can only be $yu_1u_2\cdots u_m$. Thus uv is in hnf.

Corollary 3

If the types of the free variables of a normal term t are strictly simpler than the type of t, then t is an abstraction.

Curry-Howard Isomorphism

- We now give a precise description of the isomorphism.
 - ► The deduction A (A in parcel i) corresponds to the variable x_i^A .
 - ► The deduction $\overline{A \wedge B}^{\wedge \mathcal{I}}$ corresponds to $\langle u, v \rangle$ where u and v correspond to the deduction of A and B respectively.
 - ► The deductions $\frac{A \wedge B}{A} \wedge 1\mathcal{E}$ and $\frac{A \wedge B}{B} \wedge 2\mathcal{E}$ correspond to $\pi^1 t$ and $\pi^2 t$ respectively, where t corresponds to the deduction of $A \wedge B$.
 - ► The deduction $\overrightarrow{A} \Rightarrow \overrightarrow{B} \Rightarrow \mathcal{I}$ corresponds to $\lambda x_i^A.v$ where the discharged hypotheses form parcel i and v corresponds to the deduction of B.
 - The deduction $(A \cap B) \Rightarrow \mathcal{E}$ corresponds to $(B \cap B) \Rightarrow \mathcal{E}$ corresponds to $(B \cap B) \Rightarrow \mathcal{E}$ and $(A \cap B) \Rightarrow \mathcal{E}$ correspond to the deductions of $(A \Rightarrow B) \Rightarrow \mathcal{E}$ and $(A \cap B) \Rightarrow \mathcal{E}$ corresponds to $(A \Rightarrow B) \Rightarrow \mathcal{E}$

Examples (revised)

• Find a representation of the following deduction:

$$\frac{ \underbrace{\begin{bmatrix} A \end{bmatrix} \quad \begin{bmatrix} B \end{bmatrix}}{A \land B} \land \mathcal{I}}{\underbrace{\frac{A \land B}{B \Rightarrow A} \Rightarrow \mathcal{I}}} \\ \underbrace{\frac{B \Rightarrow A}{B \Rightarrow A} \Rightarrow \mathcal{I}} \\ A \Rightarrow (B \Rightarrow A) \Rightarrow \mathcal{I}$$

$$\lambda x_1^A.\lambda x_1^B.\pi_1\langle x_1^A,x_1^B\rangle$$

• Find a representation of the following deduction:

$$\underbrace{ \begin{bmatrix} A \end{bmatrix} \quad \frac{(A \Rightarrow B) \land (A \Rightarrow C)}{A \Rightarrow B} \Rightarrow \mathcal{E} }_{ \begin{array}{c} B \land C \\ \hline A \Rightarrow (B \land C) \\ \hline \end{array}} \land 1\mathcal{E} \quad \underbrace{ \begin{bmatrix} A \end{bmatrix} \quad \frac{(A \Rightarrow B) \land (A \Rightarrow C)}{A \Rightarrow C} }_{ \begin{array}{c} C \\ \hline \end{array}} \land 2\mathcal{E}$$

$$\lambda x_1^A.\langle (\pi_1 x_1^{(A\Rightarrow B)\land (A\Rightarrow C)}) x_1^A, (\pi_2 x_2^{(A\Rightarrow B)\land (A\Rightarrow C)}) x_1^A \rangle$$

Normal Proofs

• A proof is *normal* if it does not contain any sequence of an introduction followed by an elimination rule:

- Recall a λ -term is normal if it does not contain subterm of the form $\pi^1\langle u, v \rangle$, $\pi^2\langle u, v \rangle$, and $(\lambda x^U.v)u$.
- It is possible to define proof conversion as well.
- In fact, the notions of conversion, normality, and reduction exist independently in natural deduction.
- In other words, proofs have not only static interpretations (*A* has a deduction) but also dynamic operations (normalizing the deduction of *A*).