Proofs and Types The Normalisation Theorem

Bow-Yaw Wang

Academia Sinica

Spring 2012

Normalisation Theorem

- Given a typed λ -term, how to find its normal form?
 - ► Consider $\pi^1 \langle x_1^U, \pi^2 \langle y_1^U, z_1^U \rangle \rangle$. Which redex should we convert first?
 - Do all strategies give the same normal form?
 - ▶ For instance, can we have both $[+][i][j] \rightsquigarrow [i+j]$ and $[+][i][j] \rightsquigarrow [i \times j]$?
 - Do all strategies terminate?
 - ▶ Recall $(\lambda x.xx)(\lambda x.xx)$.
- The uniqueness of normal form follows from Church-Rosser property.
- ▶ The normalisation theorem has two forms:
 - ► The weak normalisation theorem states that there is a terminating strategy for normalisation.
 - ► The strong normalisation theorem states that all strategies for normalisation terminate.

Church-Rosser Property

Theorem 1 (Church-Rosser)

If $t \rightsquigarrow u$ and $t \rightsquigarrow v$, then there is w such that $u \rightsquigarrow w$ and $v \rightsquigarrow w$.

Corollary 2

A term t has at most one normal form.

Proof.

Let $t \rightsquigarrow u$ and $t \rightsquigarrow v$ where u, v are normal. Then $u \rightsquigarrow w$ and $v \rightsquigarrow w$ for some w. Since u, v are normal, u = w and v = w.

Consistency of Typed λ -Calculus

- ▶ Recall consistency means that u = v is not deducible by equations $\pi^1\langle u, v \rangle = u$, $\pi^2\langle u, v \rangle = v$, and $(\lambda x^U.u)v = u[v/x]$ for some u, v.
 - ▶ Note that $u \rightsquigarrow v$ implies u = v.
- ▶ Suppose u = v. There are terms $u = t_0, t_1, \dots, t_{2n-1}, t_{2n} = v$ such that $t_{2i}, t_{2i+2} \rightsquigarrow t_{2i+1}$ for $0 \le i < n$. Hence u, v have the same normal form. Particularly, $x^U = y^U$ is not deducible.

Degree of Type, Redex, and Term

- ▶ The *degree* $\partial(T)$ of a type T is defined by
 - ▶ $\partial(T_i) = 1$ if T_i is atomic;
- ▶ The *degree* $\partial(r)$ of a redex r is defined by
 - ▶ $\partial(\pi^1\langle u, v \rangle) = \partial(\pi^2\langle u, v \rangle) = \partial(U \times V)$ where $U \times V$ is the type of $\langle u, v \rangle$.
 - ▶ $\partial((\lambda x^U, v)u) = \partial(U \to V)$ where $U \to V$ is the type of $\lambda x^U.v.$
- ▶ The *degree* d(t) of a term t is the sup of the degrees of the redexes it has. When t has no redex (that is, t is normal), d(t) = 0.
- ▶ Note that for any redex *r* of type T, $\partial(T) < \partial(r)$.
 - ► The types of $\pi^1\langle u, v \rangle$, $\pi^2\langle u, v \rangle$, and $(\lambda x^U, v)u$ are U, V, and V respectively.

Degree and Substitution

Lemma 3

If x^U is of type U, then $d(t[u/x]) \le \max(d(t), d(u), \partial(U))$.

Proof.

We examine redexes in t[u/x]. In t[u/x], we have

- ▶ the redexes of *t* modified by the substitution;
 - for instance, $t = (\lambda y^{U}.y)(\lambda z^{U}.zx)$.
- ▶ the redexes of *u* proliferated by occurrences of *x*;
 - for instance, $t = \langle x, x \rangle$ and $u = \pi^1 \langle u', u'' \rangle$.
- ▶ new redexes from substitution when $\pi^1 x$, $\pi^2 x$, xv are subterms of t and $u = \langle u', u'' \rangle, \langle u', u'' \rangle, \lambda y^{U'}.u'$ respectively. These redexes have degrees equal to $\partial(U)$.

Degree and Conversion

Lemma 4

If
$$t \rightsquigarrow u$$
, $d(u) \leq d(t)$.

Proof.

It suffices to consider one conversion where u is obtained by replacing a redex r with its contractum c in t. In u, we have

- ightharpoonup redexes in t but not in r. Their degrees are unchanged.
 - for instance, $t = (\lambda y^U . y)(\lambda z^U . \pi^1 \langle y^U , z^U \rangle)$.
- redexes in c. But c is obtained by simplification $(\pi^1\langle r', r'' \rangle)$ or $\pi^2\langle r', r'' \rangle)$, or substitution $((\lambda x^U, r')c')$. For simplication, $d(c) \leq d(r)$. For substitution, $d(c) = d(r'[c'/x]) \leq \max(d(r'), d(c'), \partial(U))$. But $d(r'), d(c') \leq d(r)$ and $\partial(U) < d(r), d(c) \leq d(r)$.
- redexes from replacing r with c (π^1c , π^2c , or cv). They have degrees equal to $\partial(T)$ where T is the type of r. But

Conversion of Maximal Degree

Lemma 5

Let r be a redex in t with maximal degree n. Suppose all proper sub-redexes of r have degrees less than n. If u is obtained from t by converting r to c, then u has strictly fewer redexes of degree n.

Proof.

After conversion, observe that

- redexes outside *r* remain unchanged.
- ▶ redexes strictly inside *r* are proliferated. But they all have degrees less than *n*.
 - For instance, $(\lambda x^U, \langle x^U, x^U \rangle)u$.
- the redex r is destroyed and possibly replaced by redexes with degrees less than n (π^1c , π^2c , or cv). Recall $\partial(\pi^1c) = \partial(\pi^2c) = \partial(cv) = \partial(T) < \partial(r)$ where T is the type of c and r.

Weak Normalisation Theorem

Theorem 6

For any term t, there is a strategy to reduce t to its normal form.

Proof.

For a term t, consider $\mu(t) = (n, m)$ where n = d(t) and m = the number of redexes of degree n. We obtain t' by converting the redex of degree n whose strict sub-redexes all have degrees less than n. Then $\mu(t') < \mu(t)$ in lexicographical order (Lemma 5). The result follows by double induction.

- ▶ Recall that $(\lambda x.xx)(\lambda x.xx)$ does not have a normal form.
 - ► Can you give a type to $(\lambda x.xx)(\lambda x.xx)$?
 - ► The weak normalisation theorem holds only for typed λ -calculus.

Weak Normalisation Theorem

Theorem 6

For any term t, there is a strategy to reduce t to its normal form.

Proof.

For a term t, consider $\mu(t) = (n,m)$ where n = d(t) and m = the number of redexes of degree n. We obtain t' by converting the redex of degree n whose strict sub-redexes all have degrees less than n. Then $\mu(t') < \mu(t)$ in lexicographical order (Lemma 5). The result follows by double induction.

- ▶ Recall that $(\lambda x.xx)(\lambda x.xx)$ does not have a normal form.
 - ► Can you give a type to $(\lambda x.xx)(\lambda x.xx)$?
 - The weak normalisation theorem holds only for typed λ-calculus.

Example

▶ Recall the term $t = \lambda x_1^A . \lambda x_1^B . \pi_1 \langle x_1^A, x_1^B \rangle$ for the proof tree:

$$\frac{[A] \quad [B]}{A \land B} \land \mathcal{I}$$

$$\frac{A \land B}{A} \land \mathcal{I}\mathcal{E}$$

$$\frac{B \Rightarrow A}{A \Rightarrow (B \Rightarrow A)} \Rightarrow \mathcal{I}$$

- t has 1 redex $r = \pi_1 \langle x_1^A, x_1^B \rangle$.

 - ▶ Hence d(t) = 1.
- We convert t by converting r and obtain $t' = \lambda x_1^A \cdot \lambda_1^B \cdot x_1^A$.
 - t' has no redex and hence d(t') = 0.
- \blacktriangleright Here is the proof tree corresponding to t':

$$\frac{[A] \quad [B]}{B \Rightarrow A} \Rightarrow \mathcal{I}$$

$$A \Rightarrow (B \Rightarrow A) \Rightarrow \mathcal{I}$$

Decidability of Equality

- Given terms u and v, is $u \stackrel{?}{=} v$ decidable?
- Recall that if u = v, then u and v have the same normal form.
 - ▶ See the proof of consistency.
- ▶ By the proof of the weak normalisation theorem, we can compute the normal forms of *u* and *v* effectively.
- ▶ Return YES if and only if their normal forms coincide.