Proofs and Types The Normalisation Theorem

Bow-Yaw Wang

Academia Sinica

Spring 2012

Normalisation Theorem

- Given a typed λ-term, how to find its normal form?
- Consider $\pi^{1}\left\langle x_{1}^{U}, \pi^{2}\left\langle y_{1}^{U}, z_{1}^{U}\right\rangle\right\rangle$. Which redex should we convert first?
- Do all strategies give the same normal form?
- For instance, can we have both $\lceil+\rceil\lceil i\rceil\lceil j\rceil \rightsquigarrow\lceil i+j\rceil$ and

$$
\lceil+\rceil\lceil i\rceil\lceil j\rceil \rightsquigarrow\lceil i \times j\rceil ?
$$

- Do all strategies terminate?
- Recall $(\lambda x . x x)(\lambda x . x x)$.
- The uniqueness of normal form follows from Church-Rosser property.
- The normalisation theorem has two forms:
- The weak normalisation theorem states that there is a terminating strategy for normalisation.
- The strong normalisation theorem states that all strategies for normalisation terminate.

Church-Rosser Property

Theorem 1 (Church-Rosser)
If $t \rightsquigarrow u$ and $t \rightsquigarrow v$, then there is w such that $u \rightsquigarrow w$ and $v \rightsquigarrow w$.

Corollary 2
A term thas at most one normal form.
Proof.
Let $t \rightsquigarrow u$ and $t \rightsquigarrow v$ where u, v are normal. Then $u \rightsquigarrow w$ and $v \rightsquigarrow w$ for some w. Since u, v are normal, $u=w$ and $v \equiv w$.

Consistency of Typed λ-Calculus

- Recall consistency means that $u=v$ is not deducible by equations $\pi^{1}\langle u, v\rangle=u, \pi^{2}\langle u, v\rangle=v$, and $\left(\lambda x^{U} . u\right) v=u[v / x]$ for some u, v.
- Note that $u \rightsquigarrow v$ implies $u=v$.
- Suppose $u=v$. There are terms $u=t_{0}, t_{1}, \ldots, t_{2 n-1}, t_{2 n}=v$ such that $t_{2 i}, t_{2 i+2} \rightsquigarrow t_{2 i+1}$ for $0 \leq i<n$. Hence u, v have the same normal form. Particularly, $x^{U}=y^{U}$ is not deducible.

Degree of Type, Redex, and Term

- The degree $\partial(T)$ of a type T is defined by
- $\partial\left(T_{i}\right)=1$ if T_{i} is atomic;
- $\partial(U \times V)=\partial(U \rightarrow V)=\max (\partial(U), \partial(V))+1$.
- The degree $\partial(r)$ of a redex r is defined by
- $\partial\left(\pi^{1}\langle u, v\rangle\right)=\partial\left(\pi^{2}\langle u, v\rangle\right)=\partial(U \times V)$ where $U \times V$ is the type of $\langle u, v\rangle$.
- $\partial\left(\left(\lambda x^{U}, v\right) u\right)=\partial(U \rightarrow V)$ where $U \rightarrow V$ is the type of $\lambda x^{U} . v$.
- The degree $d(t)$ of a term t is the sup of the degrees of the redexes it has. When t has no redex (that is, t is normal), $d(t)=0$.
- Note that for any redex r of type $T, \partial(T)<\partial(r)$.
- The types of $\pi^{1}\langle u, v\rangle, \pi^{2}\langle u, v\rangle$, and $\left(\lambda x^{U}, v\right) u$ are U, V, and V respectively.

Degree and Substitution

Lemma 3
If x^{U} is of type U, then $d(t[u / x]) \leq \max (d(t), d(u), \partial(U))$.
Proof.
We examine redexes in $t[u / x]$. In $t[u / x]$, we have

- the redexes of t modified by the substitution;
- for instance, $t=\left(\lambda y^{U} \cdot y\right)\left(\lambda z^{U} \cdot z x\right)$.
- the redexes of u proliferated by occurrences of x;
- for instance, $t=\langle x, x\rangle$ and $u=\pi^{1}\left\langle u^{\prime}, u^{\prime \prime}\right\rangle$.
- new redexes from substitution when $\pi^{1} x, \pi^{2} x, x v$ are subterms of t and $u=\left\langle u^{\prime}, u^{\prime \prime}\right\rangle,\left\langle u^{\prime}, u^{\prime \prime}\right\rangle, \lambda y^{U^{\prime}} . u^{\prime}$ respectively. These redexes have degrees equal to $\partial(U)$.

Degree and Conversion

Lemma 4
If $t \rightsquigarrow u, d(u) \leq d(t)$.
Proof.
It suffices to consider one conversion where u is obtained by replacing a redex r with its contractum c in t. In u, we have

- redexes in t but not in r. Their degrees are unchanged.
- for instance, $t=\left(\lambda y^{U} \cdot y\right)\left(\lambda z^{U} \cdot \pi^{1}\left\langle y^{U}, z^{U}\right\rangle\right)$.
- redexes in c. But c is obtained by simplification $\left(\pi^{1}\left\langle r^{\prime}, r^{\prime \prime}\right\rangle\right.$ or $\pi^{2}\left\langle r^{\prime}, r^{\prime \prime}\right\rangle$), or substitution $\left(\left(\lambda x^{U} . r^{\prime}\right) c^{\prime}\right)$. For simplication, $d(c) \leq d(r)$. For substitution, $d(c)=d\left(r^{\prime}\left[c^{\prime} / x\right]\right) \leq \max \left(d\left(r^{\prime}\right), d\left(c^{\prime}\right), \partial(U)\right)$. But $d\left(r^{\prime}\right), d\left(c^{\prime}\right) \leq d(r)$ and $\partial(U)<d(r), d(c) \leq d(r)$.
- redexes from replacing r with $c\left(\pi^{1} c, \pi^{2} c\right.$, or $\left.c v\right)$. They have degrees equal to $\partial(T)$ where T is the type of r. But

Conversion of Maximal Degree

Lemma 5

Let r be a redex in t with maximal degree n. Suppose all proper sub-redexes of r have degrees less than n. If u is obtained from t by converting r to c, then u has strictly fewer redexes of degree n.

Proof.
After conversion, observe that

- redexes outside r remain unchanged.
- redexes strictly inside r are proliferated. But they all have degrees less than n.
- For instance, $\left(\lambda x^{U} .\left\langle x^{U}, x^{u}\right\rangle\right) u$.
- the redex r is destroyed and possibly replaced by redexes with degrees less than $n\left(\pi^{1} c, \pi^{2} c\right.$, or $\left.c v\right)$. Recall $\partial\left(\pi^{1} c\right)=\partial\left(\pi^{2} c\right)=\partial(c v)=\partial(T)<\partial(r)$ where T is the type of c and r.

Weak Normalisation Theorem

Theorem 6

For any term t, there is a strategy to reduce t to its normal form.
Proof.
For a term t, consider $\mu(t)=(n, m)$ where $n=d(t)$ and $m=$ the number of redexes of degree n. We obtain t^{\prime} by converting the redex of degree n whose strict sub-redexes all have degrees less than n. Then $\mu\left(t^{\prime}\right)<\mu(t)$ in lexicographical order (Lemma 5). The result follows by double induction.

- Recall that $(\lambda x . x x)(\lambda x . x x)$ does not have a normal form.
- The weak normalisation theorem holds only for typed λ-calculus.

Weak Normalisation Theorem

Theorem 6

For any term t, there is a strategy to reduce t to its normal form.
Proof.
For a term t, consider $\mu(t)=(n, m)$ where $n=d(t)$ and $m=$ the number of redexes of degree n. We obtain t^{\prime} by converting the redex of degree n whose strict sub-redexes all have degrees less than n. Then $\mu\left(t^{\prime}\right)<\mu(t)$ in lexicographical order (Lemma 5). The result follows by double induction.

- Recall that $(\lambda x \cdot x x)(\lambda x \cdot x x)$ does not have a normal form.
- Can you give a type to $(\lambda x . x x)(\lambda x . x x)$?
- The weak normalisation theorem holds only for typed λ-calculus.

Example

- Recall the term $t=\lambda x_{1}^{A} \cdot \lambda x_{1}^{B} \cdot \pi_{1}\left\langle x_{1}^{A}, x_{1}^{B}\right\rangle$ for the proof tree:

$$
\begin{gathered}
\frac{[A] \quad[B]}{\frac{A \wedge B}{A} \wedge 1 \mathcal{E}} \\
\frac{\mathcal{I}}{B \Rightarrow A} \Rightarrow \mathcal{I} \\
A \Rightarrow(B \Rightarrow A)
\end{gathered} \Rightarrow \mathcal{I}
$$

- t has 1 redex $r=\pi_{1}\left\langle x_{1}^{A}, x_{1}^{B}\right\rangle$.
- $\partial(r)=\partial(A \times B)=\max (\partial(A), \partial(B))+1=1$.
- Hence $d(t)=1$.
- We convert t by converting r and obtain $t^{\prime}=\lambda x_{1}^{A} \cdot \lambda_{1}^{B} \cdot x_{1}^{A}$.
- t^{\prime} has no redex and hence $d\left(t^{\prime}\right)=0$.
- Here is the proof tree corresponding to t^{\prime} :

$$
\frac{\left.\frac{[A]}{B \Rightarrow A} \Rightarrow \mathcal{A}\right]}{A \Rightarrow(B \Rightarrow A)} \Rightarrow \mathcal{I}
$$

Decidability of Equality

- Given terms u and v, is $u \stackrel{?}{=} v$ decidable?
- Recall that if $u=v$, then u and v have the same normal form.
- See the proof of consistency.
- By the proof of the weak normalisation theorem, we can compute the normal forms of u and v effectively.
- Return YES if and only if their normal forms coincide.

