Proofs and Types Strong Normalisation Theorem

Bow-Yaw Wang

Academia Sinica

Spring 2012

Strong Normalisation Theorem

- There is a strategy of reduction that finds the normal form of any typed λ -term.
 - ▶ The weak normalisation theorem.
- All strategies of reduction in fact find the normal form of any typed λ -term.
 - ▶ The strong normalisation theorem.
- We will demonstrate a technique for proving the strong normalisation theorem.
- The technique can be generalized to other systems. Particularly,
 - Gödel's system T. Since Peano Arithmetic can be encoded in system T and system T is strongly normalising, Peano Arithmetic is consistent.
 - ► Girard's system F.

Reducibility

Definition 1

The set RED_T (*reducible* terms of type T) is defined as follows.

- For *t* of atomic type T, $t \in \mathsf{RED}_T$ if *t* is strongly normalisable.
- For t of type $U \times V$, $t \in \mathsf{RED}_{U \times V}$ if $\pi^1 t \in \mathsf{RED}_U$ and $\pi^2 \in \mathsf{RED}_V$.
- For t of type $U \to V$, $t \in \mathsf{RED}_{U \to V}$ if $tu \in \mathsf{RED}_V$ for all $u \in \mathsf{RED}_U$.
- A term is *neutral* if it is one of the following forms:

$$x \pi^1 t \pi^2 t tu$$

Properties of Reducibility

- We will prove the following properties by induction on the *T*:
 - **CR 1** If $t \in \mathsf{RED}_T$, then t is strongly normalisable.
 - **CR 2** If $t \in \mathsf{RED}_T$ and $t \leadsto t'$, then $t' \in \mathsf{RED}_T$.
 - **CR 3** If *t* is neutral and $t' \in \mathsf{RED}_T$ for every t' obtained by converting a redex in *t*, then $t \in \mathsf{RED}_T$.
- Particularly, we have
 - **CR 4** If *t* is neutral and normal, then $t \in \mathsf{RED}_T$.
- We now proceed to prove **CR 1** to **3** simultaneously by induction on *T*.

Length of Normalisation

Lemma 2 (König)

A finitely branching tree with no infinite branch is finite.

Lemma 3

t is strongly normalisable iff there is a number $\nu(t)$ which bounds the length of every normalisation sequence from t.

Proof.

If there is $\nu(t)$, t is clearly strongly normalisable.

Conversely, suppose *t* is strongly normalisable. Note that *t* has fintely many redexes. Hence all strategies of normalisation form a finitely branching tree. Moreover, every branch of the tree is finite because t is strongly normalisable. By König's lemma, the tree is finite. The height of the tree is $\nu(t)$.

T is an Atomic Type

CR 1 If $t \in \mathsf{RED}_T$, then t is strongly normalisable.

Proof.

Since $t \in \mathsf{RED}_T$, t is strongly normalisable by the definition of RED_T .

CR 2 If $t \in \mathsf{RED}_T$ and $t \rightsquigarrow t'$, then $t' \in \mathsf{RED}_T$.

Proof.

Let $t \rightsquigarrow t'$. Clearly, t' is strongly normalisable and hence $t' \in \mathsf{RED}_T$.

CR 3 If *t* is neutral and $t' \in \mathsf{RED}_T$ for every t' obtained by converting a redex in *t*, then $t \in \mathsf{RED}_T$.

Proof.

Let t be neutral and $t' \in \mathsf{RED}_T$ for every t' obtained by converting a redex in t. We have $\nu(t) = 1 + \max_{t'} \nu(t')$. Hence t is strongly normalisable and then $t \in \mathsf{RED}_T$.

$T = U \times V$ is a Product Type

CR 1 If $t \in \mathsf{RED}_T$, then t is strongly normalisable.

Proof.

Since $t \in \mathsf{RED}_{U \times V}$, $\pi^1 t \in \mathsf{RED}_U$ and $\pi^2 t \in \mathsf{RED}_V$. By IH (**CR 1**), $\pi^1 t$ and $\pi^2 t$ are strongly normalisable. Observe that $\nu(t) \leq \nu(\pi^1 t)$. t is strongly normalisable.

CR 2 If $t \in \mathsf{RED}_T$ and $t \leadsto t'$, then $t' \in \mathsf{RED}_T$.

Proof.

Let $t \rightsquigarrow t'$. Then $\pi^1 t \rightsquigarrow \pi^1 t'$ and $\pi^2 t \rightsquigarrow \pi^2 t'$. Since $\pi^1 t \in \mathsf{RED}_U$ and $\pi^2 \in \mathsf{RED}_V$, $\pi^1 t' \in \mathsf{RED}_U$ and $\pi^2 t' \in \mathsf{RED}_V$ by IH (CR 2). Thus $t' \in \mathsf{RED}_{U \times V}$.

CR 3 If *t* is neutral and $t' \in \mathsf{RED}_T$ for every t' obtained by converting a redex in *t*, then $t \in \mathsf{RED}_T$.

Proof.

Let t be neutral. Since $t \neq \langle u, v \rangle$, we obtain $\pi^1 t'$ after converting a redex in $\pi^1 t$, where t' is obtained by converting a redex in t. Hence $\pi^1 t' \in \mathsf{RED}_U$ by the assumption and defintion of $\mathsf{RED}_{U \times V}$. For any $\pi^1 t'$ obtained by converting a redex in $\pi^1 t$, we have $\pi^1 t' \in \mathsf{RED}_U$. By IH (**CR** 3), $\pi^1 t \in \mathsf{RED}_U$. Similarly, $\pi^2 t \in \mathsf{RED}_V$.

$T = U \rightarrow V$ is an Arrow Type

CR 1 If $t \in \mathsf{RED}_T$, then t is strongly normalisable.

Proof.

Let x be a variable of type U. Since x is neutral and normal, $x \in \mathsf{RED}_U$. Thus $tx \in \mathsf{RED}_V$. By IH (**CR 1**), tx is strongly normalisable. Observe that $\nu(t) \leq \nu(tx)$.

CR 2 If $t \in \mathsf{RED}_T$ and $t \leadsto t'$, then $t' \in \mathsf{RED}_T$.

Proof.

Let $u \in \mathsf{RED}_U$ and $t \leadsto t'$. $tu \in \mathsf{RED}_V$ and $tu \leadsto t'u$. By IH (CR 2), $t'u \in \mathsf{RED}_V$.

CR 3 If *t* is neutral and $t' \in \mathsf{RED}_T$ for every t' obtained by converting a redex in *t*, then $t \in \mathsf{RED}_T$.

Proof.

Let $u \in \mathsf{RED}_U$. By IH (**CR 1**), u is strongly normalisable. In one step, tu converts to

- (1) t'u with t' one step from t. $t'u \in \mathsf{RED}_V$ for $t' \in \mathsf{RED}_{U \to V}$ by assumption.
- (2) tu' with u' one step from u. By IH (CR 2), $u' \in \mathsf{RED}_U$ and $\nu(u') < \nu(u)$. Hence $tu' \in \mathsf{RED}_V$ by IH ($\nu(u)$). By IH (CR 3), $tu \in \mathsf{RED}_V$.

Reducibility Theorem

Lemma 4

If $u \in \mathsf{RED}_U$ and $v \in \mathsf{RED}_v$, $\langle u, v \rangle \in \mathsf{RED}_{U \times V}$.

Proof.

By **CR 1**, u and v are strongly normalisable. $\pi^1\langle u, v\rangle$ converts to

- $u. u \in \mathsf{RED}_U$.
- $\pi^1\langle u',v\rangle$ with u' one step from u. By $\mathbb{CR}\ 2$, $u'\in\mathsf{RED}_U$ and $\nu(u')<\nu(u)$. By IH $(\nu(u)+\nu(v))$, $\pi^1\langle u',v\rangle\in\mathsf{RED}_U$.
- $\pi^1\langle u, v' \rangle$ with v' one step from v. By IH $(\nu(u) + \nu(v))$, $\pi^1\langle u, v' \rangle \in \mathsf{RED}_U$.

Since $\pi^1\langle u, v\rangle$ is neutral, $\pi^1\langle u, v\rangle \in \mathsf{RED}_U$ by **CR 3**. Similarly, $\pi^2\langle u, v\rangle \in \mathsf{RED}_V$.

Reducibility Theorem

Lemma 5

If $v[u/x] \in \mathsf{RED}_V$ for all $u \in \mathsf{RED}_U$, then $\lambda x^U \cdot v \in \mathsf{RED}_{U \to V}$.

Proof.

Recall $x \in \mathsf{RED}_U$ and $v[x/x] = v \in \mathsf{RED}_V$. Let $u \in \mathsf{RED}_U$. $(\lambda x^U.v)u$ converts to

- v[u/x]. $v[u/x] \in \mathsf{RED}_V$ by assumption.
- $(\lambda x^U.v)u'$ with u' one step from u. By $\mathbb{CR} \ \mathbf{2}, u' \in \mathsf{RED}_U$ and $\nu(u') < \nu(u)$. By IH $(\nu(u) + \nu(v)), (\lambda x^U.v)u' \in \mathsf{RED}_V$.
- $(\lambda x^U.v')u$ with v' one step from v. By $\mathbb{CR} \ \mathbf{2}, v' \in \mathsf{RED}_V$ and $\nu(v') < \nu(v)$. By $\mathrm{IH} \ (\nu(u) + \nu(v)), \ (\lambda x^U.v')u \in \mathsf{RED}_V$.

By **CR 3**, $(\lambda x^U.v)u \in \mathsf{RED}_V$.

The Strong Normalisation Theorem

Lemma 6

Let t be a term of type T with free variables $x_1, ..., x_n$ of types $U_1, ..., U_n$. If $u_1 \in \mathsf{RED}_{U_1}, ..., u_n \in \mathsf{RED}_{U_n}$, then $t[u_1/x_1, ..., u_n/x_n] \in \mathsf{RED}_T$.

Proof.

Induction on *t*. We write $t[\underline{u}/\underline{x}]$ for $t[u_1/x_1, \dots, u_n/x_n]$.

- t is x_i . Trivial.
- t is $\pi^1 w$. By IH (t), $w[\underline{u}/\underline{x}]$ is reducible for any sequence \underline{u} of reducible terms. By the definition of $\mathsf{RED}_{U\times V}$, $t[u/x] = \pi^1 w[u/x]$ is reducible.
- t is $\pi^2 w$. Similar.
- t is $\langle v, w \rangle$. By IH (t), $v[\underline{u}/\underline{x}]$ and $w[\underline{u}/\underline{x}]$ are reducible. By Lemma 4, $t[\underline{u}/\underline{x}] = \langle v[\underline{u}/\underline{x}], w[\underline{u}/\underline{x}] \rangle$ is reducible.
- t is vw. By IH (t), $v[\underline{u}/\underline{x}]$ and $w[\underline{u}/\underline{x}]$ are reducible. By the definition of $\mathsf{RED}_{W \to V}$, $t[\underline{u}/\underline{x}] = (v[\underline{u}/\underline{x}])(w[\underline{u}/\underline{x}])$ is reducible.
- t is $\lambda y^V.w$. By IH (t), $w[\underline{u}/\underline{x},v/y]$ is reducible for all reducible term v. By Lemma 5, $t[\underline{u}/\underline{x}] = \lambda y^V.(w[\underline{u}/\underline{x}])$ is reducible.

The Strong Normalisation Theorem

Theorem 7

All terms are reducible.

Proof.

Let t be a term of free variables x_1, \ldots, x_n of types U_1, \ldots, U_n . Recall $x_1 \in \mathsf{RED}_{U_1}, \ldots, x_n \in \mathsf{RED}_{U_n}$ (**CR 3**). By Lemma 6, $t = t[\underline{x}/\underline{x}]$ is reducible.

Theorem 8

All terms are strongly normalisable.

Proof.

By **CR 1**.