Proofs and Types Strong Normalisation Theorem

Bow-Yaw Wang

Academia Sinica

Spring 2012

Strong Normalisation Theorem

- There is a strategy of reduction that finds the normal form of any typed λ-term.
- The weak normalisation theorem.
- All strategies of reduction in fact find the normal form of any typed λ-term.
- The strong normalisation theorem.
- We will demonstrate a technique for proving the strong normalisation theorem.
- The technique can be generalized to other systems. Particularly,
- Gödel's system T. Since Peano Arithmetic can be encoded in system T and system T is strongly normalising, Peano Arithmetic is consistent.
- Girard's system F.

Reducibility

Definition 1

The set RED_{T} (reducible terms of type T) is defined as follows.

- For t of atomic type $T, t \in \mathrm{RED}_{T}$ if t is strongly normalisable.
- For t of type $U \times V, t \in \operatorname{RED}_{U \times V}$ if $\pi^{1} t \in \operatorname{RED}_{U}$ and $\pi^{2} \in \operatorname{RED}_{V}$.
- For t of type $U \rightarrow V, t \in \operatorname{RED}_{U \rightarrow V}$ if $t u \in \operatorname{RED}_{V}$ for all $u \in \operatorname{RED}_{U}$.
- A term is neutral if it is one of the following forms:

$$
x \quad \pi^{1} t \quad \pi^{2} t \quad t u
$$

Properties of Reducibility

- We will prove the following properties by induction on the T :

CR 1 If $t \in \operatorname{RED}_{T}$, then t is strongly normalisable.
CR 2 If $t \in \mathrm{RED}_{T}$ and $t \rightsquigarrow t^{\prime}$, then $t^{\prime} \in \mathrm{RED}_{T}$.
CR 3 If t is neutral and $t^{\prime} \in \operatorname{RED}_{T}$ for every t^{\prime} obtained by converting a redex in t, then $t \in \mathrm{RED}_{T}$.

- Particularly, we have

CR 4 If t is neutral and normal, then $t \in \operatorname{RED}_{T}$.

- We now proceed to prove CR 1 to $\mathbf{3}$ simultaneously by induction on T.

Length of Normalisation

```
Lemma 2 (König)
A finitely branching tree with no infinite branch is finite.
```


Lemma 3

t is strongly normalisable iff there is a number $\nu(t)$ which bounds the length of every normalisation sequence from t.

Proof.

If there is $\nu(t), t$ is clearly strongly normalisable.
Conversely, suppose t is strongly normalisable. Note that t has fintely many redexes. Hence all strategies of normalisation form a finitely branching tree. Moreover, every branch of the tree is finite becuase t is strongly normalisable. By König's lemma, the tree is finite. The height of the tree is $\nu(t)$.

T is an Atomic Type

CR 1 If $t \in \operatorname{RED}_{T}$, then t is strongly normalisable.

Proof.

Since $t \in \mathrm{RED}_{T}, t$ is strongly normalisable by the definition of RED_{T}.

CR 2 If $t \in \operatorname{RED}_{T}$ and $t \rightsquigarrow t^{\prime}$, then $t^{\prime} \in \operatorname{RED}_{T}$.

Proof.

Let $t \rightsquigarrow t^{\prime}$. Clearly, t^{\prime} is strongly normalisable and hence $t^{\prime} \in \operatorname{RED}_{T}$.

CR 3 If t is neutral and $t^{\prime} \in \operatorname{RED}_{T}$ for every t^{\prime} obtained by converting a redex in t, then $t \in \mathrm{RED}_{T}$.

Proof.

Let t be neutral and $t^{\prime} \in \mathrm{RED}_{T}$ for every t^{\prime} obtained by converting a redex in t. We have $\nu(t)=1+\max _{t^{\prime}} \nu\left(t^{\prime}\right)$. Hence t is strongly normalisable and then $t \in \operatorname{RED}_{T}$.

$T=U \times V$ is a Product Type

CR 1 If $t \in \operatorname{RED}_{T}$, then t is strongly normalisable.

Proof.

Since $t \in \operatorname{RED}_{U \times V}, \pi^{1} t \in \operatorname{RED}_{U}$ and $\pi^{2} t \in \operatorname{RED}_{V}$. By IH (CR 1), $\pi^{1} t$ and $\pi^{2} t$ are strongly normalisable. Observe that $\nu(t) \leq \nu\left(\pi^{1} t\right)$. t is strongly normalisable.

CR 2 If $t \in \operatorname{RED}_{T}$ and $t \rightsquigarrow t^{\prime}$, then $t^{\prime} \in \operatorname{RED}_{T}$.

Proof.

Let $t \rightsquigarrow t^{\prime}$. Then $\pi^{1} t \rightsquigarrow \pi^{1} t^{\prime}$ and $\pi^{2} t \rightsquigarrow \pi^{2} t^{\prime}$. Since $\pi^{1} t \in \mathrm{RED}_{U}$ and $\pi^{2} \in \mathrm{RED}_{V}$, $\pi^{1} t^{\prime} \in \operatorname{RED}_{U}$ and $\pi^{2} t^{\prime} \in \operatorname{RED}_{V}$ by IH (CR 2). Thus $t^{\prime} \in \operatorname{RED}_{U \times V}$.

CR 3 If t is neutral and $t^{\prime} \in \operatorname{RED}_{T}$ for every t^{\prime} obtained by converting a redex in t, then $t \in \mathrm{RED}_{T}$.

Proof.

Let t be neutral. Since $t \neq\langle u, v\rangle$, we obtain $\pi^{1} t^{\prime}$ after converting a redex in $\pi^{1} t$, where t^{\prime} is obtained by converting a redex in t. Hence $\pi^{1} t^{\prime} \in \operatorname{RED}_{U}$ by the assumption and defintion of RED ${ }_{U \times V}$. For any $\pi^{1} t^{\prime}$ obtained by converting a redex in $\pi^{1} t$, we have $\pi^{1} t^{\prime} \in \operatorname{RED}_{U}$. By IH (CR 3), $\pi^{1} t \in \operatorname{RED}_{U}$. Similarly, $\pi^{2} t \in \operatorname{RED}_{V}$.

$T=U \rightarrow V$ is an Arrow Type

CR 1 If $t \in \operatorname{RED}_{T}$, then t is strongly normalisable.

Proof.

Let x be a variable of type U. Since x is neutral and normal, $x \in \operatorname{RED}_{U}$. Thus $t x \in \mathrm{RED}_{V}$. By IH (CR 1), $t x$ is strongly normalisable. Observe that $\nu(t) \leq \nu(t x)$.

CR 2 If $t \in \operatorname{RED}_{T}$ and $t \rightsquigarrow t^{\prime}$, then $t^{\prime} \in \operatorname{RED}_{T}$.

Proof.

Let $u \in \operatorname{RED}_{u}$ and $t \rightsquigarrow t^{\prime} . t u \in \operatorname{RED}_{V}$ and $t u \rightsquigarrow t^{\prime} u$. By IH (CR 2), $t^{\prime} u \in \operatorname{RED}_{V}$.
CR 3 If t is neutral and $t^{\prime} \in \operatorname{RED}_{T}$ for every t^{\prime} obtained by converting a redex in t, then $t \in \mathrm{RED}_{T}$.

Proof.

Let $u \in \operatorname{RED}_{u}$. By IH (CR 1), u is strongly normalisable. In one step, $t u$ converts to
(1) $t^{\prime} u$ with t^{\prime} one step from $t . t^{\prime} u \in \operatorname{RED}_{V}$ for $t^{\prime} \in \operatorname{RED}_{u \rightarrow V}$ by assumption.
(2) $t u^{\prime}$ with u^{\prime} one step from u. By IH (CR 2), $u^{\prime} \in \operatorname{RED}_{U}$ and $\nu\left(u^{\prime}\right)<\nu(u)$. Hence $t u^{\prime} \in \mathrm{RED}_{V}$ by $\mathrm{IH}(\nu(u))$.
By IH (CR 3), $t u \in \operatorname{RED}_{V}$.

Reducibility Theorem

Lemma 4

If $u \in \operatorname{RED}_{U}$ and $v \in \operatorname{RED}_{v},\langle u, v\rangle \in \operatorname{RED}_{U \times V}$.

Proof.

By CR 1, u and v are strongly normalisable. $\pi^{1}\langle u, v\rangle$ converts to

- $u . u \in \operatorname{RED}_{U}$.
- $\pi^{1}\left\langle u^{\prime}, v\right\rangle$ with u^{\prime} one step from u. By CR 2, $u^{\prime} \in \operatorname{RED}_{U}$ and $\nu\left(u^{\prime}\right)<\nu(u)$. By $\operatorname{IH}(\nu(u)+\nu(v)), \pi^{1}\left\langle u^{\prime}, v\right\rangle \in \operatorname{RED}_{U}$.
- $\pi^{1}\left\langle u, v^{\prime}\right\rangle$ with v^{\prime} one step from v. By $\mathrm{IH}(\nu(u)+\nu(v))$, $\pi^{1}\left\langle u, v^{\prime}\right\rangle \in \operatorname{RED}_{U}$.
Since $\pi^{1}\langle u, v\rangle$ is neutral, $\pi^{1}\langle u, v\rangle \in \mathrm{RED}_{U}$ by CR 3. Similarly, $\pi^{2}\langle u, v\rangle \in \mathrm{RED}_{V}$.

Reducibility Theorem

Lemma 5
If $v[u / x] \in \operatorname{RED}_{V}$ for all $u \in \operatorname{RED}_{U}$, then $\lambda x^{u} . v \in \operatorname{RED}_{u \rightarrow V}$.

Proof.

Recall $x \in \operatorname{RED}_{u}$ and $v[x / x]=v \in \operatorname{RED}_{V}$. Let $u \in \operatorname{RED}_{u \cdot}\left(\lambda x^{u} . v\right) u$ converts to

- $v[u / x] . v[u / x] \in \operatorname{RED}_{V}$ by assumption.
- $\left(\lambda x^{u} . v\right) u^{\prime}$ with u^{\prime} one step from u. By CR 2, $u^{\prime} \in \operatorname{RED}_{u}$ and $\nu\left(u^{\prime}\right)<\nu(u)$. By $\operatorname{IH}(\nu(u)+\nu(v)),\left(\lambda x^{u} . v\right) u^{\prime} \in \operatorname{RED}_{V}$.
- $\left(\lambda x^{u} . v^{\prime}\right) u$ with v^{\prime} one step from v. By CR 2, $v^{\prime} \in \operatorname{RED}_{V}$ and $\nu\left(v^{\prime}\right)<\nu(v)$. $\operatorname{By} \operatorname{IH}(\nu(u)+\nu(v)),\left(\lambda x^{u} . v^{\prime}\right) u \in \operatorname{RED}_{V}$.
By CR 3, $\left(\lambda x^{u} . v\right) u \in \operatorname{RED}_{V}$.

The Strong Normalisation Theorem

Lemma 6

Let t be a term of type T with free variables x_{1}, \ldots, x_{n} of types U_{1}, \ldots, U_{n}. If $u_{1} \in \operatorname{RED}_{U_{1}}, \ldots, u_{n} \in \operatorname{RED}_{U_{n}}$, then $t\left[u_{1} / x_{1}, \ldots, u_{n} / x_{n}\right] \in \operatorname{RED}_{T}$.

Proof.

Induction on t. We write $t[\underline{u} / \underline{x}]$ for $t\left[u_{1} / x_{1}, \ldots, u_{n} / x_{n}\right]$.

- t is x_{i}. Trivial.
- t is $\pi^{1} w$. By IH $(t), w[\underline{u} / \underline{x}]$ is reducible for any sequence \underline{u} of reducible terms. By the definition of $\operatorname{RED}_{U \times V,}, t[\underline{u} / \underline{x}]=\pi^{1} w[\underline{u} / \underline{x}]$ is reducible.
- t is $\pi^{2} w$. Similar.
- t is $\langle v, w\rangle$. By $\operatorname{IH}(t), v[\underline{u} / \underline{x}]$ and $w[\underline{u} / \underline{x}]$ are reducible. By Lemma 4, $t[\underline{u} / \underline{x}]=\langle v[\underline{u} / \underline{x}], w[\underline{u} / \underline{x}]\rangle$ is reducible.
- t is $v w$. By $\operatorname{IH}(t), v[\underline{u} / \underline{x}]$ and $w[\underline{u} / \underline{x}]$ are reducible. By the definition of $\operatorname{RED}_{W \rightarrow V}$, $t[\underline{u} / \underline{x}]=(v[\underline{u} / \underline{x}])(w[\underline{u} / \underline{x}])$ is reducible.
- t is λy^{V}. w. By $\operatorname{IH}(t), w[\underline{u} / \underline{x}, v / y]$ is reducible for all reducible term v. By Lemma $5, t[\underline{u} / \underline{x}]=\lambda y^{V} .(w[\underline{u} / \underline{x}])$ is reducible.

The Strong Normalisation Theorem

Theorem 7
 All terms are reducible.

Proof.

Let t be a term of free variables x_{1}, \ldots, x_{n} of types U_{1}, \ldots, U_{n}. Recall $x_{1} \in \operatorname{RED}_{U_{1}}, \ldots, x_{n} \in \operatorname{RED}_{U_{n}}$ (CR 3). By Lemma $6, t=t[\underline{x} / \underline{x}]$ is reducible.

Theorem 8

All terms are strongly normalisable.

Proof. By CR 1.

