Special Topics on Applied Mathematical Logic

Spring 2012

Lecture 01

Jie-Hong Roland Jiang
National Taiwan University

February 24, 2012

Outline

Introduction

Facts about Sets

What is logic?

- Logic is the study of deductive thoughts, just like probability is the study of uncertainty
- Logical deduction

All men are mortal.

 $\forall x \in S . P(x)$Socrates is a man.
$\frac{y \in S}{P(y)}$

- Metamathematics (syntax, semantics, deduction)

Basic Facts about Sets

- A set is a collection of things, called its members or elements
$t \in A-t$ is a member of A
$t \notin A-t$ is not a member of A $x=y-x, y$ are the same object
- For $A=B$, we mean $t \in A$ iff $t \in B$. That is, a set is determined by its members.
- Adjoin an object to a set, denoted $A ; t=A \cup\{t\}$, where t may or may not be a member of A. $(t \in A$ iff $A ; t=A)$

Example Sets

- \emptyset - empty set; with no members at all (in contrast to nonempty sets)
- $\{x\}$ - singleton set; with a single member
- $\left\{x_{1}, \ldots, x_{n}\right\}$ \vdots
- Natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$
- Integers $\mathbb{Z}=\{\ldots,-1,0,1, \ldots\}$
- Note that $\{x, y\}=\{y, x\}$ (unordered)

Notation

- To define a set, we use the notation $\{x \mid$ property of $x\}$ E.g., $\{\langle m, n\rangle \mid m, n \in \mathbb{N}, m<n\}$
$\{x \mid(x \bmod 5)=0, x \in \mathbb{N}\}$

Set Inclusion and Power Sets

- $A \subseteq B$ means $x \in A \Rightarrow x \in B$
- $A \subset B$ means $A \subseteq B$ and $\exists x(x \in B$ and $x \notin A)$
- \emptyset is a subset of every set ($\emptyset \subseteq \emptyset$; also $\emptyset \subseteq A$ is vacuously true)
- Power set of A, denoted $\mathcal{P A}=\{x \mid x \subseteq A\}$
E.g., $\mathcal{P} \emptyset=\{\emptyset\}$
$\mathcal{P}\{\emptyset\}=\{\emptyset,\{\emptyset\}\}$
$\mathcal{P}\{\emptyset,\{\emptyset\}\}=\{\emptyset,\{\emptyset\},\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}\}$

Set Operations

- Union: $A \cup B$
- Intersection: $A \cap B$

Disjoint: $A \cap B=\emptyset$
Pairwise disjoint: $A_{i} \cap A_{j}=\emptyset, i, j=1, \ldots, n, i \neq j$

- (Big)union: $\cup A=\{x \mid x$ belongs to some member of $A\}$
- (Big)intersection: $\cap A=\{x \mid x$ belongs to all member of $A\}$
E.g., for $A=\{\{0,1,5\},\{1,5\},\{0,2\}\}$,

$$
\begin{aligned}
& \cup A=\{0,1,2,5\} \\
& \bigcap A=\emptyset \\
& A \cup B=\bigcup\{A, B\}, \text { for any } B \\
& \cup \mathcal{P} A=A
\end{aligned}
$$

Ordered Sets

- Ordered pair $\langle x, y\rangle$ of objects x and y must be defined such that $\langle x, y\rangle=\langle u, v\rangle$ iff $x=u$ and $y=v$
E.g., define $\langle x, y\rangle$ as $\{x,\{x, y\}\}$ (so the order is distinguished)
- Recursive generalization of $\langle x, y\rangle$ to n-tuples:

$$
\begin{align*}
\langle x, y, z\rangle & \triangleq\langle\langle x, y\rangle, z\rangle \\
& \vdots \tag{1}\\
\left\langle x_{1}, \ldots, x_{n+1}\right\rangle & \triangleq\left\langle\left\langle x_{1}, \ldots, x_{n}\right\rangle, x_{n+1}\right\rangle
\end{align*}
$$

Eq. (1) holds for $n \geq 1$ by letting $\langle x\rangle \triangleq x$

- Cartesian product $A \times B=\{\langle x, y\rangle \mid x \in A, y \in B\}$ and $A^{n}=\left\{\left\langle x_{1}, \ldots, x_{n}\right\rangle \mid x_{i} \in A, i=1, \ldots, n\right\}$

Finite Sequences

- S is a finite sequence (or string) of members of A iff $S=\left\langle x_{1}, \ldots, x_{n}\right\rangle$, where every $x_{i} \in A$ for $n \in \mathbb{Z}^{+}$
- A segment of the finite sequence $S=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is a finite sequence $\left\langle x_{k}, x_{k+1}, \ldots, x_{m-1}, x_{m}\right\rangle$ with $1 \leq k \leq m \leq n$
- If $\left\langle x_{1}, \ldots, x_{n}\right\rangle=\left\langle y_{1}, \ldots, y_{n}\right\rangle$, then $x_{i}=y_{i}$ for $i=1, \ldots, n$

What if $\left\langle x_{1}, \ldots, x_{m}\right\rangle=\left\langle y_{1}, \ldots, y_{n}\right\rangle$ and $m \neq n$?

Sequences of Different Lengths

Lemma
If $\left\langle x_{1}, \ldots, x_{m}\right\rangle=\left\langle y_{1}, \ldots, y_{m+k}\right\rangle$, then $x_{1}=\left\langle y_{1}, \ldots, y_{k+1}\right\rangle$ for $i=1, \ldots, n$

Prove by induction on m with the observation that

 $\langle x, y, z\rangle=\langle\langle x, y\rangle, z\rangle$
Relations

- A relation R is a set of ordered pairs

> E.g.,

$$
R=\{\langle x, y\rangle \mid x<y, x, y=0,1,2\}=\{\langle 0,1\rangle,\langle 0,2\rangle,\langle 1,2\rangle\}
$$

- The domain of R, denoted dom R, is the set $\{x \mid\langle x, y\rangle \in R$ for some $y\}$
- The range of R, denoted ran R, is the set $\{y \mid\langle x, y\rangle \in R$ for some $x\}$
- The field of R, denoted fld R, is the set $\operatorname{dom} R \cup \operatorname{ran} R$
- An n-ary relation on A is a subset of A^{n} What if $n=1$? (just a subset of A)
- Let $R \subseteq A^{n}$. Then the restriction of R to B is $R \cap B^{n}$ E.g., $\{\langle 0,1\rangle,\langle 0,2\rangle,\langle 1,2\rangle\}=$ $\{\langle x, y\rangle \mid x<y, x, y \in \mathbb{N}\} \cap\{0,1,2\}^{2}$

Functions

- A function F is a relation being single-valued, i.e., for every $x \in \operatorname{dom} F$ if $\left\langle x, y_{1}\right\rangle \in F$ and $\left\langle x, y_{2}\right\rangle \in F$, then $y_{1}=y_{2}$ (We denote such unique y as $F(x)$)
- A function defines some mapping $F: A \rightarrow B$ $\operatorname{dom} F=A, \operatorname{ran} F \subseteq B(B$ is called the co-domain of $F)$
- If $\operatorname{ran} F=B$, then F maps A onto B (surjective)
- F is one-to-one iff, for every $y \in \operatorname{ran} F$, there is only one x s.t. $\langle x, y\rangle \in F$
- As notational convention, $F\left(x_{1}, \ldots, x_{n}\right)$ is meant to be $F\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)$

Operation

- An n-ary operation on A is a function $f: A^{n} \rightarrow A$ E.g., $+: \mathbb{N}^{2} \rightarrow \mathbb{N}$; successor function $S: \mathbb{N} \rightarrow \mathbb{N}$
- The restriction of an n-ary operation f on A to a subset $B \subseteq A$ is the n-ary operation $g: B^{n} \rightarrow A$ with $g=f \cap\left(B^{n} \times A\right)$
- $\{\langle x, x\rangle \mid x \in A\}$ is the identity function Id on A, i.e., $\operatorname{Id}(x)=x$

Equivalence Relations

- For a relation R,
- R is reflexive on A iff $\langle x, x\rangle \in R$ for every $x \in A$
- R is symmetric on A iff $\langle x, y\rangle \in R$ implies $\langle y, x\rangle \in R$
- R is transitive on A iff $\langle x, y\rangle \in R$ and $\langle y, z\rangle \in R$ imply $\langle x, z\rangle \in R$
- R is an equivalence relation on A iff R is a binary relation on A that is reflexive, symmetric, and transitive
- For an equivalence relation, its equivalence classes form a partition on A (i.e., each $x \in A$ belongs to exactly one equivalence class). The equivalence class of x is denoted $[x]=\{y \mid\langle x, y\rangle \in R\}$.

Ordering Relations

- R satisfies trichotomy on A iff for every $x, y \in A$ exactly one of the three possibilities, $\langle x, y\rangle \in R, x=y$, or $\langle y, x\rangle \in R$, holds
- R is an ordering relation on A iff R is transitive and satisfies trichotomy on A
E.g.,
$<$ on \mathbb{N} is an ordering relation
how about \leq on \mathbb{N} ?

Finite vs. Infinite Sets

- A set A is finite iff there is some one-to-one function f mapping A onto $\{0,1, \ldots, n-1\}$ for some $n \in \mathbb{N}$
- A set A is countable iff there is some function f one-to-one into \mathbb{N}
E.g., any finite set is countable
$\mathbb{N} \cup\{x\}$ is countable
\mathbb{Z} is countable
\mathbb{Q} is countable
$\mathbb{N} \times \cdots \times \mathbb{N}$ is countable
$(0,1]$ is not countable
\mathbb{R} is not countable
$\mathcal{P} \mathbb{N}$ is not countable
$\mathbb{N} \times \mathbb{N} \times \cdots$ is not countable

Countable vs. Uncountable

- \mathbb{Q} is countable?
- $(0,1]$ is uncountable?

Lemma
The union of countably many countable sets is countable
Lemma
The Cartesian product of infinitely many of $\{0,1\}$ is not countable

\{c\}				
$\{a, b, c, e\} \quad 0$				
				\{a\}
root	5			2
$\{a, b, c, d, e\}$		$\{a, b, e\}$	$\{a, e\}$	
7		4	3	
$\{a, b\}$				\{e\}
6				1

A tree grows downward.

Chains

- A collection C of sets is a chain iff for any elements x and y of C, either $x \subseteq y$ or $y \subseteq x$
E.g., tree with containment relation (transitive)

Lemma (Zorn's Lemma)
Suppose A is a set s.t., for any chain $C \subseteq A, \bigcup C \in A$. Then there is some $m \in A$ which is maximal (not a subset of any other element of A)

Cardinal Numbers

- A and B are equinumerous, denoted $A \sim B$, iff there is a bijection (one-to-one and onto mapping) between A and B
- \sim is reflexive, symmetric, and transitive, i.e., an equivalence relation
- Two sets A and B are assigned the same cardinal number (or cardinality) iff they are equinumerous. That is,

$$
\operatorname{card} A=\operatorname{card} B \Leftrightarrow A \sim B
$$

(think of card as some abstract object)

- A is dominated by B, denoted $A \preccurlyeq B$, iff A is equinumerous with a subset of B. That is,

$$
\operatorname{card} A \leq \operatorname{card} B \Leftrightarrow A \preccurlyeq B
$$

- Dominance relation is reflexive and transitive

Cardinal Numbers

Theorem (Schröder-Bernstein Theorem)

(a) For any sets A and B, if $A \preccurlyeq B$ and $B \preccurlyeq A$, then $A \sim B$
(b) For any cardinal numbers κ and λ, if $\kappa \leq \lambda$ and $\lambda \leq \kappa$, then $\kappa=\lambda$

Theorem

(a) For any sets A and B, either $A \preccurlyeq B$ or $B \preccurlyeq A$
(b) For any cardinal numbers κ and λ, either $\kappa \leq \lambda$ or $\lambda \leq \kappa$

Cardinal Numbers

$0,1,2, \ldots, \aleph_{0}, \aleph_{1}, \aleph_{2}, \ldots$

- $\aleph_{0}=\operatorname{card} \mathbb{N}$ (the first infinite cardinal)
- $\aleph_{1}=\operatorname{card} \mathbb{R}=2^{\aleph_{0}}$ under CH (Continuum Hypothesis $\nexists S . \operatorname{card} \mathbb{N}<|S|<\operatorname{card} \mathbb{R})$
- Recall card $\mathbb{R}>\operatorname{card} \mathbb{N}$

Cardinal Arithmetics

- For two disjoint sets A and B with cardinalities κ and λ, respectively, then $\kappa+\lambda=\operatorname{card}(A \cup B)$ and $\kappa \cdot \lambda=\operatorname{card}(A \times B)$

Theorem (Cardinal Arithmetic Theorem)
For cardinal numbers κ and λ, if $\kappa \leq \lambda$ and λ is infinite, then $\kappa+\lambda=\lambda$. Furthermore, if $\kappa \neq 0$, then $\kappa \cdot \lambda=\lambda$.

Theorem
For an infinite set $A, \operatorname{card} \bigcup_{n} A^{n+1}=\operatorname{card} A$

