Special Topics on Applied Mathematical Logic

Spring 2012

Lecture 01

Jie-Hong Roland Jiang

National Taiwan University

February 24, 2012

Outline

Introduction

Facts about Sets

What is logic?

- ► Logic is the study of deductive thoughts, just like probability is the study of uncertainty
- ► Logical deduction

All men are mortal.
$$\forall x \in S.P(x)$$

Socrates is a man. $y \in S$
Socrates is mortal. $P(y)$

► Metamathematics (syntax, semantics, deduction)

Basic Facts about Sets

▶ A set is a collection of things, called its members or elements

```
t \in A — t is a member of A

t \not\in A — t is not a member of A

x = y — x, y are the same object
```

- ▶ For A = B, we mean $t \in A$ iff $t \in B$. That is, a set is determined by its members.
- ▶ Adjoin an object to a set, denoted A; $t = A \cup \{t\}$, where t may or may not be a member of A. $(t \in A \text{ iff } A; t = A)$

Example Sets

- ightharpoonup empty set; with no members at all (in contrast to nonempty sets)
- ► {x} singleton set; with a single member :
- $\begin{cases} x_1, \ldots, x_n \end{cases}$
- ▶ Natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$
- ▶ Integers $\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$
- ▶ Note that $\{x, y\} = \{y, x\}$ (unordered)

Notation

► To define a set, we use the notation $\{x \mid \text{property of } x\}$ E.g., $\{\langle m, n \rangle \mid m, n \in \mathbb{N}, m < n\}$ $\{x \mid (x \mod 5) = 0, x \in \mathbb{N}\}$

Set Inclusion and Power Sets

- ▶ $A \subseteq B$ means $x \in A \Rightarrow x \in B$
- ▶ $A \subset B$ means $A \subseteq B$ and $\exists x (x \in B \text{ and } x \notin A)$
- ▶ \emptyset is a subset of every set ($\emptyset \subseteq \emptyset$; also $\emptyset \subseteq A$ is vacuously true)
- Power set of A, denoted $\mathcal{P}A = \{x \mid x \subseteq A\}$ E.g., $\mathcal{P}\emptyset = \{\emptyset\}$ $\mathcal{P}\{\emptyset\} = \{\emptyset, \{\emptyset\}\}$ $\mathcal{P}\{\emptyset, \{\emptyset\}\} = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$.

Set Operations

```
▶ Union: A \cup B
```

► Intersection: $A \cap B$ Disjoint: $A \cap B = \emptyset$

Pairwise disjoint: $A_i \cap A_j = \emptyset$, i, j = 1, ..., n, $i \neq j$

- ▶ (Big)union: $\bigcup A = \{x \mid x \text{ belongs to some member of } A\}$
- ▶ (Big)intersection: $\bigcap A = \{x \mid x \text{ belongs to all member of } A\}$ E.g., for $A = \{\{0, 1, 5\}, \{1, 5\}, \{0, 2\}\},$ $\bigcup A = \{0, 1, 2, 5\}$

$$\bigcap A = \{0, 1, 2, 5\}$$

$$\bigcap A = \emptyset$$

$$A \cup B = \bigcup \{A, B\}, \text{ for any } B$$

$$\bigcup \mathcal{P}A = A$$

Ordered Sets

- ▶ Ordered pair $\langle x, y \rangle$ of objects x and y must be defined such that $\langle x, y \rangle = \langle u, v \rangle$ iff x = u and y = v E.g., define $\langle x, y \rangle$ as $\{x, \{x, y\}\}$ (so the order is distinguished)
- ▶ Recursive generalization of $\langle x, y \rangle$ to *n*-tuples:

$$\langle x, y, z \rangle \triangleq \langle \langle x, y \rangle, z \rangle$$

$$\vdots$$

$$\langle x_1, \dots, x_{n+1} \rangle \triangleq \langle \langle x_1, \dots, x_n \rangle, x_{n+1} \rangle \tag{1}$$

Eq. (1) holds for $n \ge 1$ by letting $\langle x \rangle \triangleq x$

▶ Cartesian product $A \times B = \{\langle x, y \rangle \mid x \in A, y \in B\}$ and $A^n = \{\langle x_1, \dots, x_n \rangle \mid x_i \in A, i = 1, \dots, n\}$

Finite Sequences

- ▶ *S* is a **finite sequence** (or **string**) of members of *A* iff $S = \langle x_1, \dots, x_n \rangle$, where every $x_i \in A$ for $n \in \mathbb{Z}^+$
- ▶ A **segment** of the finite sequence $S = \langle x_1, \dots, x_n \rangle$ is a finite sequence $\langle x_k, x_{k+1}, \dots, x_{m-1}, x_m \rangle$ with $1 \le k \le m \le n$
- ▶ If $\langle x_1, \ldots, x_n \rangle = \langle y_1, \ldots, y_n \rangle$, then $x_i = y_i$ for $i = 1, \ldots, n$

What if $\langle x_1, \ldots, x_m \rangle = \langle y_1, \ldots, y_n \rangle$ and $m \neq n$?

Sequences of Different Lengths

Lemma

If
$$\langle x_1, \ldots, x_m \rangle = \langle y_1, \ldots, y_{m+k} \rangle$$
, then $x_1 = \langle y_1, \ldots, y_{k+1} \rangle$ for $i = 1, \ldots, n$

Prove by induction on m with the observation that $\langle x,y,z\rangle=\langle\langle x,y\rangle,z\rangle$

Relations

- ▶ A **relation** R is a set of ordered pairs E.g., $R = \{\langle x,y \rangle \mid x < y, x, y = 0, 1, 2\} = \{\langle 0,1 \rangle, \langle 0,2 \rangle, \langle 1,2 \rangle\}$
- ► The **domain** of R, denoted dom R, is the set $\{x \mid \langle x, y \rangle \in R \text{ for some } y\}$
- ► The **range** of R, denoted ran R, is the set $\{y \mid \langle x, y \rangle \in R \text{ for some } x\}$
- ▶ The **field** of R, denoted fld R, is the set $dom R \cup ran R$
- An *n*-ary relation on A is a subset of A^n What if n = 1? (just a subset of A)
- Let $R \subseteq A^n$. Then the **restriction** of R to B is $R \cap B^n$ E.g., $\{\langle 0,1 \rangle, \langle 0,2 \rangle, \langle 1,2 \rangle\} = \{\langle x,y \rangle \mid x < y, x,y \in \mathbb{N}\} \cap \{0,1,2\}^2$

Functions

- ▶ A **function** F is a relation being *single-valued*, i.e., for every $x \in \text{dom} F$ if $\langle x, y_1 \rangle \in F$ and $\langle x, y_2 \rangle \in F$, then $y_1 = y_2$ (We denote such unique y as F(x))
- ▶ A function defines some mapping $F : A \rightarrow B$ dom F = A, $ran F \subseteq B$ (B is called the **co-domain** of F)
- ▶ If ran F = B, then F maps A **onto** B (surjective)
- ▶ F is **one-to-one** iff, for every $y \in \operatorname{ran} F$, there is only one x s.t. $\langle x, y \rangle \in F$
- As notational convention, $F(x_1, ..., x_n)$ is meant to be $F(\langle x_1, ..., x_n \rangle)$

Operation

- ▶ An *n*-ary operation on *A* is a function $f: A^n \to A$ E.g., $+: \mathbb{N}^2 \to \mathbb{N}$; successor function $S: \mathbb{N} \to \mathbb{N}$
- ▶ The **restriction** of an *n*-ary operation f on A to a subset $B \subseteq A$ is the *n*-ary operation $g : B^n \to A$ with $g = f \cap (B^n \times A)$
- ▶ $\{\langle x, x \rangle \mid x \in A\}$ is the **identity function** Id on A, i.e., Id(x) = x

Equivalence Relations

- \triangleright For a relation R,
 - ▶ *R* is **reflexive** on *A* iff $\langle x, x \rangle \in R$ for every $x \in A$
 - ▶ *R* is **symmetric** on *A* iff $\langle x, y \rangle \in R$ implies $\langle y, x \rangle \in R$
 - ▶ R is **transitive** on A iff $\langle x, y \rangle \in R$ and $\langle y, z \rangle \in R$ imply $\langle x, z \rangle \in R$
- ▶ *R* is an **equivalence relation** on *A* iff *R* is a binary relation on *A* that is reflexive, symmetric, and transitive
- For an equivalence relation, its **equivalence classes** form a **partition** on A (i.e., each $x \in A$ belongs to exactly one equivalence class). The equivalence class of x is denoted $[x] = \{y \mid \langle x, y \rangle \in R\}.$

Ordering Relations

- ▶ R satisfies **trichotomy** on A iff for every $x, y \in A$ exactly one of the three possibilities, $\langle x, y \rangle \in R$, x = y, or $\langle y, x \rangle \in R$, holds
- ▶ R is an ordering relation on A iff R is transitive and satisfies trichotomy on A E.g.,

< on $\mathbb N$ is an ordering relation how about < on $\mathbb N$?

Finite vs. Infinite Sets

- ▶ A set *A* is **finite** iff there is some one-to-one function *f* mapping *A* onto $\{0, 1, ..., n-1\}$ for some $n \in \mathbb{N}$
- ▶ A set A is **countable** iff there is some function f one-to-one into \mathbb{N}

E.g., any finite set is countable

 $\mathbb{N} \cup \{x\}$ is countable

 \mathbb{Z} is countable

Q is countable

 $\mathbb{N} \times \cdots \times \mathbb{N}$ is countable

(0,1] is not countable

 \mathbb{R} is not countable

 $\mathcal{P}\mathbb{N}$ is not countable

 $\mathbb{N} \times \mathbb{N} \times \cdots$ is not countable

Countable vs. Uncountable

- ▶ ℚ is countable?
- \triangleright (0,1] is uncountable?

Lemma

The union of countably many countable sets is countable

Lemma

The Cartesian product of infinitely many of $\{0,1\}$ is not countable

Trees

A tree grows downward.

Chains

▶ A collection C of sets is a **chain** iff for any elements x and y of C, either $x \subseteq y$ or $y \subseteq x$ E.g., tree with containment relation (transitive)

Lemma (Zorn's Lemma)

Suppose A is a set s.t., for any chain $C \subseteq A$, $\bigcup C \in A$. Then there is some $m \in A$ which is maximal (not a subset of any other element of A)

(an equivalent statement of the axiom of choice)

Cardinal Numbers

- ▶ A and B are **equinumerous**, denoted $A \sim B$, iff there is a bijection (one-to-one and onto mapping) between A and B
- ightharpoonup \sim is reflexive, symmetric, and transitive, i.e., an equivalence relation
- ► Two sets A and B are assigned the same **cardinal number** (or **cardinality**) iff they are equinumerous. That is,

$$\operatorname{card} A = \operatorname{card} B \Leftrightarrow A \sim B$$

(think of card as some abstract object)

▶ *A* is **dominated** by *B*, denoted $A \leq B$, iff *A* is equinumerous with a subset of *B*. That is,

$$\operatorname{card} A \leq \operatorname{card} B \Leftrightarrow A \preccurlyeq B$$

▶ Dominance relation is reflexive and transitive

Cardinal Numbers

Theorem (Schröder-Bernstein Theorem)

- (a) For any sets A and B, if $A \leq B$ and $B \leq A$, then $A \sim B$
- (b) For any cardinal numbers κ and λ , if $\kappa \leq \lambda$ and $\lambda \leq \kappa$, then $\kappa = \lambda$

Theorem

- (a) For any sets A and B, either $A \leq B$ or $B \leq A$
- (b) For any cardinal numbers κ and λ , either $\kappa \leq \lambda$ or $\lambda \leq \kappa$

Cardinal Numbers

 $0, 1, 2, \ldots, \aleph_0, \aleph_1, \aleph_2, \ldots$

- $ightharpoonup
 angle_0 = \operatorname{card} \mathbb{N}$ (the first infinite cardinal)
- $ightharpoonup
 angle_1 = \operatorname{card} \mathbb{R} = 2^{
 ightharpoonup 0}$ under CH (Continuum Hypothesis $ot \exists S.\operatorname{card} \mathbb{N} < |S| < \operatorname{card} \mathbb{R}$)
- ightharpoonup Recall $card \mathbb{R} > card \mathbb{N}$

Cardinal Arithmetics

▶ For two disjoint sets A and B with cardinalities κ and λ , respectively, then $\kappa + \lambda = \operatorname{card}(A \cup B)$ and $\kappa \cdot \lambda = \operatorname{card}(A \times B)$

Theorem (Cardinal Arithmetic Theorem)

For cardinal numbers κ and λ , if $\kappa \leq \lambda$ and λ is infinite, then $\kappa + \lambda = \lambda$. Furthermore, if $\kappa \neq 0$, then $\kappa \cdot \lambda = \lambda$.

Theorem

For an infinite set A, card $\bigcup_n A^{n+1} = \operatorname{card} A$