Special Topics on Applied Mathematical Logic

Spring 2012

Lecture 02

Jie-Hong Roland Jiang

National Taiwan University

March 2, 2012

Outline

Sentential Logic
Building Elements
Well-Formed Formulas
Truth Assignments
Formulas and Boolean Functions
Compactness
Effectiveness and Computability

Sentential Logic

» Sentential logic is also known as propositional logic

» Sentential logic deals with “sentences” in the viewpoint of
first-order logic

» A sentence in first-order logic is abstracted as a sentence
symbol in propositional logic

» Sentential logic is used to model propositional statements in
natural languages

Use of Sentential Logic in Natural Languages

Consider the double-slit experiment of quantum mechanics with
the following events

Al: There is no detector behind both slits
A2: Electron detected at Slit 1

A3: Electron pass Slit 1

A4: Electron pass Slit 2

Example formulas:

Al = A (1)

A = —A; (2)

Ax = Az (3)

Al = Az (4)

A N Az (5)

A1 = (A3 N Ag) (6)

Building Elements of Sentential Logic

symbol meaning

gy <>1——

=
> I

D
~

I

left parenthesis for punctuation

right parenthesis for punctuation

negation

conjunction

disjunction

implies

iff

sentence/propositional symbols (Boolean variables)
sentence/propositional symbols (Boolean variables)

D

>

>

>

Logical symbols: (,), =, A, V, =, &
» Sentential connectives: —, A, V, =, &

Nonlogical symbols (parameters): Az, Aa, ...

Well-Formed Formulas

>

A well-formed formula (wff) ¢ is a “grammatically correct”
expression

An operational (recursive) definition of a wff ¢ is as follows

@ :=Ai | (mp1) | (p1A@2) | (p1Ve2) | (01 = 02) | (01 & ©2)

where “:=" is read as “can be", “|" is read as “or", A; is
some sentence symbol, @1 and > are wffs.

A wff is an expression that can be built up from the sentence
symbols by applying some finite number of times the
formula-building operations

E(a) = (—a), and
glj(@,ﬁ) — (aDﬁ)

ford=A,V,=, <
Mind these parentheses!

Ancestral Trees

» Formula construction can be shown with an ancestral tree
E&r (((ALV Ap) = A3) & (=(A4 A (—A3))))

((A1V A2) = A3) (—(As A (—A3)))

(ALV Ay) As (A A (2A3))
Aq A, A4 (—A3)
A3

Properties of Wffs

The following properties can be shown by induction
» The construction tree of any wff is unique

» If S is a set of wffs containing all sentence symbols and closed

under the formula-building operations, then § is the set of all
wffs

» Any expression with more left parentheses than right ones is
not a wff

Formula Simplification and Polish Notation

To save on parentheses, we may use Polish notation (wffs —
P-wffs)

» (a A () becomes Aaf

» & . (a) = (—a) becomes D_, = -«

» Eo(a, B) = (aldB) becomes Dp(«, f) = Daf for
Oe{nV,=, <}
Eg. o= AAB-CV —DE

Besides Polish notation, an alternative simplification is to apply the
following rules in order:

1. omit outermost parentheses

2. — applies to as little as possible
3. A applies to as little as possible
4. \/ applies to as little as possible
5

. for a repeated connective symbol, grouping is to the right,
eg, A=B=C=Disreadas A= (B= (C = D))

Syntax vs. Semantics

Back to our example of double-slit experiment

> (A1 = (—A2)):
“grammatically” or “syntactically” correct (i.e., a wff);
“physically” or “semantically” correct

> (A2 N Al):
“grammatically” correct; “physically” incorrect

syntax — depends only on expressions
semantics — depends on interpretations or truth assignments

Truth Assignments

> Let {F, T} be the set of truth values with F being the
falsity and T being the truth

» A truth assignment is a function v : S — {F, T} assigning
either F or T to each sentence symbol in S

» To study the truth or falsity of a wff under some truth
assignment, we extend v to v: S — {F, T}, where S is the
set of wffs that can be built from S by formula-building
operations

Truth Assignments

Define v as follows

case 0 For Ae S, Vv(A) = v(A)
_ | T ifv(a)=F
case 1 For v((—«)) = { otherwise

if V(o) =T and v(B8) =T
otherwise

if V(o) =T orv(B)=T
otherwise

T ifv(e)=Forv(B)=T
F otherwise

T ifv(a)=v(0)

F otherwise

r
case 2 For v((a A) = { Z
case 3 For ¥((aV f)) = { ;
case 4 For v((a = f)) = {

case 5 For v((a & f3)) = {

where o, 5 € S

Truth Assignments
E.g., (A1 V A2) = A3) & (=(As A (—A3))))
Applying v with v(A1) — T,v(A2) — F,v(A3) — F,v(Ag) — T
yields

(A1 V Az) = A3) & (2(Ag A (2A3))))
T

((ALV A2) = As) (—(As A (—A3)))

F F
(Al V Az) A3 (A4 VAN (ﬁA3))
T F T
Al A Ay (HA3)
T F T T
A3
F

Truth Assignments
Eg, (ALY A2) = As) & (~(Aq A (+43))))
Applying v with v(A1) — T,v(Az) — T,v(A3) — F,v(As) — F
yields

(A1 V Az) = A3) & (2(Ag A (2A3))))
F

((A1V A2) = As) (—(As A (—A3)))

F T
(Al V Az) A3 (A4 VAN (ﬁAg,))
T F F
Al A Ay (—A3)
T T F T
Az

F

Truth Assignments

The truth or falsity of a wff depends on the interpretations/truth
assignments.

» Applying v with
v(A1) — T,v(A2) — F,v(A3) — F,v(As) — T yields

(A1 V A2) = A3) < (=(As A (7A3))))
TTF FF TFTTTF

» Applying v with
v(A1) — T,v(A2) — T,v(A3) — F,v(Az) — F yields

(A1 V A2) = A3) & (=(As A (2A3))))
TTT FF FTFFTF

Satisfiability and Tautology

» We say a truth assignment v satisfies a formula (wff) ¢ iff
vip) =T
» A set X of wffs tautologically implies 7, written ¥ = 7, iff

every truth assigment for the sentence symbols in X; 7 that
satisfies every member of X also satisfies 7

> = is about semantics, rather than syntax
» For X = (), we have () = 7, simply written |= 7. It says every
truth assignment satisfies 7. In this case, 7 is a tautology.

» = 7 should be distinguished from F =7 and {A,-A} =7
» For ¥ is a singleton {o}, we write {oc} ETaso =T

» If o =7 and 7 |= 0, then ¢ and T are tautologically
equivalent, written as o == 7

Compactness Theorem

Theorem (Compactness Theorem)

Let > be an infinite set of wffs s.t., for any finite subset o C L,
there is a truth assignment that satisfies every member of L.
Then there is a truth assignment that satisfies every member of L.

Truth Tables

» Consider (=(AA B)) = ((-A) V (—B)) (De Morgan's Law)

B | (=(AAB)) | (mA)V (=B))
F| TFFF TFT TF
TFFT | TFTFT
F| TTFF | FTT TF
T|FTTT | FTFFT

< =T >
\'

» More effective enumeration (enumerate product terms rather
than minterms)
Eg, (AV(BAC)) < ((AVvB)A(AV()))
IT T ITT TTT
FT TTT T FTTTFTT
FFTFF T FTTFFFF
FFFFF T FFFFFFF

Selection of Sentential Connectives

Why =, A, V, =, &7
» Can extend the language with other sentential connectives
» E.g., 3-place majority symbol #
V(#aB7) is agree with the majority of V(«), V(53), V(v)
» For any wff in the extended language, there is a tautologically
equivalent wff in the original language. (The wff in the original
language can be much longer however.)

E.g., #alBv equals (a A B)V (e Ay) V(B A7)

Formulas and Boolean Functions

A Boolean function B? : {F, T}" — {F, T} can be extracted from
a wff o

» An n-place Boolean function B! is defined by B?(xy, ..., Xn)
= the truth value given to a when Ay, ..., A, are given the

values xq,...,X,, where Aq,...,A, are sentence symbols of «
E.g., a=(A1V A))

A1 | A | A1V A

F | F F B2(F,F)=F
F| T T B2(F, T)=T
T | F T B2(T,F)=T
T | T T B2(T,T)=T

Formulas and Boolean Functions

Theorem
Let o and 3 be wffs whose sentence symbols are among A1, ...,

A,. Then

(a) a =g iffforall X € {F, T}", Bo(X) < Bs(X)
» Here we impose the order: F < T

(b) a = B iff B, = Bg

(c) = « iff B, is the constant function with value T

Formulas and Boolean Functions

Theorem
Let G be an n-place Boolean function, n > 1. Then there exists a
wff o such that G = B!} (i.e., « realizes G)

» Every Boolean function is realizable. The realization however
IS not unique.

» Tautologically equivalent wffs realize the same function

Formulas and Boolean Functions

» For any wff, there is a tautologically equivalent wff in
disjunctive normal form (DNF), a.k.a. sum-of-products (SOP)

» Every n-place Boolean function with n > 1 can be realized by
a wff using only the connective symbols {A,V, -}
» {A,V,—} is functionally complete
» {—=,A} and {—, V} are functionally complete
» {A,=} is not functionally complete
» There are 22" n-place Boolean functions

. n . . .
» We can define 22" n-ary connectives, each associate with an
n-place Boolean function

Compactness

A set X of wffs is called satisfiable iff there is a truth assignment
that satisfies every member of X
Theorem (Compactness)

A set X of wffs is satisfiable iff every finite subset is satisfiable.
That is, X is satisfiable iff > is finitely satisfiable, namely, every
finite subset of X is satisfiable.

Proof (sketch).
(=) trivial
(<) ideas:
1. Extend X to a maximal set A that remains finitely satisfiable
2. Utilize A to make a truth assignment that satisfies X
[

Proof of Compactness Theorem (cont’d)

1. We enumerate the wffs as a1, ap, ... (countable)
Define recursively

Ny = 2
{ AN if this is finitely satisfiable

A .
ntl Ap; -1 otherwise

Let A ={J,_1. An (the limit of Ay's)
We know
I 2 CA
il for every wff «, either « € A or —ax € A, and
i A is finitely satisfiable
2. Define truth assignment v such that

V(A)=TiffAc A

for any sentence symbol A
Then by induction we can show that v satisfies ¢ iff p € A
Since ¥ C A, v must satisfy every member of X

Q.E.D.

Compactness

Corollary
If ¥ = 7, then there is a finite ¥y C ¥ such that o =T

Proof.

Y =7 & X¥; -7 is unsatisfiable

For contradiction, assume Yo = 7 for every finite ¥ C ¥

— X ; 7 is satisfiable for every finite 29 C X

— 2; -7 is finitely satisfiable

— Y ; -7 is satisfiable

— Y T O

Effectiveness and Computability

» Given a set X; o of wffs, we are concerned about if there is an

effective procedure that will decide whether or not ¥ = «
By effectiveness, the computation has to be of

1. finite exact instructions (programs)
2. mechanical reasoning
3. finite run time

» There are uncountably many (2%°) sets of expressions, but
only countably many effective procedures (finite instructions)

Decidability vs. Semidecidability

> A set 2 of expressions is decidable iff there exists an effective
procedure (algorithm) that, given an expression «, decides
whether or not o € X

» A set X of expressions is semidecidable iff there exists an

effective procedure (semialgorithm) that, given an expression
«, produces the answer “yes" iff & € 2

» For a &€ X, the procedure may or may not produce the answer

1] 1

no

Decidability vs. Semidecidability

» There is an effective procedure that, given an expression «,
will decide whether or not it is a wff

» There is an effective procedure that, given a finite set X; o of
wffs, will decide whether or not ¥ = «

» For a finite set X of wffs, the set of tautological consequences

of 2 is decidable. In particular, the set of tautologies is
decidable.

» If ¥ is an infinite set (even decidable) of wffs, its set of
tautological consequences may be undecidable (Chapter 3)

Effective Enumerability

> A set ¥ of expressions is effectively enumerable (or called
recursively enumerable, computably enumerable, Turing
recognizable) iff there exists an effective procedure that lists,
in some order, the members of X

» If X is infinite, then the procedure can never finish
> A set is effectively enumerable iff it is semidecidable

» Any decidable set is semidecidable, and thus effectively
enumerable

» A set of expressions is decidable iff both it and its complement
are effectively enumerable

Effective Enumerability

» |f sets A and B are effectively enumerable, so are AU B and
ANB

» If sets A and B are decidable, so are AUB, AN B, and A

» |f 2 is a decidable set of wffs, then the set of tautological
consequences of X is effectively enumerable

» There exists an enumeration for a set iff the set is countable

» Consider enumeration as a surjective (onto) mapping from N
to some set S. S is recursively enumerable if the mapping
(function) is computable

» A function is (effectively) computable iff there exists an
effective procedure that, given an input x, will eventually
produce the correct output f(x)

