
Special Topics on Applied Mathematical Logic

Spring 2012

Lecture 02

Jie-Hong Roland Jiang

National Taiwan University

March 2, 2012

Outline

Sentential Logic
Building Elements
Well-Formed Formulas
Truth Assignments
Formulas and Boolean Functions
Compactness
Effectiveness and Computability

Sentential Logic

� Sentential logic is also known as propositional logic
� Sentential logic deals with “sentences” in the viewpoint of

first-order logic
� A sentence in first-order logic is abstracted as a sentence

symbol in propositional logic

� Sentential logic is used to model propositional statements in
natural languages

Use of Sentential Logic in Natural Languages

Consider the double-slit experiment of quantum mechanics with
the following events

A1: There is no detector behind both slits

A2: Electron detected at Slit 1

A3: Electron pass Slit 1

A4: Electron pass Slit 2

Example formulas:

A1 ⇒ ¬A2 (1)

A2 ⇒ ¬A1 (2)

A2 ⇒ A3 (3)

A1 ⇒ A3 (4)

A2 ∧ A3 (5)

A1 ⇒ (A3 ∧ A4) (6)

Building Elements of Sentential Logic

symbol meaning

(left parenthesis for punctuation
) right parenthesis for punctuation
¬ negation
∧, · conjunction
∨, + disjunction
⇒ implies
⇔, ≡, ⊕ iff
A1, A sentence/propositional symbols (Boolean variables)
A2, A′ sentence/propositional symbols (Boolean variables)
...

...

� Logical symbols: (,), ¬, ∧, ∨, ⇒, ⇔
� Sentential connectives: ¬, ∧, ∨, ⇒, ⇔

� Nonlogical symbols (parameters): A1, A2, . . .

Well-Formed Formulas

� A well-formed formula (wff) ϕ is a “grammatically correct”
expression

� An operational (recursive) definition of a wff ϕ is as follows

ϕ := Ai | (¬ϕ1) | (ϕ1∧ϕ2) | (ϕ1∨ϕ2) | (ϕ1 ⇒ ϕ2) | (ϕ1 ⇔ ϕ2)

where “:=” is read as “can be”, “|” is read as “or”, Ai is
some sentence symbol, ϕ1 and ϕ2 are wffs.

� A wff is an expression that can be built up from the sentence
symbols by applying some finite number of times the
formula-building operations

E¬(α) = (¬α), and

E�(α, β) = (α�β)

for � = ∧,∨,⇒,⇔
Mind these parentheses!

Ancestral Trees

� Formula construction can be shown with an ancestral tree
E.g., (((A1 ∨ A2) ⇒ A3) ⇔ (¬(A4 ∧ (¬A3))))

((A1 ∨ A2) ⇒ A3)

(A1 ∨ A2)

A1 A2

A3

(¬(A4 ∧ (¬A3)))

(A4 ∧ (¬A3))

A4 (¬A3)

A3

Properties of Wffs

The following properties can be shown by induction

� The construction tree of any wff is unique

� If S is a set of wffs containing all sentence symbols and closed
under the formula-building operations, then S is the set of all
wffs

� Any expression with more left parentheses than right ones is
not a wff

Formula Simplification and Polish Notation

To save on parentheses, we may use Polish notation (wffs →
P-wffs)

� (α ∧ β) becomes ∧αβ

� E¬(α) = (¬α) becomes D¬ = ¬α

� E�(α, β) = (α�β) becomes D�(α, β) = �αβ for
� ∈ {∧,∨,⇒,⇔}
E.g., ⇔⇒ ∧AB¬C ∨ ¬DE

Besides Polish notation, an alternative simplification is to apply the
following rules in order:

1. omit outermost parentheses

2. ¬ applies to as little as possible

3. ∧ applies to as little as possible

4. ∨ applies to as little as possible

5. for a repeated connective symbol, grouping is to the right,
e.g., A ⇒ B ⇒ C ⇒ D is read as A ⇒ (B ⇒ (C ⇒ D))

Syntax vs. Semantics

Back to our example of double-slit experiment

� (A1 ⇒ (¬A2)):
“grammatically” or “syntactically” correct (i.e., a wff);
“physically” or “semantically” correct

� (A2 ∧ A1):
“grammatically” correct; “physically” incorrect

{
syntax — depends only on expressions
semantics — depends on interpretations or truth assignments

Truth Assignments

� Let {F , T} be the set of truth values with F being the
falsity and T being the truth

� A truth assignment is a function v : S → {F , T} assigning
either F or T to each sentence symbol in S

� To study the truth or falsity of a wff under some truth
assignment, we extend v to v : S → {F ,T}, where S is the
set of wffs that can be built from S by formula-building
operations

Truth Assignments

Define v as follows

case 0 For A ∈ S , v(A) = v(A)

case 1 For v((¬α)) =

{
T if v(α) = F
F otherwise

case 2 For v((α ∧ β)) =

{
T if v(α) = T and v(β) = T
F otherwise

case 3 For v((α ∨ β)) =

{
T if v(α) = T or v(β) = T
F otherwise

case 4 For v((α ⇒ β)) =

{
T if v(α) = F or v(β) = T
F otherwise

case 5 For v((α ⇔ β)) =

{
T if v(α) = v(β)
F otherwise

where α, β ∈ S

Truth Assignments

E.g., (((A1 ∨ A2) ⇒ A3) ⇔ (¬(A4 ∧ (¬A3))))
Applying v with v(A1)
→ T , v(A2)
→ F , v(A3)
→ F , v(A4)
→ T
yields

(((A1 ∨ A2) ⇒ A3) ⇔ (¬(A4 ∧ (¬A3))))

T

((A1 ∨ A2) ⇒ A3)

F

(A1 ∨ A2)

T

A1

T
A2

F

A3

F

(¬(A4 ∧ (¬A3)))

F

(A4 ∧ (¬A3))

T

A4

T
(¬A3)

T

A3

F

Truth Assignments

E.g., (((A1 ∨ A2) ⇒ A3) ⇔ (¬(A4 ∧ (¬A3))))
Applying v with v(A1)
→ T , v(A2)
→ T , v(A3)
→ F , v(A4)
→ F
yields

(((A1 ∨ A2) ⇒ A3) ⇔ (¬(A4 ∧ (¬A3))))

F

((A1 ∨ A2) ⇒ A3)

F

(A1 ∨ A2)

T

A1

T
A2

T

A3

F

(¬(A4 ∧ (¬A3)))

T

(A4 ∧ (¬A3))

F

A4

F
(¬A3)

T

A3

F

Truth Assignments

The truth or falsity of a wff depends on the interpretations/truth
assignments.

� Applying v with
v(A1)
→ T , v(A2)
→ F , v(A3)
→ F , v(A4)
→ T yields

(((A1 ∨ A2) ⇒ A3) ⇔ (¬(A4 ∧ (¬A3))))

T T F F F T F T T T F

� Applying v with
v(A1)
→ T , v(A2)
→ T , v(A3)
→ F , v(A4)
→ F yields

(((A1 ∨ A2) ⇒ A3) ⇔ (¬(A4 ∧ (¬A3))))

T T T F F F T F F T F

Satisfiability and Tautology

� We say a truth assignment v satisfies a formula (wff) ϕ iff
v(ϕ) = T

� A set Σ of wffs tautologically implies τ , written Σ |= τ , iff
every truth assigment for the sentence symbols in Σ; τ that
satisfies every member of Σ also satisfies τ

� |= is about semantics, rather than syntax
� For Σ = ∅, we have ∅ |= τ , simply written |= τ . It says every

truth assignment satisfies τ . In this case, τ is a tautology.

� |= τ should be distinguished from F |= τ and {A,¬A} |= τ

� For Σ is a singleton {σ}, we write {σ} |= τ as σ |= τ

� If σ |= τ and τ |= σ, then σ and τ are tautologically
equivalent, written as σ |==| τ

Compactness Theorem

Theorem (Compactness Theorem)

Let Σ be an infinite set of wffs s.t., for any finite subset Σ0 ⊆ Σ,
there is a truth assignment that satisfies every member of Σ0.
Then there is a truth assignment that satisfies every member of Σ.

Truth Tables

� Consider (¬(A ∧ B)) |= ((¬A) ∨ (¬B)) (De Morgan’s Law)

A B (¬(A ∧ B)) ((¬A) ∨ (¬B))

F F T F F F TF T TF
F T T F F T TF T FT
T F T T F F FT T TF
T T F T T T FT F FT

� More effective enumeration (enumerate product terms rather
than minterms)
E.g., ((A ∨ (B ∧ C)) ⇔ ((A ∨ B) ∧ (A ∨ C)))

T T T TT T T T
F T T T T T FT T T F T T
F F T F F T FT T F F F F
F F F F F T F F F F F F F

Selection of Sentential Connectives

Why ¬,∧,∨,⇒,⇔?
� Can extend the language with other sentential connectives

� E.g., 3-place majority symbol #
v(#αβγ) is agree with the majority of v(α), v(β), v(γ)

� For any wff in the extended language, there is a tautologically
equivalent wff in the original language. (The wff in the original
language can be much longer however.)
E.g., #αβγ equals (α ∧ β) ∨ (α ∧ γ) ∨ (β ∧ γ)

Formulas and Boolean Functions

A Boolean function Bn
α : {F , T}n → {F , T} can be extracted from

a wff α

� An n-place Boolean function Bn
α is defined by Bn

α(x1, . . . , xn)
= the truth value given to α when A1, . . . ,An are given the
values x1, . . . , xn, where A1, . . . ,An are sentence symbols of α
E.g., α = (A1 ∨ A2)

A1 A2 A1 ∨ A2

F F F B2
α(F , F) = F

F T T B2
α(F , T) = T

T F T B2
α(T , F) = T

T T T B2
α(T , T) = T

Formulas and Boolean Functions

Theorem
Let α and β be wffs whose sentence symbols are among A1, . . . ,
An. Then

(a) α |= β iff for all �X ∈ {F , T}n, Bα(�X) ≤ Bβ(�X)
� Here we impose the order: F < T

(b) α |==| β iff Bα = Bβ

(c) |= α iff Bα is the constant function with value T

Formulas and Boolean Functions

Theorem
Let G be an n-place Boolean function, n ≥ 1. Then there exists a
wff α such that G = Bn

α (i.e., α realizes G)

� Every Boolean function is realizable. The realization however
is not unique.

� Tautologically equivalent wffs realize the same function

Formulas and Boolean Functions

� For any wff, there is a tautologically equivalent wff in
disjunctive normal form (DNF), a.k.a. sum-of-products (SOP)

� Every n-place Boolean function with n ≥ 1 can be realized by
a wff using only the connective symbols {∧,∨,¬}

� {∧,∨,¬} is functionally complete
� {¬,∧} and {¬,∨} are functionally complete
� {∧,⇒} is not functionally complete

� There are 22n
n-place Boolean functions

� We can define 22n

n-ary connectives, each associate with an
n-place Boolean function

Compactness

A set Σ of wffs is called satisfiable iff there is a truth assignment
that satisfies every member of Σ

Theorem (Compactness)

A set Σ of wffs is satisfiable iff every finite subset is satisfiable.
That is, Σ is satisfiable iff Σ is finitely satisfiable, namely, every
finite subset of Σ is satisfiable.

Proof (sketch).

(=⇒) trivial
(⇐=) ideas:

1. Extend Σ to a maximal set Δ that remains finitely satisfiable

2. Utilize Δ to make a truth assignment that satisfies Σ

Proof of Compactness Theorem (cont’d)

1. We enumerate the wffs as α1, α2, . . . (countable)
Define recursively

Δ0 = Σ

Δn+1 =

{
Δn;αn+1 if this is finitely satisfiable
Δn;¬αn+1 otherwise

Let Δ =
⋃

n=1,... Δn (the limit of Δn’s)
We know

i Σ ⊆ Δ
ii for every wff α, either α ∈ Δ or ¬α ∈ Δ, and
iii Δ is finitely satisfiable

2. Define truth assignment v such that

v(A) = T iff A ∈ Δ

for any sentence symbol A
Then by induction we can show that v satisfies ϕ iff ϕ ∈ Δ
Since Σ ⊆ Δ, v must satisfy every member of Σ

Q.E.D.

Compactness

Corollary

If Σ |= τ , then there is a finite Σ0 ⊆ Σ such that Σ0 |= τ

Proof.
Σ |= τ ⇔ Σ;¬τ is unsatisfiable
For contradiction, assume Σ0 �|= τ for every finite Σ0 ⊆ Σ
=⇒ Σ0;¬τ is satisfiable for every finite Σ0 ⊆ Σ
=⇒ Σ;¬τ is finitely satisfiable
=⇒ Σ;¬τ is satisfiable
=⇒ Σ �|= τ

Effectiveness and Computability

� Given a set Σ;α of wffs, we are concerned about if there is an
effective procedure that will decide whether or not Σ |= α
By effectiveness, the computation has to be of

1. finite exact instructions (programs)
2. mechanical reasoning
3. finite run time

� There are uncountably many (2ℵ0) sets of expressions, but
only countably many effective procedures (finite instructions)

Decidability vs. Semidecidability

� A set Σ of expressions is decidable iff there exists an effective
procedure (algorithm) that, given an expression α, decides
whether or not α ∈ Σ

� A set Σ of expressions is semidecidable iff there exists an
effective procedure (semialgorithm) that, given an expression
α, produces the answer “yes” iff α ∈ Σ

� For α �∈ Σ, the procedure may or may not produce the answer
“no”

Decidability vs. Semidecidability

� There is an effective procedure that, given an expression α,
will decide whether or not it is a wff

� There is an effective procedure that, given a finite set Σ;α of
wffs, will decide whether or not Σ |= α

� For a finite set Σ of wffs, the set of tautological consequences
of Σ is decidable. In particular, the set of tautologies is
decidable.

� If Σ is an infinite set (even decidable) of wffs, its set of
tautological consequences may be undecidable (Chapter 3)

Effective Enumerability

� A set Σ of expressions is effectively enumerable (or called
recursively enumerable, computably enumerable, Turing
recognizable) iff there exists an effective procedure that lists,
in some order, the members of Σ

� If Σ is infinite, then the procedure can never finish

� A set is effectively enumerable iff it is semidecidable
� Any decidable set is semidecidable, and thus effectively

enumerable
� A set of expressions is decidable iff both it and its complement

are effectively enumerable

Effective Enumerability

� If sets A and B are effectively enumerable, so are A ∪ B and
A ∩ B

� If sets A and B are decidable, so are A ∪ B, A ∩ B, and A

� If Σ is a decidable set of wffs, then the set of tautological
consequences of Σ is effectively enumerable

� There exists an enumeration for a set iff the set is countable
� Consider enumeration as a surjective (onto) mapping from N

to some set S . S is recursively enumerable if the mapping
(function) is computable

� A function is (effectively) computable iff there exists an
effective procedure that, given an input x , will eventually
produce the correct output f (x)

