Special Topics on Applied Mathematical Logic

Spring 2012

Lecture 02

Jie-Hong Roland Jiang
National Taiwan University

March 2, 2012

Outline

Sentential Logic
Building Elements
Well-Formed Formulas
Truth Assignments
Formulas and Boolean Functions
Compactness
Effectiveness and Computability

Sentential Logic

- Sentential logic is also known as propositional logic
- Sentential logic deals with "sentences" in the viewpoint of first-order logic
- A sentence in first-order logic is abstracted as a sentence symbol in propositional logic
- Sentential logic is used to model propositional statements in natural languages

Use of Sentential Logic in Natural Languages

Consider the double-slit experiment of quantum mechanics with the following events
A1: There is no detector behind both slits
A2: Electron detected at Slit 1
A3: Electron pass Slit 1
A4: Electron pass Slit 2
Example formulas:

$$
\begin{align*}
A_{1} & \Rightarrow \neg A_{2} \tag{1}\\
A_{2} & \Rightarrow \neg A_{1} \tag{2}\\
A_{2} & \Rightarrow A_{3} \tag{3}\\
A_{1} & \Rightarrow A_{3} \tag{4}\\
A_{2} & \wedge A_{3} \tag{5}\\
A_{1} \Rightarrow\left(A_{3}\right. & \left.\wedge A_{4}\right) \tag{6}
\end{align*}
$$

Building Elements of Sentential Logic

symbol	meaning
$($	left parenthesis for punctuation
$)$	right parenthesis for punctuation
\neg	negation
\wedge, \cdots	conjunction
$\vee,+$	disjunction
\Rightarrow	implies
$\Leftrightarrow, \equiv, \bar{\oplus}$	iff
A_{1}, A	sentence/propositional symbols (Boolean variables)
A_{2}, A^{\prime}	sentence/propositional symbols (Boolean variables)
\vdots	\vdots

- Logical symbols: (,), $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$
- Sentential connectives: $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$
- Nonlogical symbols (parameters): A_{1}, A_{2}, \ldots

Well-Formed Formulas

- A well-formed formula (wff) φ is a "grammatically correct" expression
- An operational (recursive) definition of a wff φ is as follows $\varphi:=A_{i}\left|\left(\neg \varphi_{1}\right)\right|\left(\varphi_{1} \wedge \varphi_{2}\right)\left|\left(\varphi_{1} \vee \varphi_{2}\right)\right|\left(\varphi_{1} \Rightarrow \varphi_{2}\right) \mid\left(\varphi_{1} \Leftrightarrow \varphi_{2}\right)$
where ":=" is read as "can be", "|" is read as "or", A_{i} is some sentence symbol, φ_{1} and φ_{2} are wffs.
- A wff is an expression that can be built up from the sentence symbols by applying some finite number of times the formula-building operations

$$
\begin{aligned}
\mathcal{E}_{\neg}(\alpha) & =(\neg \alpha), \text { and } \\
\mathcal{E}_{\square}(\alpha, \beta) & =(\alpha \square \beta)
\end{aligned}
$$

for $\square=\wedge, \vee, \Rightarrow, \Leftrightarrow$
Mind these parentheses!

Ancestral Trees

- Formula construction can be shown with an ancestral tree

$$
\text { E.g., } \quad\left(\left(\left(A_{1} \vee A_{2}\right) \Rightarrow A_{3}\right) \Leftrightarrow\left(\neg\left(A_{4} \wedge\left(\neg A_{3}\right)\right)\right)\right)
$$

$$
\left(\left(A_{1} \vee A_{2}\right) \Rightarrow A_{3}\right) \quad\left(\neg\left(A_{4} \wedge\left(\neg A_{3}\right)\right)\right)
$$

$\left(A_{1} \vee A_{2}\right) \quad A_{3}$
$\left(A_{4} \wedge\left(\neg A_{3}\right)\right)$
A_{1}
A_{2}

$$
A_{3}
$$

Properties of Wffs

The following properties can be shown by induction

- The construction tree of any wff is unique
- If S is a set of wffs containing all sentence symbols and closed under the formula-building operations, then S is the set of all wffs
- Any expression with more left parentheses than right ones is not a wff

Formula Simplification and Polish Notation

To save on parentheses, we may use Polish notation (wffs \rightarrow P-wffs)

- $(\alpha \wedge \beta)$ becomes $\wedge \alpha \beta$
- $\mathcal{E}_{\neg}(\alpha)=(\neg \alpha)$ becomes $\mathcal{D}_{\neg}=\neg \alpha$
- $\mathcal{E}_{\square}(\alpha, \beta)=(\alpha \square \beta)$ becomes $\mathcal{D}_{\square}(\alpha, \beta)=\square \alpha \beta$ for
$\square \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$
E.g., $\Leftrightarrow \Rightarrow \wedge A B \neg C \vee \neg D E$

Besides Polish notation, an alternative simplification is to apply the following rules in order:

1. omit outermost parentheses
2. \neg applies to as little as possible
3. \wedge applies to as little as possible
4. \vee applies to as little as possible
5. for a repeated connective symbol, grouping is to the right, e.g., $A \Rightarrow B \Rightarrow C \Rightarrow D$ is read as $A \Rightarrow(B \Rightarrow(C \Rightarrow D))$

Syntax vs. Semantics

Back to our example of double-slit experiment

- $\left(A_{1} \Rightarrow\left(\neg A_{2}\right)\right)$:
"grammatically" or "syntactically" correct (i.e., a wff);
"physically" or "semantically" correct
- $\left(A_{2} \wedge A_{1}\right)$:
"grammatically" correct; "physically" incorrect
$\left\{\begin{array}{l}\text { syntax — depends only on expressions } \\ \text { semantics — depends on interpretations or truth assignments }\end{array}\right.$

Truth Assignments

- Let $\{F, T\}$ be the set of truth values with F being the falsity and T being the truth
- A truth assignment is a function $v: S \rightarrow\{F, T\}$ assigning either F or T to each sentence symbol in S
- To study the truth or falsity of a wff under some truth assignment, we extend v to $\bar{v}: \bar{S} \rightarrow\{F, T\}$, where \bar{S} is the set of wffs that can be built from S by formula-building operations

Truth Assignments

Define \bar{v} as follows
case 0 For $A \in S, \bar{v}(A)=v(A)$
case 1 For $\bar{v}((\neg \alpha))= \begin{cases}T & \text { if } \bar{v}(\alpha)=F \\ F & \text { otherwise }\end{cases}$
case 2 For $\bar{v}((\alpha \wedge \beta))= \begin{cases}T & \text { if } \bar{v}(\alpha)=T \text { and } \bar{v}(\beta)=T \\ F & \text { otherwise }\end{cases}$
case 3 For $\bar{v}((\alpha \vee \beta))= \begin{cases}T & \text { if } \bar{v}(\alpha)=T \text { or } \bar{v}(\beta)=T \\ F & \text { otherwise }\end{cases}$
case 4 For $\bar{v}((\alpha \Rightarrow \beta))= \begin{cases}T & \text { if } \bar{v}(\alpha)=F \text { or } \bar{v}(\beta)=T \\ F & \text { otherwise }\end{cases}$
case 5 For $\bar{v}((\alpha \Leftrightarrow \beta))= \begin{cases}T & \text { if } \bar{v}(\alpha)=\bar{v}(\beta) \\ F & \text { otherwise }\end{cases}$
where $\alpha, \beta \in \bar{S}$

Truth Assignments

$$
\text { E.g., }\left(\left(\left(A_{1} \vee A_{2}\right) \Rightarrow A_{3}\right) \Leftrightarrow\left(\neg\left(A_{4} \wedge\left(\neg A_{3}\right)\right)\right)\right)
$$

Applying \bar{v} with $v\left(A_{1}\right) \mapsto T, v\left(A_{2}\right) \mapsto F, v\left(A_{3}\right) \mapsto F, v\left(A_{4}\right) \mapsto T$ yields

$$
\begin{aligned}
& \left(\left(\left(A_{1} \vee A_{2}\right) \Rightarrow A_{3}\right) \Leftrightarrow\left(\neg\left(A_{4} \wedge\left(\neg A_{3}\right)\right)\right)\right) \\
& \underset{\mathrm{F}}{\left(\left(A_{1} \vee A_{2}\right) \Rightarrow A_{3}\right)} \quad\left(\neg\left(A_{4} \wedge\left(\neg A_{3}\right)\right)\right) \\
& \begin{array}{ccc}
\left(A_{1} \vee A_{2}\right) & A_{3} & \left(A_{4} \wedge\left(\neg A_{3}\right)\right) \\
\mathrm{T} & \mathrm{~F} & \mathrm{~T}
\end{array} \\
& \begin{array}{cc}
A_{1} & A_{2} \\
\mathrm{~T} & \mathrm{~F}
\end{array} \\
& \begin{array}{cc}
A_{4} & \left(\neg A_{3}\right) \\
\mathrm{T} & \mathrm{~T}
\end{array} \\
& A_{3} \\
& \text { F }
\end{aligned}
$$

Truth Assignments

$$
\text { E.g., }\left(\left(\left(A_{1} \vee A_{2}\right) \Rightarrow A_{3}\right) \Leftrightarrow\left(\neg\left(A_{4} \wedge\left(\neg A_{3}\right)\right)\right)\right)
$$

Applying \bar{v} with $v\left(A_{1}\right) \mapsto T, v\left(A_{2}\right) \mapsto T, v\left(A_{3}\right) \mapsto F, v\left(A_{4}\right) \mapsto F$ yields

$$
\begin{aligned}
& \begin{array}{c}
\left(\left(\left(A_{1} \vee A_{2}\right) \Rightarrow A_{3}\right) \Leftrightarrow\left(\neg\left(A_{4} \wedge\left(\neg A_{3}\right)\right)\right)\right) \\
F
\end{array} \\
& \begin{array}{cc}
\left(\left(A_{1} \vee A_{2}\right) \Rightarrow A_{3}\right) & \left(\neg\left(A_{4} \wedge\left(\neg A_{3}\right)\right)\right) \\
\mathrm{F} & \mathrm{~T}
\end{array} \\
& \begin{array}{ccc}
\left(A_{1} \vee A_{2}\right) & A_{3} & \left(A_{4} \wedge\left(\neg A_{3}\right)\right) \\
\mathrm{T} & \mathrm{~F} & \mathrm{~F}
\end{array} \\
& \begin{array}{cccc}
A_{1} & A_{2} & A_{4} & \left(\neg A_{3}\right) \\
\mathrm{T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T}
\end{array}
\end{aligned}
$$

Truth Assignments

The truth or falsity of a wff depends on the interpretations/truth assignments.

- Applying \bar{v} with

$$
v\left(A_{1}\right) \mapsto T, v\left(A_{2}\right) \mapsto F, v\left(A_{3}\right) \mapsto F, v\left(A_{4}\right) \mapsto T \text { yields }
$$

$$
\begin{gathered}
\left(\left(\left(A_{1} \vee A_{2}\right) \Rightarrow A_{3}\right) \Leftrightarrow\left(\neg\left(A_{4} \wedge\left(\neg A_{3}\right)\right)\right)\right) \\
\text { TTF FF TFTTTF}
\end{gathered}
$$

- Applying \bar{v} with
$v\left(A_{1}\right) \mapsto T, v\left(A_{2}\right) \mapsto T, v\left(A_{3}\right) \mapsto F, v\left(A_{4}\right) \mapsto F$ yields

$$
\begin{gathered}
\left(\left(\left(A_{1} \vee A_{2}\right) \Rightarrow A_{3}\right) \Leftrightarrow\left(\neg\left(A_{4} \wedge\left(\neg A_{3}\right)\right)\right)\right) \\
T T T F F F T F F T F
\end{gathered}
$$

Satisfiability and Tautology

- We say a truth assignment v satisfies a formula (wff) φ iff $\bar{v}(\varphi)=T$
- A set Σ of wffs tautologically implies τ, written $\Sigma \models \tau$, iff every truth assigment for the sentence symbols in $\Sigma ; \tau$ that satisfies every member of Σ also satisfies τ
- \models is about semantics, rather than syntax
- For $\Sigma=\emptyset$, we have $\emptyset \models \tau$, simply written $\models \tau$. It says every truth assignment satisfies τ. In this case, τ is a tautology.
- $\models \tau$ should be distinguished from $F \models \tau$ and $\{A, \neg A\} \models \tau$
- For Σ is a singleton $\{\sigma\}$, we write $\{\sigma\} \models \tau$ as $\sigma \models \tau$
- If $\sigma \models \tau$ and $\tau \models \sigma$, then σ and τ are tautologically equivalent, written as $\sigma \models=\neg$

Compactness Theorem

Theorem (Compactness Theorem)
Let Σ be an infinite set of wffs st., for any finite subset $\Sigma_{0} \subseteq \Sigma$, there is a truth assignment that satisfies every member of Σ_{0}.
Then there is a truth assignment that satisfies every member of Σ.

- Consider $(\neg(A \wedge B)) \models((\neg A) \vee(\neg B))$ (De Morgan's Law)

- More effective enumeration (enumerate product terms rather than minterms)

$$
\begin{aligned}
& \text { Ecg., }((A \vee(B \wedge C)) \Leftrightarrow((A \vee B) \wedge(A \vee C))) \\
& \underline{I T} \quad T \quad \underline{T} T \underline{T} \\
& \text { TITI T FTITFTI } \\
& \text { FFIFF T FTIFFFF } \\
& \text { FFFFFT FFFFFFF }
\end{aligned}
$$

Selection of Sentential Connectives

Why $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$?

- Can extend the language with other sentential connectives
- E.g., 3-place majority symbol \# $\bar{v}(\# \alpha \beta \gamma)$ is agree with the majority of $\bar{v}(\alpha), \bar{v}(\beta), \bar{v}(\gamma)$
- For any wff in the extended language, there is a tautologically equivalent wff in the original language. (The wff in the original language can be much longer however.)
E.g., $\# \alpha \beta \gamma$ equals $(\alpha \wedge \beta) \vee(\alpha \wedge \gamma) \vee(\beta \wedge \gamma)$

Formulas and Boolean Functions

A Boolean function $B_{\alpha}^{n}:\{F, T\}^{n} \rightarrow\{F, T\}$ can be extracted from a wff α

- An n-place Boolean function B_{α}^{n} is defined by $B_{\alpha}^{n}\left(x_{1}, \ldots, x_{n}\right)$ $=$ the truth value given to α when A_{1}, \ldots, A_{n} are given the values x_{1}, \ldots, x_{n}, where A_{1}, \ldots, A_{n} are sentence symbols of α E.g., $\alpha=\left(A_{1} \vee A_{2}\right)$

A_{1}	A_{2}	$A_{1} \vee A_{2}$	
F	F	F	$B_{\alpha}^{2}(F, F)=F$
F	T	T	$B_{\alpha}^{2}(F, T)=T$
T	F	T	$B_{\alpha}^{2}(T, F)=T$
T	T	T	$B_{\alpha}^{2}(T, T)=T$

Formulas and Boolean Functions

Theorem
Let α and β be wffs whose sentence symbols are among A_{1}, \ldots, A_{n}. Then
(a) $\alpha \models \beta$ iff for all $\vec{X} \in\{F, T\}^{n}, B_{\alpha}(\vec{X}) \leq B_{\beta}(\vec{X})$

- Here we impose the order: $F<T$
(b) $\alpha \models=\beta$ iff $B_{\alpha}=B_{\beta}$
(c) $\models \alpha$ iff B_{α} is the constant function with value T

Formulas and Boolean Functions

Theorem
Let G be an n-place Boolean function, $n \geq 1$. Then there exists a wff α such that $G=B_{\alpha}^{n}$ (i.e., α realizes G)

- Every Boolean function is realizable. The realization however is not unique.
- Tautologically equivalent wffs realize the same function

Formulas and Boolean Functions

- For any wff, there is a tautologically equivalent wff in disjunctive normal form (DNF), a.k.a. sum-of-products (SOP)
- Every n-place Boolean function with $n \geq 1$ can be realized by a wff using only the connective symbols $\{\wedge, \vee, \neg\}$
- $\{\wedge, \vee, \neg\}$ is functionally complete
- $\{\neg, \wedge\}$ and $\{\neg, \vee\}$ are functionally complete
- $\{\wedge, \Rightarrow\}$ is not functionally complete
- There are $2^{2^{n}} n$-place Boolean functions
- We can define $2^{2^{n}} n$-ary connectives, each associate with an n-place Boolean function

Compactness

A set Σ of wffs is called satisfiable iff there is a truth assignment that satisfies every member of Σ
Theorem (Compactness)
A set Σ of wffs is satisfiable iff every finite subset is satisfiable. That is, Σ is satisfiable iff Σ is finitely satisfiable, namely, every finite subset of Σ is satisfiable.

Proof (sketch).
(\Longrightarrow) trivial
(\Longleftarrow) ideas:

1. Extend Σ to a maximal set Δ that remains finitely satisfiable
2. Utilize Δ to make a truth assignment that satisfies Σ

Proof of Compactness Theorem (cont'd)

1. We enumerate the wffs as $\alpha_{1}, \alpha_{2}, \ldots$ (countable)

Define recursively

$$
\begin{aligned}
\Delta_{0} & =\Sigma \\
\Delta_{n+1} & = \begin{cases}\Delta_{n} ; \alpha_{n+1} & \text { if this is finitely satisfiable } \\
\Delta_{n} ; \neg \alpha_{n+1} & \text { otherwise }\end{cases}
\end{aligned}
$$

Let $\Delta=\bigcup_{n=1, \ldots} \Delta_{n}$ (the limit of Δ_{n} 's)
We know
i $\Sigma \subseteq \Delta$
ii for every wff α, either $\alpha \in \Delta$ or $\neg \alpha \in \Delta$, and
iii Δ is finitely satisfiable
2. Define truth assignment v such that

$$
v(A)=T \text { iff } A \in \Delta
$$

for any sentence symbol A
Then by induction we can show that v satisfies φ iff $\varphi \in \Delta$ Since $\Sigma \subseteq \Delta, v$ must satisfy every member of Σ
Q.E.D.

Compactness

Corollary
If $\Sigma \models \tau$, then there is a finite $\Sigma_{0} \subseteq \Sigma$ such that $\Sigma_{0} \models \tau$
Proof.
$\Sigma \models \tau \Leftrightarrow \Sigma ; \neg \tau$ is unsatisfiable
For contradiction, assume $\Sigma_{0} \not \vDash \tau$ for every finite $\Sigma_{0} \subseteq \Sigma$
$\Longrightarrow \Sigma_{0} ; \neg \tau$ is satisfiable for every finite $\Sigma_{0} \subseteq \Sigma$
$\Longrightarrow \Sigma ; \neg \tau$ is finitely satisfiable
$\Longrightarrow \Sigma ; \neg \tau$ is satisfiable
$\Longrightarrow \Sigma \not \vDash \tau$

Effectiveness and Computability

- Given a set $\Sigma ; \alpha$ of wffs, we are concerned about if there is an effective procedure that will decide whether or not $\Sigma \models \alpha$ By effectiveness, the computation has to be of

1. finite exact instructions (programs)
2. mechanical reasoning
3. finite run time

- There are uncountably many $\left(2^{\aleph_{0}}\right)$ sets of expressions, but only countably many effective procedures (finite instructions)

Decidability vs. Semidecidability

- A set Σ of expressions is decidable iff there exists an effective procedure (algorithm) that, given an expression α, decides whether or not $\alpha \in \Sigma$
- A set Σ of expressions is semidecidable iff there exists an effective procedure (semialgorithm) that, given an expression α, produces the answer "yes" iff $\alpha \in \Sigma$
- For $\alpha \notin \Sigma$, the procedure may or may not produce the answer "no"

Decidability vs. Semidecidability

- There is an effective procedure that, given an expression α, will decide whether or not it is a wff
- There is an effective procedure that, given a finite set $\Sigma ; \alpha$ of wffs, will decide whether or not $\Sigma \models \alpha$
- For a finite set Σ of wffs, the set of tautological consequences of Σ is decidable. In particular, the set of tautologies is decidable.
- If Σ is an infinite set (even decidable) of wffs, its set of tautological consequences may be undecidable (Chapter 3)

Effective Enumerability

- A set Σ of expressions is effectively enumerable (or called recursively enumerable, computably enumerable, Turing recognizable) iff there exists an effective procedure that lists, in some order, the members of Σ
- If Σ is infinite, then the procedure can never finish
- A set is effectively enumerable iff it is semidecidable
- Any decidable set is semidecidable, and thus effectively enumerable
- A set of expressions is decidable iff both it and its complement are effectively enumerable

Effective Enumerability

- If sets A and B are effectively enumerable, so are $A \cup B$ and $A \cap B$
- If sets A and B are decidable, so are $A \cup B, A \cap B$, and \bar{A}
- If Σ is a decidable set of wffs, then the set of tautological consequences of Σ is effectively enumerable
- There exists an enumeration for a set iff the set is countable
- Consider enumeration as a surjective (onto) mapping from \mathbb{N} to some set $S . S$ is recursively enumerable if the mapping (function) is computable
- A function is (effectively) computable iff there exists an effective procedure that, given an input x, will eventually produce the correct output $f(x)$

