Special Topics on Applied Mathematical Logic

Spring 2012

Lecture 02

Jie-Hong Roland Jiang

National Taiwan University

March 2, 2012

Outline

Sentential Logic

Building Elements
Well-Formed Formulas
Truth Assignments
Formulas and Boolean Functions
Compactness
Effectiveness and Computability

Sentential Logic

- Sentential logic is also known as propositional logic
- ► Sentential logic deals with "sentences" in the viewpoint of first-order logic
 - ► A sentence in first-order logic is abstracted as a sentence symbol in propositional logic
- Sentential logic is used to model propositional statements in natural languages

Use of Sentential Logic in Natural Languages

Consider the double-slit experiment of quantum mechanics with the following events

A1: There is no detector behind both slits

A2: Electron detected at Slit 1

A3: Electron pass Slit 1

A4: Electron pass Slit 2

Example formulas:

$$A_1 \Rightarrow \neg A_2 \tag{1}$$

$$A_2 \Rightarrow \neg A_1 \tag{2}$$

$$A_2 \Rightarrow A_3$$
 (3)

$$A_1 \Rightarrow A_3$$
 (4)

$$A_2 \wedge A_3$$
 (5)

$$A_1 \Rightarrow (A_3 \wedge A_4) \tag{6}$$

Building Elements of Sentential Logic

symbol	meaning
(left parenthesis for punctuation
)	right parenthesis for punctuation
\neg	negation
\wedge , \cdot	conjunction
V, +	disjunction
\Rightarrow	implies
\Leftrightarrow , \equiv , $\overline{\oplus}$	iff
A_1 , A	sentence/propositional symbols (Boolean variables)
A_2 , A'	sentence/propositional symbols (Boolean variables)
:	<u>:</u>

- ▶ Logical symbols: $(,), \neg, \land, \lor, \Rightarrow, \Leftrightarrow$
 - ▶ Sentential connectives: \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- ▶ Nonlogical symbols (parameters): $A_1, A_2, ...$

Well-Formed Formulas

- ▶ A well-formed formula (wff) φ is a "grammatically correct" expression
- lacktriangle An operational (recursive) definition of a wff arphi is as follows

$$\varphi := A_i \mid (\neg \varphi_1) \mid (\varphi_1 \land \varphi_2) \mid (\varphi_1 \lor \varphi_2) \mid (\varphi_1 \Rightarrow \varphi_2) \mid (\varphi_1 \Leftrightarrow \varphi_2)$$

where ":=" is read as "can be", "|" is read as "or", A_i is some sentence symbol, φ_1 and φ_2 are wffs.

► A wff is an expression that can be built up from the sentence symbols by applying some *finite* number of times the formula-building operations

$$\mathcal{E}_{\neg}(\alpha) = (\neg \alpha)$$
, and $\mathcal{E}_{\square}(\alpha, \beta) = (\alpha \square \beta)$

for
$$\Box = \land, \lor, \Rightarrow, \Leftrightarrow$$

Mind these parentheses!

Ancestral Trees

▶ Formula construction can be shown with an ancestral tree E.g., $(((A_1 \lor A_2) \Rightarrow A_3) \Leftrightarrow (\neg(A_4 \land (\neg A_3))))$

$$((A_1 \vee A_2) \Rightarrow A_3) \qquad (\neg (A_4 \wedge (\neg A_3)))$$

$$(A_1 \lor A_2)$$
 A_3 $(A_4 \land (\neg A_3))$

$$A_1$$
 A_2 A_4 $(\neg A_3)$

 A_3

Properties of Wffs

The following properties can be shown by induction

- ► The construction tree of any wff is unique
- ▶ If S is a set of wffs containing all sentence symbols and closed under the formula-building operations, then S is the set of all wffs
- Any expression with more left parentheses than right ones is not a wff

Formula Simplification and Polish Notation

To save on parentheses, we may use Polish notation (wffs \rightarrow P-wffs)

- $(\alpha \wedge \beta)$ becomes $\wedge \alpha \beta$
- \triangleright $\mathcal{E}_{\neg}(\alpha) = (\neg \alpha)$ becomes $\mathcal{D}_{\neg} = \neg \alpha$
- ▶ $\mathcal{E}_{\square}(\alpha,\beta) = (\alpha\square\beta)$ becomes $\mathcal{D}_{\square}(\alpha,\beta) = \square\alpha\beta$ for $\square \in \{\land,\lor,\Rightarrow,\Leftrightarrow\}$ E.g., $\Leftrightarrow\Rightarrow \land AB \neg C \lor \neg DE$

Besides Polish notation, an alternative simplification is to apply the following rules *in order*:

- 1. omit outermost parentheses
- 2. \neg applies to as little as possible
- 3. \wedge applies to as little as possible
- 4. ∨ applies to as little as possible
- 5. for a repeated connective symbol, grouping is to the right, e.g., $A \Rightarrow B \Rightarrow C \Rightarrow D$ is read as $A \Rightarrow (B \Rightarrow (C \Rightarrow D))$

Syntax vs. Semantics

Back to our example of double-slit experiment

- $(A_1 \Rightarrow (\neg A_2))$: "grammatically" or "syntactically" correct (i.e., a wff); "physically" or "semantically" correct
- $(A_2 \wedge A_1)$: "grammatically" correct; "physically" incorrect

```
syntax — depends only on expressions
semantics — depends on interpretations or truth assignments
```

Truth Assignments

- ► Let {F, T} be the set of **truth values** with F being the **falsity** and T being the **truth**
- ▶ A **truth assignment** is a function $v : S \rightarrow \{F, T\}$ assigning either F or T to each sentence symbol in S
- ▶ To study the truth or falsity of a wff under some truth assignment, we extend v to $\overline{v}: \overline{S} \to \{F, T\}$, where \overline{S} is the set of wffs that can be built from S by formula-building operations

Truth Assignments

```
Define \overline{v} as follows
case 0 For A \in S, \overline{v}(A) = v(A)
case 1 For \overline{v}((\neg \alpha)) = \begin{cases} T & \text{if } \overline{v}(\alpha) = F \\ F & \text{otherwise} \end{cases}
                                                                           if \overline{v}(\alpha) = T and \overline{v}(\beta) = T
case 2 For \overline{v}((\alpha \wedge \beta)) = \begin{cases} T \\ F \end{cases}
                                                                           otherwise
                                                                           if \overline{v}(\alpha) = T or \overline{v}(\beta) = T
case 3 For \overline{v}((\alpha \vee \beta)) = \begin{cases} T \\ F \end{cases}
                                                                         otherwise
                                                                             if \overline{v}(\alpha) = F or \overline{v}(\beta) = T
case 4 For \overline{v}((\alpha \Rightarrow \beta)) = \begin{cases} T \\ F \end{cases}
                                                                             otherwise
                                                                              if \overline{\mathbf{v}}(\alpha) = \overline{\mathbf{v}}(\beta)
case 5 For \overline{v}((\alpha \Leftrightarrow \beta)) = \begin{cases} T \\ F \end{cases}
                                                                              otherwise
     where \alpha, \beta \in \overline{S}
```

Truth Assignments

E.g.,
$$(((A_1 \lor A_2) \Rightarrow A_3) \Leftrightarrow (\neg(A_4 \land (\neg A_3))))$$

Applying \overline{v} with $v(A_1) \mapsto T$, $v(A_2) \mapsto F$, $v(A_3) \mapsto F$, $v(A_4) \mapsto T$ yields
$$(((A_1 \lor A_2) \Rightarrow A_3) \Leftrightarrow (\neg(A_4 \land (\neg A_3))))$$

$$T$$

$$((A_1 \lor A_2) \Rightarrow A_3) \qquad (\neg(A_4 \land (\neg A_3)))$$

$$F \qquad F$$

$$(A_1 \lor A_2) \qquad A_3 \qquad (A_4 \land (\neg A_3))$$

$$T \qquad F \qquad T$$

$$A_1 \qquad A_2 \qquad A_4 \qquad (\neg A_3)$$

$$T \qquad F \qquad T$$

$$A_3 \qquad F$$

Truth Assignments

E.g.,
$$(((A_1 \lor A_2) \Rightarrow A_3) \Leftrightarrow (\neg (A_4 \land (\neg A_3))))$$

Applying \overline{v} with $v(A_1) \mapsto T$, $v(A_2) \mapsto T$, $v(A_3) \mapsto F$, $v(A_4) \mapsto F$ yields
$$(((A_1 \lor A_2) \Rightarrow A_3) \Leftrightarrow (\neg (A_4 \land (\neg A_3))))$$

$$F$$

$$((A_1 \lor A_2) \Rightarrow A_3) \qquad (\neg (A_4 \land (\neg A_3)))$$

$$F$$

$$T$$

$$(A_1 \lor A_2) \qquad A_3 \qquad (A_4 \land (\neg A_3))$$

$$T \qquad F$$

$$A_1 \qquad A_2 \qquad A_4 \qquad (\neg A_3)$$

$$T \qquad T \qquad F$$

$$A_1 \qquad A_2 \qquad F \qquad T$$

F

Truth Assignments

The truth or falsity of a wff depends on the interpretations/truth assignments.

Applying \overline{v} with $v(A_1)\mapsto T, v(A_2)\mapsto F, v(A_3)\mapsto F, v(A_4)\mapsto T$ yields $\frac{(((A_1\vee A_2)\Rightarrow A_3)\Leftrightarrow (\neg(A_4\wedge (\neg A_3))))}{T\ T\ F\ F\ F\ T\ T\ T\ T\ F}$

Applying \overline{v} with $v(A_1) \mapsto T, v(A_2) \mapsto T, v(A_3) \mapsto F, v(A_4) \mapsto F$ yields $\frac{(((A_1 \lor A_2) \Rightarrow A_3) \Leftrightarrow (\neg (A_4 \land (\neg A_3))))}{T \ T \ T \ F \ F \ F \ T \ F \ F \ T \ F}$

Satisfiability and Tautology

- We say a truth assignment v satisfies a formula (wff) φ iff $\overline{v}(\varphi) = T$
- ▶ A set Σ of wffs **tautologically implies** τ , written $\Sigma \models \tau$, iff every truth assignment for the sentence symbols in Σ ; τ that satisfies every member of Σ also satisfies τ
 - ► |= is about *semantics*, rather than *syntax*
 - ▶ For $\Sigma = \emptyset$, we have $\emptyset \models \tau$, simply written $\models \tau$. It says every truth assignment satisfies τ . In this case, τ is a **tautology**.
 - ightharpoonup $\models \tau$ should be distinguished from $F \models \tau$ and $\{A, \neg A\} \models \tau$
 - ▶ For Σ is a singleton $\{\sigma\}$, we write $\{\sigma\} \models \tau$ as $\sigma \models \tau$
- ▶ If $\sigma \models \tau$ and $\tau \models \sigma$, then σ and τ are tautologically equivalent, written as $\sigma \models \exists \tau$

Compactness Theorem

Theorem (Compactness Theorem)

Let Σ be an infinite set of wffs s.t., for any finite subset $\Sigma_0 \subseteq \Sigma$, there is a truth assignment that satisfies every member of Σ_0 . Then there is a truth assignment that satisfies every member of Σ .

Truth Tables

▶ Consider $(\neg(A \land B)) \models ((\neg A) \lor (\neg B))$ (De Morgan's Law)

Α	В	$(\neg(A \land B))$	$((\neg A) \lor (\neg B))$
F	F	TFFF	TF T TF
F	T	TFFT	TF T FT
T	F	TTFF	FT T TF
T	T	FTTT	FTFFT

 More effective enumeration (enumerate product terms rather than minterms)

E.g.,
$$((A \lor (B \land C)) \Leftrightarrow ((A \lor B) \land (A \lor C)))$$

 $\underline{T}T$ T $\underline{T}T$ T $\underline{T}T$ T $\underline{T}T$
 FT $\underline{T}T$ T FT \underline{T} T FT \underline{T}
 FF $\underline{T}FF$ T FF FF

Selection of Sentential Connectives

Why $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$?

- ► Can extend the language with other sentential connectives
 - ► E.g., 3-place majority symbol # $\overline{v}(\#\alpha\beta\gamma)$ is agree with the majority of $\overline{v}(\alpha)$, $\overline{v}(\beta)$, $\overline{v}(\gamma)$
 - ► For any wff in the extended language, there is a tautologically equivalent wff in the original language. (The wff in the original language can be much longer however.)

E.g.,
$$\#\alpha\beta\gamma$$
 equals $(\alpha \wedge \beta) \vee (\alpha \wedge \gamma) \vee (\beta \wedge \gamma)$

Formulas and Boolean Functions

A Boolean function $B_{\alpha}^n: \{F,T\}^n \to \{F,T\}$ can be extracted from a wff α

An *n*-place Boolean function B_{α}^{n} is defined by $B_{\alpha}^{n}(x_{1},...,x_{n})$ = the truth value given to α when $A_{1},...,A_{n}$ are given the values $x_{1},...,x_{n}$, where $A_{1},...,A_{n}$ are sentence symbols of α E.g., $\alpha=(A_{1}\vee A_{2})$

A_1	A_2	$A_1 \lor A_2$	
F	F	F	$B^2_{\alpha}(F,F)=F$
F	T	T	$B^2_{\alpha}(F,T)=T$
T	F	T	$B^2_{\alpha}(T,F)=T$
T	T	T	$B_{\alpha}^{2}(T,T)=T$

Formulas and Boolean Functions

Theorem

Let α and β be wffs whose sentence symbols are among A_1, \ldots, A_n . Then

- (a) $\alpha \models \beta$ iff for all $\vec{X} \in \{F, T\}^n$, $B_{\alpha}(\vec{X}) \leq B_{\beta}(\vec{X})$
 - Here we impose the order: F < T
- (b) $\alpha \models \beta \text{ iff } B_{\alpha} = B_{\beta}$
- (c) $\models \alpha$ iff B_{α} is the constant function with value T

Formulas and Boolean Functions

Theorem

Let G be an n-place Boolean function, $n \ge 1$. Then there exists a wff α such that $G = B_{\alpha}^{n}$ (i.e., α realizes G)

- ► Every Boolean function is realizable. The realization however is not unique.
- ► Tautologically equivalent wffs realize the same function

Formulas and Boolean Functions

- ► For any wff, there is a tautologically equivalent wff in disjunctive normal form (DNF), a.k.a. sum-of-products (SOP)
- ▶ Every *n*-place Boolean function with $n \ge 1$ can be realized by a wff using only the connective symbols $\{\land, \lor, \neg\}$
- ▶ $\{\land, \lor, \neg\}$ is functionally complete
 - $\{\neg, \land\}$ and $\{\neg, \lor\}$ are functionally complete
 - $\{\land, \Rightarrow\}$ is not functionally complete
- ▶ There are 2^{2^n} *n*-place Boolean functions
 - We can define 2^{2^n} *n*-ary connectives, each associate with an *n*-place Boolean function

Compactness

A set Σ of wffs is called **satisfiable** iff there is a truth assignment that satisfies every member of Σ

Theorem (Compactness)

A set Σ of wffs is satisfiable iff every finite subset is satisfiable. That is, Σ is satisfiable iff Σ is **finitely satisfiable**, namely, every finite subset of Σ is satisfiable.

Proof (sketch).

- (\Longrightarrow) trivial
- (\Leftarrow) ideas:
 - 1. Extend Σ to a maximal set Δ that remains finitely satisfiable
 - 2. Utilize Δ to make a truth assignment that satisfies Σ

Proof of Compactness Theorem (cont'd)

1. We enumerate the wffs as α_1 , α_2 , ... (countable) Define recursively

$$\Delta_0 = \Sigma$$

$$\Delta_{n+1} = \begin{cases} \Delta_n; \alpha_{n+1} & \text{if this is finitely satisfiable} \\ \Delta_n; \neg \alpha_{n+1} & \text{otherwise} \end{cases}$$

Let $\Delta = \bigcup_{n=1,...} \Delta_n$ (the limit of Δ_n 's)

We know

- i $\Sigma \subseteq \Delta$
- ii for every wff α , either $\alpha \in \Delta$ or $\neg \alpha \in \Delta$, and
- iii Δ is finitely satisfiable
- 2. Define truth assignment v such that

$$v(A) = T \text{ iff } A \in \Delta$$

for any sentence symbol A

Then by induction we can show that v satisfies φ iff $\varphi \in \Delta$ Since $\Sigma \subseteq \Delta$, v must satisfy every member of Σ

Q.E.D.

Compactness

Corollary

If $\Sigma \models \tau$, then there is a finite $\Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \models \tau$

Proof.

 $\Sigma \models \tau \Leftrightarrow \Sigma; \neg \tau$ is unsatisfiable

For contradiction, assume $\Sigma_0 \not\models \tau$ for every finite $\Sigma_0 \subseteq \Sigma$

- $\Longrightarrow \Sigma_0; \neg \tau$ is satisfiable for every finite $\Sigma_0 \subseteq \Sigma$
- $\Longrightarrow \Sigma$; $\neg \tau$ is finitely satisfiable
- $\Longrightarrow \Sigma$; $\neg \tau$ is satisfiable
- $\Longrightarrow \Sigma \not\models \tau$

Effectiveness and Computability

- ▶ Given a set Σ ; α of wffs, we are concerned about if there is an effective procedure that will decide whether or not $\Sigma \models \alpha$ By effectiveness, the computation has to be of
 - 1. finite exact instructions (programs)
 - 2. mechanical reasoning
 - 3. finite run time
- ▶ There are uncountably many (2^{\aleph_0}) sets of expressions, but only countably many effective procedures (finite instructions)

Decidability vs. Semidecidability

- ▶ A set Σ of expressions is **decidable** iff there exists an *effective* procedure (algorithm) that, given an expression α , decides whether or not $\alpha \in \Sigma$
- ▶ A set Σ of expressions is **semidecidable** iff there exists an effective procedure (semialgorithm) that, given an expression α , produces the answer "yes" iff $\alpha \in \Sigma$
 - ► For $\alpha \not\in \Sigma$, the procedure may or may not produce the answer "no"

Decidability vs. Semidecidability

- ▶ There is an effective procedure that, given an expression α , will decide whether or not it is a wff
- ▶ There is an effective procedure that, given a finite set Σ ; α of wffs, will decide whether or not $\Sigma \models \alpha$
- ▶ For a finite set Σ of wffs, the set of tautological consequences of Σ is decidable. In particular, the set of tautologies is decidable.
- ▶ If Σ is an infinite set (even decidable) of wffs, its set of tautological consequences may be undecidable (Chapter 3)

Effective Enumerability

- A set Σ of expressions is **effectively enumerable** (or called **recursively enumerable**, **computably enumerable**, **Turing recognizable**) iff there exists an effective procedure that lists, in some order, the members of Σ
 - $\,\blacktriangleright\,$ If Σ is infinite, then the procedure can never finish
- ► A set is effectively enumerable iff it is semidecidable
 - ► Any decidable set is semidecidable, and thus effectively enumerable
 - ► A set of expressions is decidable iff both it and its complement are effectively enumerable

Effective Enumerability

- ▶ If sets A and B are effectively enumerable, so are $A \cup B$ and $A \cap B$
- ▶ If sets A and B are decidable, so are $A \cup B$, $A \cap B$, and \overline{A}
- ▶ If Σ is a decidable set of wffs, then the set of tautological consequences of Σ is effectively enumerable
- ▶ There exists an enumeration for a set iff the set is countable
- ▶ Consider enumeration as a surjective (onto) mapping from \mathbb{N} to some set S. S is recursively enumerable if the mapping (function) is computable
 - A function is (**effectively**) **computable** iff there exists an effective procedure that, given an input x, will eventually produce the correct output f(x)