# Special Topics on Applied Mathematical Logic 

Spring 2012

## Lecture 03

Jie-Hong Roland Jiang

National Taiwan University

$$
\text { March 10, } 2012
$$

## Outline

First-Order Logic
First-Order Languages (Syntax)

First-order logic provides

1. a syntax capable of expressing detailed mathematical statements
2. semantics that identify a sentence with its intended mathematical application
3. a generic and comprehensive proof system

## Metalanguage and Metamathematics

- Metalanguage vs. object language
- We study an object language in terms of a metalanguage
- English will be our metalanguage to study the object languages, such as the language of sentential logic, first-order languages, etc.
- Metamathematics vs. mathematics
- We study mathematics in terms of metamathematics
- Mathematical logic will be our metamathematics to study mathematics, such as number theory, set theory, etc.


## First-Order Logic

E.g., first-order language of number theory:

- Symbols:
- Constant symbol 0 (meaning "zero"); function symbol $S$ (meaning successor of); predicate symbol $<$ (meaning less than); quantifier symbol $\forall$ (meaning for every natural number); equality symbol $=$
- Formulas:
- E.g., $\forall v_{1}\left(0<v_{1} \Rightarrow \neg\left(v_{1}=0\right)\right), \exists v_{1} \forall v_{2}\left(v_{1}=v_{2}\right), \ldots$


## First-Order Languages

symbol
logical symbols
parenthesis: (, )
sentential connective symbols: $\Rightarrow$, $\neg$
variables: $v_{1}, v_{2}, \ldots$
equality symbol: $=$ (optional)
parameters
quantifier symbol: $\forall$
predicate symbols (possibly empty)
constant symbols (possibly empty)
function symbols (possibly empty)

- $\{\Rightarrow, \neg\}$ is functionally complete
- Quantifier $\exists$ is unnecessary since $\exists x \phi$ equals $\neg \forall x \neg \phi$
- Equality symbol "="
- can be seen as a two-place predicate symbol, but distinguished (to consider English translation)
- coincides with " $\Leftrightarrow$ " in sentential logic
- Constant symbols
- can be seen as a 0-place function symbol
- Quantifier $\forall$
- not necessary in sentential logic, but necessary in first-order logic (why?)


## First-Order Languages

To specify a language, we need to specify

1. Presence of " $=$ "
2. Parameters

## E.g.,

pure predicate language:

1. No
2. n-place predicate symbols $A_{1}^{n}, A_{2}^{n}, \ldots$; constant symbols $a_{1}$, $a_{2}, \ldots$
language of set theory:
3. Yes
4. 2-place predicate symbol $\in$; optionally a constant symbol $\emptyset$ language of elementary number theory:
5. Yes
6. 2-place predicate symbol $<$; constant symbol 0 ; function symbols $S,+, \cdot, E$

## Translation into Formulas

## Example

## Language of set theory (ST)

- There is no set of which every set is a member $\neg \exists v_{1} \forall v_{2}\left(v_{2} \in v_{1}\right)$; equivalently, $\forall v_{1} \neg \forall v_{2}\left(v_{2} \in v_{1}\right)$
- For any two sets, there is a set whose members are exactly the two given sets (pair-set axiom)
$\forall v_{1} \forall v_{2} \exists v_{3} \forall v_{4}\left(\left(v_{4} \in v_{3}\right) \Leftrightarrow\left(\left(v_{4}=v_{1}\right) \vee\left(v_{4}=v_{2}\right)\right)\right)$


## Language of elementary number theory (NT)

- Any nonzero natural number is the successor of some number $\forall v_{1} \exists v_{2}\left(\neg\left(v_{1}=0\right) \wedge v_{1}=S v_{2}\right)$ or $\forall v_{1} \exists v_{2}\left(\neg\left(v_{1}=0\right) \Rightarrow v_{1}=S v_{2}\right)$ ?
- There is a smallest prime


## Translation into Formulas (cont'd)

## Example

Language of analysis

- $f$ converges to $L$ as $x$ approaches to a

$$
\forall \epsilon((\epsilon>0) \Rightarrow \exists \delta((\delta>0) \wedge \forall x(|x-a|<\delta \Rightarrow|f x-L|<\epsilon)))
$$

Ad hoc language

- All apples are bad $\forall v_{1}\left(A v_{1} \Rightarrow B v_{1}\right)$
- Some apple is bad $\exists v_{1}\left(A v_{1} \wedge B v_{1}\right)$
- How about $\forall v_{1}\left(A v_{1} \wedge B v_{1}\right)$ and $\exists v_{1}\left(A v_{1} \Rightarrow B v_{1}\right)$ ?


## Translation into Formulas (cont'd)

Observations:

- No free variables in the translated formulas
- A variable in a formula is free if it is not quantified
- Formulas without free variables are called sentences
- Common patterns

$$
\begin{aligned}
& \forall v((\ldots) \Rightarrow(\ldots)) \text { and } \\
& \exists v((\ldots) \wedge(\ldots))
\end{aligned}
$$

## Formulas

- Expression: any finite sequence of symbols
- Meaningful expressions: terms and wffs
- Term: noun/pronoun (object name)
- expression built up from constant symbols and variables by applying (zero or more times) the $\mathcal{F}_{f}$ operations with $\mathcal{F}_{f}\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)=f \epsilon_{1}, \ldots, \epsilon_{n}$
- Atomic formula: $P t_{1}, \ldots, t_{n}$ (not inductive definition)
- wff having neither connective nor quantifier symbols
- Wff:
- expression built up from atomic formulas by applying (zero or more times) the operations $\mathcal{E}_{\neg}, \mathcal{E}_{\Rightarrow}, \mathcal{Q}_{i}$ with $\mathcal{E}_{\neg}(\alpha)=(\neg \alpha)$, $\mathcal{E}_{\Rightarrow}(\alpha, \beta)=(\alpha \Rightarrow \beta), \mathcal{Q}_{i}(\alpha)=\forall v_{i} \alpha$


## Formulas

$$
\begin{aligned}
& \text { E.g., } \\
& \text { - } S S 0,+S S 0 S 0 \text { are terms } \\
& \text { - }=v_{1} v_{2}, \in v_{1} v_{2} \text { are atomic formulas } \\
&- \forall v_{1}\left(( \neg \forall v _ { 3 } ( \neg \in v _ { 3 } v _ { 1 } ) ) \Rightarrow \left(\neg \forall v _ { 2 } \left(\in v _ { 1 } v _ { 2 } \Rightarrow \left(\neg \forall v_{4}\left(\in v_{4} v_{2}\right) \Rightarrow\right.\right.\right.\right. \\
&\left.\left.\left.\left.\left(\neg \in v_{4} v_{1}\right)\right)\right)\right)\right) \text { is a wff } \\
& \neg v_{1} \text { is NOT a wff }
\end{aligned}
$$



- $\forall v_{1} \exists v_{2}\left(\left(\neg v_{1}=\emptyset\right) \Rightarrow\left(v_{2} \in v_{1}\right)\right)$ - sentence
- $\forall v_{1}\left(\neg\left(v_{1}=\emptyset\right) \Rightarrow\left(v_{2} \in v_{1}\right)\right)$ - $v_{2}$ occurs free
- $\exists v_{2}\left(\neg\left(v_{1}=\emptyset\right) \Rightarrow\left(v_{2} \in v_{1}\right)\right)$ - $v_{1}$ occurs free


## Formulas

Two ways to define free variables:

1. By recursion, for each wff $\alpha, x$ occurs free in $\alpha$ if 1.1 for atomic $\alpha, x$ occurs free in $\alpha$ iff $x$ occurs in $\alpha$ $1.2 \times$ occurs free in $(\neg \alpha)$ iff $x$ occurs free in $\alpha$
$1.3 \times$ occurs free in $(\alpha \Rightarrow \beta)$ iff $x$ occurs free in $\alpha$ or $\beta$
$1.4 \times$ occurs free in $\forall v_{i} \alpha$ iff $x$ occurs free in $\alpha$ and $x \neq v_{i}$
2. Define $h(\alpha)$ as the set of all variables, if any, in the atomic formula $\alpha$. Extend $h$ to

$$
\begin{aligned}
\bar{h}\left(\mathcal{E}_{\neg}(\alpha)\right) & =\bar{h}(\alpha), \\
\bar{h}\left(\mathcal{E}_{\Rightarrow}(\alpha, \beta)\right) & =\bar{h}(\alpha) \cup \bar{h}(\beta), \\
\bar{h}\left(\mathcal{Q}_{i}(\alpha)\right) & =\bar{h}(\alpha) \backslash v_{i} .
\end{aligned}
$$

Then $x$ occurs free in $\alpha$ ( $x$ is a free variable of $\alpha$ ) iff $x \in \bar{h}(\alpha)$.
A sentence is a wff without free variables (usually the most interesting wff)

## Scope of Quantification

E.g.,

$$
\forall v_{1} \exists v_{2}\left(\left(v_{3} \in v_{4}\right) \Leftrightarrow\left(\forall v_{1}\left(v_{1}=v_{2}\right) \vee v_{1}=v_{3}\right)\right)
$$

## Formula Simplification

For readability, we write

- $\forall v_{1}\left(v_{1} \neq 0 \Rightarrow \exists v_{2} v_{1}=S v_{2}\right)$ for $\forall v_{1}\left(\left(\neg=v_{1} 0\right) \Rightarrow\left(\neg \forall v_{2}\left(\neg=v_{1} S v_{2}\right)\right)\right)$
- $(\alpha \vee \beta)$ for $((\neg \alpha) \Rightarrow \beta)$
- $(\alpha \wedge \beta)$ for $(\neg(\alpha \Rightarrow(\neg \beta)))$
- $(\alpha \Leftrightarrow \beta)$ for $(\neg((\alpha \Rightarrow \beta) \Rightarrow(\neg(\beta \Rightarrow \alpha))))$
- $\exists x \alpha$ for $(\neg \forall x(\neg \alpha))$
- $u=t$ for $=u t$
- $2<3$ for $<23$
- $2+2$ for +22
- $u \neq t$ for $(\neg=u t)$
- $u \nless t$ for $(\neg<u t)$

Also we may use [, ] besides (, )

## Formula Simplification

## We use the following convention (in order)

1. drop outermost parentheses
E.g., $\alpha \Rightarrow \beta$ for $(\alpha \Rightarrow \beta)$
2. $\neg, \forall, \exists$ apply to as little as possible
E.g., $\neg \alpha \vee \beta$ for $(\neg \alpha) \vee \beta$
3. $\wedge, \vee$, apply to as little as possible
4. Grouping is to the right for a repeated connective E.g., $\alpha \Rightarrow \beta \Rightarrow \gamma$ for $\alpha \Rightarrow(\beta \Rightarrow \gamma)$

## Notational Convention

- Predicates: uppercase letters (also $\in,<$ )
- Variables: $v_{i}, u, v, x, y, z$
- Functions: $f, g, h($ also $S,+$ )
- Constants: $a, b, \ldots$ (also 0$)$
- Terms: $u, t$
- Formulas: lowercase Greek letters, e.g., $\alpha, \beta$
- Sentences: $\sigma, \tau$
- Sets of formulas: uppercase Greek letters, e.g., Г
- Structures: uppercase German letters, e.g., $\mathfrak{A}, \mathfrak{B}$

