Special Topics on Applied Mathematical Logic

Spring 2012

Lecture 03

Jie-Hong Roland Jiang

National Taiwan University

March 10, 2012

Outline

First-Order Logic
First-Order Languages (Syntax)

First-Order Logic

First-order logic provides

1. a syntax capable of expressing detailed mathematical
statements

2. semantics that identify a sentence with its intended
mathematical application

3. a generic and comprehensive proof system

Metalanguage and Metamathematics

» Metalanguage vs. object language

» We study an object language in terms of a metalanguage

» English will be our metalanguage to study the object
languages, such as the language of sentential logic, first-order
languages, etc.

» Metamathematics vs. mathematics

» We study mathematics in terms of metamathematics
» Mathematical logic will be our metamathematics to study
mathematics, such as number theory, set theory, etc.

First-Order Logic

E.g., first-order language of number theory:

» Symbols:

» Constant symbol 0 (meaning “zero”); function symbol S
(meaning successor of); predicate symbol < (meaning less
than); quantifier symbol V (meaning for every natural
number); equality symbol =

» Formulas:
» Eg, Vvi(0 < vy = =(vy =0)), InVwa(vy = vn), ...

First-Order Languages

symbol

logical symbols

parenthesis: (,)

sentential connective symbols: =, —
variables: v, v, ...

equality symbol: = (optional)
parameters

quantifier symbol: V

predicate symbols (possibly empty)
constant symbols (possibly empty)
function symbols (possibly empty)

» {=,} is functionally complete

» Quantifier 3 is unnecessary since dx¢ equals =Vx—¢

First-Order Languages

» Equality symbol “="
> can be seen as a two-place predicate symbol, but distinguished
(to consider English translation)
» coincides with “&" in sentential logic

» Constant symbols
» can be seen as a 0-place function symbol
» Quantifier V

> not necessary in sentential logic, but necessary in first-order
logic (why?)

First-Order Languages
To specify a language, we need to specify
1. Presence of "="
2. Parameters

E.g.,
pure predicate language:

1. No

2. n-place predicate symbols A7, AJ, ...; constant symbols ay,
an, ...

language of set theory:

1. Yes

2. 2-place predicate symbol €; optionally a constant symbol ()
language of elementary number theory:

1. Yes

2. 2-place predicate symbol <; constant symbol O; function
symbols S, 4, -, E

Translation into Formulas

Example
Language of set theory (ST)

» There is no set of which every set is a member
—3viVva(va € v1); equivalently, Yvi—Vva(va € vq)

» For any two sets, there is a set whose members are exactly the
two given sets (pair-set axiom)
VviVvodwsVva((va € v3) & ((va = v1) V (va = v2)))

Language of elementary number theory (NT)

» Any nonzero natural number is the successor of some number
VV1§|V2(—|(V1 = O) N vE = 5V2) or
\V/V1§|V2(ﬂ(vl = 0) = V] = SVQ) 7

» There is a smallest prime

Translation into Formulas (cont'd)

Example
Language of analysis

» f converges to L as x approaches to a
Ve((e > 0) = 35((0 > 0) AVx(|x —a| < d = |Ix—L| <¥¢)))
Ad hoc language
» All apples are bad Vvi(Av; = Bvy)
» Some apple is bad Jvi(Avy A Bvy)
» How about Vvi(Avi A Bvy) and Jvi(Avy = Bwy)?

Translation into Formulas (cont'd)

Observations:

» No free variables in the translated formulas

» A variable in a formula is free if it is not quantified
» Formulas without free variables are called sentences

» Common patterns

Formulas

» Expression: any finite sequence of symbols
» Meaningful expressions: terms and wffs
» Term: noun/pronoun (object name)

» expression built up from constant symbols and variables by
applying (zero or more times) the Fr operations with
Fr(er,...,€n) =Fer,... €,

» Atomic formula: Pty,...,t, (not inductive definition)
» wff having neither connective nor quantifier symbols
» WI:

> expression built up from atomic formulas by applying (zero or
more times) the operations £, £-., Q; with £ (a) = (—«),

Ex(a,fB) = (a=), Qi(a) =Vva

Formulas

Eg.
» 550, +550S50 are terms
> = ViV, € V1 are atomic formulas

> Vvl((—!VV3(_| S V3V1)) = (‘lVVQ(E ViVvo = (_|\V/V4(E V4V2) =
(— € vavn1))))) is a wif

» —vg is NOT a wiff

Formulas

all expressions

atomic
formulas

Free Variables

> VYviIva((—v1 = 0) = (w2 € v1)) — sentence
> Vvi(—(vy =0) = (v2 € v1)) — v» occurs free

> Jva(—(vy =0) = (v2 € vi)) — vq occurs free

Formulas

Two ways to define free variables:
1. By recursion, for each wff «;, x occurs free in « if

1.1 for atomic «, x occurs free in « iff x occurs in «

1.2 x occurs free in (—«) iff x occurs free in «

1.3 x occurs free in (o = (3) iff x occurs free in « or 3
1.4 x occurs free in Vv;a iff x occurs free in o and x # v;

2. Define h(«) as the set of all variables, if any, in the atomic
formula . Extend h to

 h(E(@) = ha),
A(E(0,8)) = Tla) UT(H)
h(Qi(a)) = h(a)\v:
Then x occurs free in « (x is a free variable of «) iff
x € h(a).

A sentence is a wff without free variables (usually the most
interesting wff)

Scope of Quantification

E.g.
Vvidw((vz € vg) < (Yvi(vi = vo) V v = »3))

Formula Simplification

For readability, we write
> Vvi(vi # 0= Jwov; = Swy) for
Vvi((—= = wv10) = (-Vwva(— = v1Sw)))
(aV) for ((—r) = B)
(a A B) for (=(a = (=3)))
(v & B) for (=((a = B) = (=(8 = «))))
dxa for (=Vx(—a))
u=tfor = ut
2 < 3 for <23
2 + 2 for 422
u # t for (- = ut)
> u £t for (- < ut)

Also we may use [,] besides (,)

vV v v vV vV v vY

Formula Simplification

We use the following convention (in order)

1.

drop outermost parentheses
E.g., a= 0 for (o=)

-, V, 3 apply to as little as possible
E.g., ~aV g for (-a)V S

A, V, apply to as little as possible

4. Grouping is to the right for a repeated connective

Eg,a= (= ~fora=(6=17)

Notational Convention

vV vV v vV vV v v Vv v

Predicates: uppercase letters (also €, <)
Variables: v;, u, v, x, y, z

Functions: f, g, h (also S, +)

Constants: a, b, ... (also 0)

Terms: u, t

Formulas: lowercase Greek letters, e.g., o, 3
Sentences: o, T

Sets of formulas: uppercase Greek letters, e.g., [

Structures: uppercase German letters, e.g., 2, B

