
Special Topics on Applied Mathematical Logic

Spring 2012

Lecture 03

Jie-Hong Roland Jiang

National Taiwan University

March 10, 2012

Outline

First-Order Logic
First-Order Languages (Syntax)

First-Order Logic

First-order logic provides

1. a syntax capable of expressing detailed mathematical
statements

2. semantics that identify a sentence with its intended
mathematical application

3. a generic and comprehensive proof system

Metalanguage and Metamathematics

� Metalanguage vs. object language
� We study an object language in terms of a metalanguage
� English will be our metalanguage to study the object

languages, such as the language of sentential logic, first-order
languages, etc.

� Metamathematics vs. mathematics
� We study mathematics in terms of metamathematics
� Mathematical logic will be our metamathematics to study

mathematics, such as number theory, set theory, etc.

First-Order Logic

E.g., first-order language of number theory:
� Symbols:

� Constant symbol 0 (meaning “zero”); function symbol S
(meaning successor of); predicate symbol < (meaning less
than); quantifier symbol ∀ (meaning for every natural
number); equality symbol =

� Formulas:
� E.g., ∀v1(0 < v1 ⇒ ¬(v1 = 0)), ∃v1∀v2(v1 = v2), ...

First-Order Languages

symbol

logical symbols
parenthesis: (,)
sentential connective symbols: ⇒, ¬
variables: v1, v2, . . .
equality symbol: = (optional)
parameters
quantifier symbol: ∀
predicate symbols (possibly empty)
constant symbols (possibly empty)
function symbols (possibly empty)

� {⇒,¬} is functionally complete

� Quantifier ∃ is unnecessary since ∃xφ equals ¬∀x¬φ

First-Order Languages

� Equality symbol “=”
� can be seen as a two-place predicate symbol, but distinguished

(to consider English translation)
� coincides with “⇔” in sentential logic

� Constant symbols
� can be seen as a 0-place function symbol

� Quantifier ∀
� not necessary in sentential logic, but necessary in first-order

logic (why?)

First-Order Languages
To specify a language, we need to specify

1. Presence of “=”

2. Parameters

E.g.,
pure predicate language:

1. No

2. n-place predicate symbols An
1, An

2, . . . ; constant symbols a1,
a2, . . .

language of set theory:

1. Yes

2. 2-place predicate symbol ∈; optionally a constant symbol ∅
language of elementary number theory:

1. Yes

2. 2-place predicate symbol <; constant symbol 0; function
symbols S , +, ·, E

Translation into Formulas

Example
Language of set theory (ST)

� There is no set of which every set is a member
¬∃v1∀v2(v2 ∈ v1); equivalently, ∀v1¬∀v2(v2 ∈ v1)

� For any two sets, there is a set whose members are exactly the
two given sets (pair-set axiom)
∀v1∀v2∃v3∀v4((v4 ∈ v3) ⇔ ((v4 = v1) ∨ (v4 = v2)))

Language of elementary number theory (NT)

� Any nonzero natural number is the successor of some number
∀v1∃v2(¬(v1 = 0) ∧ v1 = Sv2) or
∀v1∃v2(¬(v1 = 0) ⇒ v1 = Sv2) ?

� There is a smallest prime
...

Translation into Formulas (cont’d)

Example
Language of analysis

� f converges to L as x approaches to a
∀ε((ε > 0) ⇒ ∃δ((δ > 0) ∧ ∀x(|x − a| < δ ⇒ |fx − L| < ε)))

Ad hoc language

� All apples are bad ∀v1(Av1 ⇒ Bv1)

� Some apple is bad ∃v1(Av1 ∧ Bv1)

� How about ∀v1(Av1 ∧ Bv1) and ∃v1(Av1 ⇒ Bv1)?

Translation into Formulas (cont’d)

Observations:
� No free variables in the translated formulas

� A variable in a formula is free if it is not quantified
� Formulas without free variables are called sentences

� Common patterns

∀v((. . .) ⇒ (. . .)) and

∃v((. . .) ∧ (. . .))

Formulas

� Expression: any finite sequence of symbols
� Meaningful expressions: terms and wffs

� Term: noun/pronoun (object name)
� expression built up from constant symbols and variables by

applying (zero or more times) the Ff operations with
Ff (ε1, . . . , εn) = f ε1, . . . , εn

� Atomic formula: Pt1, . . . , tn (not inductive definition)
� wff having neither connective nor quantifier symbols

� Wff:
� expression built up from atomic formulas by applying (zero or

more times) the operations E¬, E⇒, Qi with E¬(α) = (¬α),
E⇒(α, β) = (α ⇒ β), Qi (α) = ∀viα

Formulas

E.g.,

� SS0, +SS0S0 are terms

� = v1v2, ∈ v1v2 are atomic formulas

� ∀v1((¬∀v3(¬ ∈ v3v1)) ⇒ (¬∀v2(∈ v1v2 ⇒ (¬∀v4(∈ v4v2) ⇒
(¬ ∈ v4v1))))) is a wff

� ¬v1 is NOT a wff

Formulas

all expressions

terms
atomic

formulas

wffs

Free Variables

� ∀v1∃v2((¬v1 = ∅) ⇒ (v2 ∈ v1)) — sentence

� ∀v1(¬(v1 = ∅) ⇒ (v2 ∈ v1)) — v2 occurs free

� ∃v2(¬(v1 = ∅) ⇒ (v2 ∈ v1)) — v1 occurs free

Formulas

Two ways to define free variables:

1. By recursion, for each wff α, x occurs free in α if

1.1 for atomic α, x occurs free in α iff x occurs in α
1.2 x occurs free in (¬α) iff x occurs free in α
1.3 x occurs free in (α ⇒ β) iff x occurs free in α or β
1.4 x occurs free in ∀viα iff x occurs free in α and x
= vi

2. Define h(α) as the set of all variables, if any, in the atomic
formula α. Extend h to

h(E¬(α)) = h(α),

h(E⇒(α, β)) = h(α) ∪ h(β),

h(Qi (α)) = h(α)\vi .

Then x occurs free in α (x is a free variable of α) iff
x ∈ h(α).

A sentence is a wff without free variables (usually the most
interesting wff)

Scope of Quantification

E.g.,
∀v1∃v2((v3 ∈ v4) ⇔ (∀v1(v1 = v2) ∨ v1 = v3))

Formula Simplification

For readability, we write

� ∀v1(v1
= 0 ⇒ ∃v2v1 = Sv2) for
∀v1((¬ = v10) ⇒ (¬∀v2(¬ = v1Sv2)))

� (α ∨ β) for ((¬α) ⇒ β)

� (α ∧ β) for (¬(α ⇒ (¬β)))

� (α ⇔ β) for (¬((α ⇒ β) ⇒ (¬(β ⇒ α))))

� ∃xα for (¬∀x(¬α))

� u = t for = ut

� 2 < 3 for < 23

� 2 + 2 for +22

� u
= t for (¬ = ut)

� u
< t for (¬ < ut)

Also we may use [,] besides (,)

Formula Simplification

We use the following convention (in order)

1. drop outermost parentheses
E.g., α ⇒ β for (α ⇒ β)

2. ¬, ∀, ∃ apply to as little as possible
E.g., ¬α ∨ β for (¬α) ∨ β

3. ∧, ∨, apply to as little as possible

4. Grouping is to the right for a repeated connective
E.g., α ⇒ β ⇒ γ for α ⇒ (β ⇒ γ)

Notational Convention

� Predicates: uppercase letters (also ∈, <)

� Variables: vi , u, v , x , y , z

� Functions: f , g , h (also S , +)

� Constants: a, b, ... (also 0)

� Terms: u, t

� Formulas: lowercase Greek letters, e.g., α, β

� Sentences: σ, τ

� Sets of formulas: uppercase Greek letters, e.g., Γ

� Structures: uppercase German letters, e.g., A, B

