Special Topics on Applied Mathematical Logic

Spring 2012

Lecture 03

Jie-Hong Roland Jiang

National Taiwan University

March 10, 2012

Outline

First-Order Logic

First-Order Languages (Syntax)

First-Order Logic

First-order logic provides

- 1. a syntax capable of expressing detailed mathematical statements
- 2. semantics that identify a sentence with its intended mathematical application
- 3. a generic and comprehensive proof system

Metalanguage and Metamathematics

- ► Metalanguage vs. object language
 - ▶ We study an object language in terms of a metalanguage
 - ► English will be our metalanguage to study the object languages, such as the language of sentential logic, first-order languages, etc.
- Metamathematics vs. mathematics
 - We study mathematics in terms of metamathematics
 - ► Mathematical logic will be our metamathematics to study mathematics, such as number theory, set theory, etc.

First-Order Logic

E.g., first-order language of number theory:

- ► Symbols:
 - Constant symbol 0 (meaning "zero"); function symbol S (meaning successor of); predicate symbol < (meaning less than); quantifier symbol ∀ (meaning for every natural number); equality symbol =
- ► Formulas:
 - ► E.g., $\forall v_1(0 < v_1 \Rightarrow \neg(v_1 = 0))$, $\exists v_1 \forall v_2(v_1 = v_2)$, ...

First-Order Languages

```
logical symbols
parenthesis: (, )
sentential connective symbols: \Rightarrow, \neg
variables: v_1, v_2, \ldots
equality symbol: = (optional)
parameters
quantifier symbol: \forall
predicate symbols (possibly empty)
constant symbols (possibly empty)
function symbols (possibly empty)
```

- \blacktriangleright $\{\Rightarrow,\neg\}$ is functionally complete
- ▶ Quantifier \exists is unnecessary since $\exists x \phi$ equals $\neg \forall x \neg \phi$

First-Order Languages

- ► Equality symbol "="
 - can be seen as a two-place predicate symbol, but distinguished (to consider English translation)
 - ▶ coincides with "⇔" in sentential logic
- Constant symbols
 - can be seen as a 0-place function symbol
- ▶ Quantifier ∀
 - not necessary in sentential logic, but necessary in first-order logic (why?)

First-Order Languages

To specify a language, we need to specify

- 1. Presence of "="
- 2. Parameters

E.g.,

pure predicate language:

- 1. No
- 2. *n*-place predicate symbols A_1^n , A_2^n , ...; constant symbols a_1 , a_2 , ...

language of set theory:

- 1. Yes
- 2. 2-place predicate symbol \in ; optionally a constant symbol \emptyset language of elementary number theory:
 - 1. Yes
 - 2. 2-place predicate symbol <; constant symbol 0; function symbols S, +, \cdot , E

Translation into Formulas

Example

Language of set theory (ST)

- ▶ There is no set of which every set is a member $\neg \exists v_1 \forall v_2 (v_2 \in v_1)$; equivalently, $\forall v_1 \neg \forall v_2 (v_2 \in v_1)$
- ► For any two sets, there is a set whose members are exactly the two given sets (pair-set axiom)

$$\forall v_1 \forall v_2 \exists v_3 \forall v_4 ((v_4 \in v_3) \Leftrightarrow ((v_4 = v_1) \vee (v_4 = v_2)))$$

Language of elementary number theory (NT)

- Any nonzero natural number is the successor of some number $\forall v_1 \exists v_2 (\neg(v_1 = 0) \land v_1 = Sv_2)$ or $\forall v_1 \exists v_2 (\neg(v_1 = 0) \Rightarrow v_1 = Sv_2)$?
- ► There is a smallest prime

. . .

Translation into Formulas (cont'd)

Example

Language of analysis

▶ f converges to L as x approaches to a $\forall \epsilon ((\epsilon > 0) \Rightarrow \exists \delta ((\delta > 0) \land \forall x (|x - a| < \delta \Rightarrow |fx - L| < \epsilon)))$

Ad hoc language

- ▶ All apples are bad $\forall v_1(Av_1 \Rightarrow Bv_1)$
- ▶ Some apple is bad $\exists v_1(Av_1 \land Bv_1)$
- ▶ How about $\forall v_1(Av_1 \land Bv_1)$ and $\exists v_1(Av_1 \Rightarrow Bv_1)$?

Translation into Formulas (cont'd)

Observations:

- ▶ No free variables in the translated formulas
 - ▶ A variable in a formula is **free** if it is not quantified
 - ► Formulas without free variables are called **sentences**
- Common patterns

$$\forall v((\ldots) \Rightarrow (\ldots))$$
 and $\exists v((\ldots) \land (\ldots))$

Formulas

- ► Expression: any finite sequence of symbols
 - ► Meaningful expressions: terms and wffs
- ► Term: noun/pronoun (object name)
 - expression built up from constant symbols and variables by applying (zero or more times) the \mathcal{F}_f operations with $\mathcal{F}_f(\epsilon_1, \ldots, \epsilon_n) = f \epsilon_1, \ldots, \epsilon_n$
- ▶ Atomic formula: Pt_1, \ldots, t_n (not inductive definition)
 - wff having neither connective nor quantifier symbols
- ► Wff:
 - expression built up from atomic formulas by applying (zero or more times) the operations \mathcal{E}_{\neg} , $\mathcal{E}_{\Rightarrow}$, \mathcal{Q}_i with $\mathcal{E}_{\neg}(\alpha) = (\neg \alpha)$, $\mathcal{E}_{\Rightarrow}(\alpha,\beta) = (\alpha \Rightarrow \beta)$, $\mathcal{Q}_i(\alpha) = \forall v_i \alpha$

Formulas

E.g.,

- \triangleright SS0, +SS0S0 are terms
- $ightharpoonup = v_1v_2$, $\in v_1v_2$ are atomic formulas
- ▶ $\forall v_1((\neg \forall v_3(\neg \in v_3v_1)) \Rightarrow (\neg \forall v_2(\in v_1v_2 \Rightarrow (\neg \forall v_4(\in v_4v_2) \Rightarrow (\neg \in v_4v_1)))))$ is a wff
- $ightharpoonup \neg v_1$ is NOT a wff

Formulas

Free Variables

- $ightharpoonup \forall v_1 \exists v_2 ((\neg v_1 = \emptyset) \Rightarrow (v_2 \in v_1))$ sentence
- $ightharpoonup orall v_1(\neg(v_1=\emptyset)\Rightarrow(v_2\in v_1))-v_2$ occurs free
- $ightharpoonup \exists v_2(\neg(v_1=\emptyset)\Rightarrow(v_2\in v_1))-v_1 \text{ occurs free}$

Formulas

Two ways to define free variables:

- 1. By recursion, for each wff α , x occurs free in α if
 - 1.1 for atomic α , x occurs free in α iff x occurs in α
 - 1.2 x occurs free in $(\neg \alpha)$ iff x occurs free in α
 - 1.3 x occurs free in $(\alpha \Rightarrow \beta)$ iff x occurs free in α or β
 - 1.4 x occurs free in $\forall v_i \alpha$ iff x occurs free in α and $x \neq v_i$
- 2. Define $h(\alpha)$ as the set of all variables, if any, in the *atomic* formula α . Extend h to

$$\overline{h}(\mathcal{E}_{\neg}(\alpha)) = \overline{h}(\alpha),
\overline{h}(\mathcal{E}_{\Rightarrow}(\alpha,\beta)) = \overline{h}(\alpha) \cup \overline{h}(\beta),
\overline{h}(\mathcal{Q}_{i}(\alpha)) = \overline{h}(\alpha) \setminus v_{i}.$$

Then x occurs free in α (x is a **free variable** of α) iff $x \in \overline{h}(\alpha)$.

A **sentence** is a wff without free variables (usually the most interesting wff)

Scope of Quantification

E.g.,
$$\forall \mathbf{v_1} \exists \mathbf{v_2} ((\mathbf{v_3} \in \mathbf{v_4}) \Leftrightarrow (\forall \mathbf{v_1} (\mathbf{v_1} = \mathbf{v_2}) \lor \mathbf{v_1} = \mathbf{v_3}))$$

Formula Simplification

For readability, we write

- $\forall v_1(v_1 \neq 0 \Rightarrow \exists v_2 v_1 = Sv_2) \text{ for } \\ \forall v_1((\neg = v_1 0) \Rightarrow (\neg \forall v_2(\neg = v_1 Sv_2)))$
- $(\alpha \vee \beta)$ for $((\neg \alpha) \Rightarrow \beta)$
- $(\alpha \wedge \beta)$ for $(\neg(\alpha \Rightarrow (\neg\beta)))$
- $(\alpha \Leftrightarrow \beta)$ for $(\neg((\alpha \Rightarrow \beta) \Rightarrow (\neg(\beta \Rightarrow \alpha))))$
- $\blacktriangleright \exists x \alpha \text{ for } (\neg \forall x (\neg \alpha))$
- \triangleright u = t for = ut
- ▶ 2 < 3 for < 23
- \triangleright 2 + 2 for +22
- $\blacktriangleright u \neq t \text{ for } (\neg = ut)$
- ▶ $u \not< t$ for $(\neg < ut)$

Also we may use [,] besides (,)

Formula Simplification

We use the following convention (in order)

- 1. drop outermost parentheses E.g., $\alpha \Rightarrow \beta$ for $(\alpha \Rightarrow \beta)$
- 2. \neg , \forall , \exists apply to as little as possible E.g., $\neg \alpha \lor \beta$ for $(\neg \alpha) \lor \beta$
- 3. \wedge , \vee , apply to as little as possible
- 4. Grouping is to the right for a repeated connective E.g., $\alpha \Rightarrow \beta \Rightarrow \gamma$ for $\alpha \Rightarrow (\beta \Rightarrow \gamma)$

Notational Convention

- ▶ Predicates: uppercase letters (also \in , <)
- ightharpoonup Variables: v_i , u, v, x, y, z
- ▶ Functions: f, g, h (also S, +)
- ► Constants: *a*, *b*, ... (also 0)
- ► Terms: *u*, *t*
- \blacktriangleright Formulas: lowercase Greek letters, e.g., α , β
- ▶ Sentences: σ , τ
- Sets of formulas: uppercase Greek letters, e.g., Γ
- ▶ Structures: uppercase German letters, e.g., 𝔄, 𝔄