Special Topics on Applied Mathematical Logic

Spring 2012

Lecture 04

Jie-Hong Roland Jiang

National Taiwan University

March 20, 2012

Outline

First-Order Logic
Truth and Models (Semantics)
Logical Implication
Definability
Homomorphisms

Truth and Models

- Truth assignments are to sentential logic what structures (or interpretations) are to first-order logic
- A structure for a first-order language tells

1. what the universe (the set of objects that \forall refers to) is, and
2. what the parameters (predicate, constant, function symbols) mean

Truth and Models

Formally, a structure \mathfrak{A} is a function whose domain is the set of parameters and

1. \mathfrak{A} assigns to the symbol \forall a nonempty set $|\mathfrak{A}|$ called the universe (or domain) of \mathfrak{A} \forall - for everything in $|\mathfrak{A}|$
2. \mathfrak{A} assigns to each n-place predicate symbol P an n-ary relation $P^{\mathfrak{A}} \subseteq|\mathfrak{A}|^{n}$ $P t_{1}, \ldots, t_{n}-t_{1}, \ldots, t_{n} \in|\mathfrak{A}|$ is in $P^{\mathfrak{A}}$
3. \mathfrak{A} assigns to each constant symbol c a member $c^{\mathfrak{A}}$ of $|\mathfrak{A}|$ $c-c^{\mathfrak{A}}$
4. \mathfrak{A} assigns to each n-place function symbol f an n-ary operation $f^{\mathfrak{A}}:|\mathfrak{A}|^{n} \rightarrow|\mathfrak{A}|$ (the mapping must be total)

Truth and Models

Example

- Language of set theory $\exists x \forall y \neg y \in x$
- There exists a set s.t. every set is not its member $\forall x \forall y \exists z \forall t(t \in z \Leftrightarrow(t=x \vee t=y))$
- For every two sets x and y, there exists a set z such that for every set $t, t \in z$ iff $t=x$ or $t=y$ (pair-set axiom)
- Language of number theory

Let \mathfrak{A} be such that $|\mathfrak{A}|=\mathbb{N}$ and $\in^{\mathfrak{A}}$ is the set of pairs $\langle m, n\rangle$ with $m<n$ $\exists x \forall y \neg y \in x$

- There exists a natural number that is the smallest
- We say $\exists x \forall y \neg y \in x$ is true in \mathfrak{A}, or \mathfrak{A} is a model of $\exists x \forall y \neg y \in x$
$\forall x \forall y \exists z \forall t(t \in z \Leftrightarrow(t=x \vee t=y))$
- The formula is not true (i.e., false) in \mathfrak{A}

Truth and Models

Example

Consider a language with \forall and 2-place predicate symbol E Let structure \mathfrak{B} have

- $|\mathfrak{B}|=\{a, b, c, d\}$ (vertex set)
- $E^{\mathfrak{B}}=\{\langle a, b\rangle,\langle b, a\rangle,\langle b, c\rangle,\langle c, c\rangle\}$ (edge set)

$\exists x \forall y \neg E y x$
- The formula is true in \mathfrak{B} (there is a vertex not pointed to from any vertex)

Truth and Models

- A sentence σ is true in \mathfrak{A}, denoted $=_{\mathfrak{A}} \sigma$
- To formally define $\models_{\mathfrak{A}} \varphi$, let φ be a wff of our language, \mathfrak{A} be a structure for the language, and $s: V \rightarrow|\mathfrak{A}|$ for V being the set of all variables.

Then $\models_{\mathfrak{A}} \varphi[s]$ (meaning \mathfrak{A} satisfies φ with s) iff the translation of φ determined by \mathfrak{A} is true, where variable x is translated as $s(x)$ wherever it occurs free.

Truth and Models

Extend s to \bar{s}
case i (terms)
$\bar{s}: T \rightarrow|\mathfrak{A}|$ for T the set of all terms
\bar{s} is defined recursively by

1. $\bar{s}(x)=s(x)$ (x : variable)
2. $\bar{s}(c)=c^{\mathfrak{A}}$ (c: constant)
3. $\bar{s}\left(f t_{1}, \ldots, t_{n}\right)=f^{\mathfrak{A}}\left(\bar{s}\left(t_{1}\right), \ldots, \bar{s}\left(t_{n}\right)\right)(f$:
function)
commutative diagram of $\bar{s}(f t)=f^{\mathfrak{A}}(\bar{s}(t))$

- \bar{s} is unique
- \bar{s} depends on both s and \mathfrak{A}

Truth and Models

Extend s to \bar{s} (cont'd)
case ii (atomic formulas)
explicit (not recursive) definition with

1. $\models_{\mathfrak{A}}=t_{1} t_{2}[s]$ iff $\bar{s}\left(t_{1}\right)=\bar{s}\left(t_{2}\right)$
2. $\models_{\mathfrak{A}} P t_{1} \cdots t_{n}[s]$ iff sequence $\left\langle\bar{s}\left(t_{1}\right), \ldots, \bar{s}\left(t_{n}\right)\right\rangle \in P^{\mathfrak{A}}$

Truth and Models

Extend s to \bar{s} (cont'd) case iii (other wffs)
recursive definition with

1. For atomic formulas, see case ii
2. $\models_{\mathfrak{A}} \neg \varphi[s]$ iff $\not \models_{\mathfrak{A}} \varphi[s]$
3. $\models_{\mathfrak{A}}(\varphi \Rightarrow \psi)[s]$ iff either $\not \vDash_{\mathfrak{A}} \varphi[s]$ or $\models_{\mathfrak{A}} \psi[s]$ or both
4. $\models_{\mathfrak{A}} \forall x \varphi[s]$ iff for every $d \in|\mathfrak{A}|, \models_{\mathfrak{A}} \varphi[s(x \mid d)]$, where $s(x \mid d)(y)= \begin{cases}s(y) & \text { if } y \neq x \\ d & \text { if } y=x\end{cases}$

- $\models_{\mathfrak{A}}(\alpha \wedge \beta)[s]$ iff $\models_{\mathfrak{A}} \alpha[s]$ and $\models_{\mathfrak{A}} \beta[s]$ (similarly for \vee and \Leftrightarrow)
- $\models_{\mathfrak{A}} \exists x \alpha[s]$ iff there is some $d \in|\mathfrak{A}|$ such that $\models_{\mathfrak{A}} \alpha[s(x \mid d)]$

Truth and Models

- $\models_{\mathfrak{A}} \varphi[s]$ iff the translation of φ determined by \mathfrak{A} is true for free variables translated as $s(x)$
- s only matters for free variables
- If φ is a sentence, then s does not matter

Truth and Models

Example

Consider a language with \forall, P (two-place predicate), f (one-place function), and c (constant); let $\mathfrak{A}=(\mathbb{N} ; \leq, S, 0)$, i.e.,

- $|\mathfrak{A}|=\mathbb{N}$
- $P^{\mathfrak{A}}=\{\langle m, n\rangle \mid m \leq n\}$
- $f^{\mathfrak{A}}=S$, i.e., $f^{\mathfrak{A}}(n)=n+1$
- $c^{\mathfrak{A}}=0$

Let $s\left(v_{i}\right)=i-1$. Then

$$
\begin{aligned}
& \bar{s}\left(f f v_{3}\right)=4 \\
& \bar{s}(c)=0 \\
& \bar{s}(f f f c)=3 \\
& \models_{\mathfrak{A}} P c f v_{1}[s] \quad(\because 0 \leq 1) \\
& \models_{\mathfrak{A}} \forall v_{1} P c v_{1} \\
& \not \models_{\mathfrak{A}} \forall v_{1} P v_{2} v_{1}[s] \\
& \models_{\mathfrak{A}} \forall v_{1} \exists v_{2} P v_{2} v_{1}[s]
\end{aligned}
$$

Truth and Models

Example

$$
\begin{aligned}
& \models_{\mathfrak{B}} \forall v_{2} \neg E v_{1} v_{2}[s] \text { iff } s\left(v_{1}\right)=d \\
& \models_{\mathfrak{B}} \forall v_{2} \neg E v_{2} v_{1}[s] \text { iff } s\left(v_{1}\right)=d \\
& \models_{\mathfrak{B}} \exists v_{2} E v_{1} v_{2}[s] \text { iff } s\left(v_{1}\right)=a, b, c
\end{aligned}
$$

Theorem

Assume functions s_{1} and $s_{2}: V \rightarrow|\mathfrak{A}|$ agree at all free variables of φ. Then $\models_{\mathfrak{A}} \varphi\left[s_{1}\right]$ iff $\models_{\mathfrak{A}} \varphi\left[s_{2}\right]$
(prove by induction)

If \mathfrak{A} and \mathfrak{B} agree at all parameters that occur in φ, then $\models_{\mathfrak{A}} \varphi[s]$ iff $\models_{\mathfrak{B}} \varphi[s]$
\mathfrak{A} and \mathfrak{B} are elementarily equivalent (denoted $\mathfrak{A} \equiv \mathfrak{B}$) iff for any sentence $\sigma, \models_{\mathfrak{A}} \sigma$ iff $\models_{\mathfrak{B}} \sigma$

Truth and Models

Notation $\models_{\mathfrak{A}} \varphi \llbracket a_{1}, \ldots, a_{k} \rrbracket$ denotes \mathfrak{A} satisfies φ with $s\left(v_{i}\right)=a_{i}$, where v_{i} is the i th free variable in φ
E.g., $\mathfrak{A}=(\mathbb{N} ; \leq, S, 0)$
$\models_{\mathfrak{A}} \forall v_{2} P v_{1} v_{2} \llbracket 0 \rrbracket$
$\not \forall_{\mathfrak{A}} \forall v_{2} P v_{1} v_{2} \llbracket 1 \rrbracket$

Truth and Models

Corollary
For a sentence σ, either
(a) \mathfrak{A} satisfies σ with every $s: V \rightarrow|\mathfrak{A}|$, or
(b) \mathfrak{A} does not satisfy σ with any $s: V \rightarrow|\mathfrak{A}|$

For case (a), we say σ is true in \mathfrak{A} or \mathfrak{A} is a model of σ (i.e., $\models_{\mathfrak{A}} \sigma$) For case (b), we say σ is false in \mathfrak{A}

Truth and Models

\mathfrak{A} is a model of a set Σ of sentences iff it is a model of every member of Σ
Examples

- $\mathfrak{R}=(\mathbb{R} ; 0,1,+, \times) ; \mathfrak{Q}=(\mathbb{Q} ; 0,1,+, \times)$
$\models_{\mathfrak{R}} \exists x(x \times x=1+1)$
$\not \mathcal{F}_{\mathfrak{Q}} \exists x(x \times x=1+1)$
- Consider a language has only the parameters \forall and a 2-place predicate P
$\forall x \forall y x=y$
- $\mathfrak{A}=(A ; R)$ is a model iff ?
$\forall x \forall y P x y$
- $\mathfrak{A}=(A ; R)$ is a model iff ?
$\forall x \forall y \neg P x y$
- $\mathfrak{A}=(A ; R)$ is a model iff?
$\forall x \exists y P x y$
- $\mathfrak{A}=(A ; R)$ is a model iff ?

Logical Implication

A set Σ of wffs logically implies a wff φ, denoted $\Sigma \models \varphi$, iff for every structure \mathfrak{A} for the language and every function $s: V \rightarrow|\mathfrak{A}|$ such that if \mathfrak{A} satisfies every member of Σ with s, the \mathfrak{A} also satisfies φ with s

- Entailment " \equiv " is a semantical relation
- Recall " \models " denotes tautological implication in sentential logic
- $\{\gamma\} \models \varphi$ will be written as $\gamma \models \varphi$
- φ and ψ are logically equivalent, denoted $\varphi \models \neq \psi$, iff $\varphi \models \psi$ and $\psi \models \varphi$

Logical Implication

sentential logic	first-order logic
$\equiv \tau$	$\models \varphi$
τ is a tautology	φ is a valid wff, i.e.,
	for every \mathfrak{A} and every $s: V \rightarrow\|\mathfrak{A}\|$,
	\mathfrak{A} satisfies φ with s

Logical Implication

Corollary

For a set Σ; τ of sentences, $\Sigma \models \tau$ iff every model of Σ is also a model of τ. A sentence is valid iff it is true in every structure.

Examples

- $\forall v_{1} Q v_{1} \models Q v_{2}$
- $Q v_{1} \not \models \forall v_{1} Q v_{1}$
- $\models \neg \neg \sigma \Rightarrow \sigma$
- $\forall v_{1} Q v_{1} \models \exists v_{2} Q v_{2}$
- $\exists x \forall y P x y \vDash \forall y \exists x P x y$
- $\vDash \exists x(Q x \Rightarrow \forall x Q x)$

Logical Implication

- Checking tautology (of sentential logic) is a finite process
- Checking validity (of first-order logic) is an infinite process
- Must consider every structure

Logical Implication

- The set of valid formulas is not decidable, but semi-decidable (i.e., effectively enumerable)
- wffs of sentential logic vs. wffs of first-order logic
- Later we will show that validity (\models) and deducibility (\vdash) are equivalent in first order logic

Definiability in a Structure

- $\left\{\left\langle a_{1}, \ldots, a_{k}\right\rangle \mid \models_{\mathfrak{A}} \varphi \llbracket a_{1}, \ldots, a_{k} \rrbracket\right\}$ is a relation that φ defines in \mathfrak{A}
- A k-ary relation on $|\mathfrak{A}|$ is definiable in \mathfrak{A} iff there is a formula (with free variables v_{1}, \ldots, v_{k}) that defines the relation in \mathfrak{A} E.g., $\mathfrak{R}=(\mathbb{R} ; 0,1,+, \times)$
- $\models_{\mathfrak{R}} \exists v_{2} v_{1}=v_{2} \times v_{2} \llbracket a \rrbracket \Leftrightarrow a \geq 0$
- $\therefore[0, \infty)$ is definiable in \Re
- $\models_{\mathfrak{R}} \exists v_{3} v_{1}=v_{2}+v_{3} \times v_{3} \llbracket a, b \rrbracket \Leftrightarrow a \geq b$
- $\therefore\{\langle a, b\rangle \in \mathbb{R} \times \mathbb{R} \mid a \geq b\}$ is definiable in \mathfrak{R}
$\mathfrak{A}=(\{a, b, c\} ; E=\{\langle a, b\rangle,\langle a, c\rangle\})$ where the language has parameters \forall and \exists

- $\{b, c\}$ is defined by $\exists v_{2} E v_{2} v_{1}$
- $\{b\}$ is not definable in \mathfrak{A}

Definiability in a Structure

E.g.,
$\mathfrak{N}=(\mathbb{N} ; 0, S,+, \cdot)$ under the language for number theory

- $\{\langle m, n\rangle \mid m<n\}$ is defined in \mathfrak{N} by $\exists v_{3} v_{1}+S v_{3}=v_{2}$
- $\{2\}$ is defined in \mathfrak{N} by $v_{1}=S S 0$
- The set of primes is defined in \mathfrak{N} by $S 0<v_{1} \wedge \forall v_{2} \forall v_{3}\left(v_{1}=v_{2} \cdot v_{3} \Rightarrow v_{2}=1 \vee v_{3}=1\right)$
- Exponentiation $\left\{\langle m, n, p\rangle \mid p=m^{n}\right\}$ is definable in \mathfrak{N}

Definiability in a Structure

Let L be a language that does not include an n-place predicate symbol P, L^{+}be the language that extends L and includes P, and τ be a theory in L^{+}.

- P is explicitly definable if there is an L formula ϕ with free variables x_{1}, \ldots, x_{n} such that $\tau \models P x_{1} \ldots x_{n} \Leftrightarrow \phi$.
- P is implicitly definable if for any structure \mathfrak{A} and any $R_{1}, R_{2} \subseteq|\mathfrak{A}|^{n}$ if both $\left(|\mathfrak{A}|, R_{1}\right)$ and $\left(|\mathfrak{A}|, R_{2}\right)$ are models of τ, then $R_{1}=R_{2}$.

Theorem (Beth's Definiability Theorem)
P is explicitly definable if, and only if, P is implicitly definable.

Definiability in a Structure

- There are uncountably many relations on \mathbb{N}, but only countably many possible defining formulas
- Any decidable relation on \mathbb{N} is definable in $\mathfrak{N}(\S 3.5)$

Definability of a Class of Structures

- Let $\operatorname{Mod} \Sigma$ be the class of all models of a set Σ of sentences. (That is, the class of all structures for the language in which every member of Σ is true.)
- A set is a class
- Classes are beyond sets (e.g., the class of all sets)
- A class \mathcal{K} of structures for the language is an elementary class (EC) iff $\mathcal{K}=\operatorname{Mod} \tau$ (i.e., $\operatorname{Mod}\{\tau\}$) for some sentence τ
- where "elementary" means "first order"
- A class \mathcal{K} is an elementary class in a wider sense iff $\mathcal{K}=\operatorname{Mod} \Sigma$

Definability of a Class of Structures

E.g., consider the language \mathcal{L} with $=, \forall$, and a 2-place predicate E

- A graph is a structure $\mathfrak{A}=\left(V ; E^{\mathfrak{A}}\right)$ for \mathcal{L}, where $|\mathfrak{A}|=V$ is the (nonempty) set of vertices and $E^{\mathfrak{A}}$ is an edge relation that is symmetric and irreflexive
- with axiom: $\forall x(\forall y(E x y \Leftrightarrow E y x) \wedge \neg E x x)$
- The class of graphs is an elementary class

Homomorphisms

A homomorphism h of \mathfrak{A} into \mathfrak{B} is a function $h:|\mathfrak{A}| \rightarrow|\mathfrak{B}|$ such that

1. for predicate symbol P
$\left\langle a_{1}, \ldots, a_{n}\right\rangle \in P^{\mathfrak{A}}$ iff $\left\langle h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right\rangle \in P^{\mathfrak{B}}$
2. for function symbol f
$h\left(f^{\mathfrak{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{\mathfrak{B}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)$
$h\left(c^{\mathfrak{A}}\right)=c^{\mathfrak{B}}$
E.g., $\mathfrak{A}=(\mathbb{N} ;+, \cdot), \mathfrak{B}=\left(\{e, o\} ;+{ }^{\mathfrak{B}}, \cdot \mathfrak{B}\right)$

| $+{ }^{\mathfrak{B}}$ | e | o |
| :---: | :---: | :---: | :---: | :---: | :---: |\quad| $\cdot \mathfrak{B}$ | e |
| :---: | :---: |
| o | |
| e | e |
| o | o |
| e | |\quad| e |
| :---: |
| o |

$h(n)= \begin{cases}e & \text { if } n \text { is even } \\ o & \text { if } n \text { is odd }\end{cases}$
h is a homomorphism of \mathfrak{A} into \mathfrak{B}

Isomorphism

- A homomorphism h is called an isomorphism (or isomorphic embedding) of \mathfrak{A} into \mathfrak{B} if h is one-to-one
- Two structures \mathfrak{A} and \mathfrak{B} are isomorphic (denoted $\mathfrak{A} \cong \mathfrak{B}$) if there is an isomorphism of \mathfrak{A} onto \mathfrak{B}
- Two isomorphic structures satisfy exactly the same sentences

Substructures

\mathfrak{A} is a substructure of \mathfrak{B}, or \mathfrak{B} is an extension of \mathfrak{A}, if $|\mathfrak{A}| \subseteq|\mathfrak{B}|$ and the identity map $I d:|\mathfrak{A}| \rightarrow|\mathfrak{B}|$ is an isomorphism of \mathfrak{A} into \mathfrak{B}, equivalently

1. $P^{\mathfrak{A}}$ is the restriction of $P^{\mathfrak{B}}$ to $|\mathfrak{A}|$
2. $f^{\mathfrak{A}}$ is the restriction of $f^{\mathfrak{B}}$ to $|\mathfrak{A}|$, and $c^{\mathfrak{A}}=c^{\mathfrak{B}}$
E.g., $\mathfrak{A}=(\mathbb{P} ;<)$ for \mathbb{P} : positive integers, $\mathfrak{B}=(\mathbb{N} ;<)$

- $\operatorname{ld}(n)=n$ is an isomorphism
- \mathfrak{A} is a substructure of \mathfrak{B}
- $h(n)=n-1$ is an isomorphism

Homomorphism Theorem

Theorem (Homomorphism Theorem)
Let h be a homomorphism of \mathfrak{A} into \mathfrak{B} and $s: V \rightarrow|\mathfrak{A}|$, where V is the set of variables. Then
(a) for any term $t, h(\bar{s}(t))=\overline{h \circ s}(t)$
(b) for any quantifier-free formula α not containing the equality symbol, $\models_{\mathfrak{A}} \alpha[s]$ iff $\models_{\mathfrak{B}} \alpha[h \circ s]$

- The "quantifier-free" criterion is due to the fact that h may not be onto
- The exclusion of the equality symbol is due to the fact that h may not be one-to-one

Homomorphism

$$
\begin{aligned}
& \text { E.g., } \mathfrak{A}=(\mathbb{P} ;<), \mathfrak{B}=(\mathbb{N} ;<) \\
& \models_{\mathfrak{A}} \forall v_{2}\left(v_{1} \neq v_{2} \rightarrow v_{1}<v_{2}\right) \llbracket 1 \rrbracket \\
& \nexists_{\mathfrak{B}} \forall v_{2}\left(v_{1} \neq v_{2} \rightarrow v_{1}<v_{2}\right) \llbracket 1 \rrbracket \\
& \quad h=I d:|\mathfrak{A}| \rightarrow|\mathfrak{B}| \text { is not onto }
\end{aligned}
$$

$$
\begin{aligned}
& \nexists_{\mathfrak{A}} v_{1}=v_{2} \llbracket 1,2 \rrbracket \\
& \models_{\mathfrak{B}} v_{1}=v_{2} \llbracket 0,0 \rrbracket \\
& \quad \rightarrow h(n)=\left\{\begin{array}{ll}
0 & \text { if } n=1 \\
n-2 & \text { if } n \geq 2
\end{array}\right. \text { is not one-to-one }
\end{aligned}
$$

Elementary Equivalence

Two structures \mathfrak{A} and \mathfrak{B} for the language are elementarily equivalent (denoted $\mathfrak{A} \equiv \mathfrak{B}$) iff for every sentence $\sigma, \models_{\mathfrak{A}} \sigma$ iff
$\models_{\mathfrak{B}} \sigma$
Corollary
If $\mathfrak{A} \cong \mathfrak{B}$, then $\mathfrak{A} \equiv \mathfrak{B}$

- The converse is not true

$$
\text { E.g., }(\mathbb{R} ;<) \equiv(\mathbb{Q} ;<) \text {, but }(\mathbb{R} ;<) \not \equiv(\mathbb{Q} ;<)
$$

Automorphism

An automorphism of the structure \mathfrak{A} is an isomorphism (namely, one-to-one homomorphism) of \mathfrak{A} onto \mathfrak{A}

Corollary
Let h be an automorphism of \mathfrak{A}, and R be an n-ary relation on \mathfrak{A} definable in \mathfrak{A}. Then $\left\langle a_{1}, \ldots, a_{n}\right\rangle \in R$ iff $\left\langle h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right\rangle \in R$.

Proof.
Let φ defines R in \mathfrak{A}. By Homomorphism Theorem, $\models_{\mathfrak{A}} \varphi \llbracket a_{1}, \ldots, a_{n} \rrbracket$ iff $\models_{\mathfrak{A}} \varphi \llbracket h\left(a_{1}\right), \ldots, h\left(a_{n}\right) \rrbracket$

Therefore, automorphism preserves definable relations and is useful in showing some relation is not definable.
E.g., \mathbb{N} is not definable in $(\mathbb{R} ;<)$

- By automorphism $h(a)=a^{3}(\sqrt[3]{2} \notin \mathbb{N}$, but $2 \in \mathbb{N})$

