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Truth and Models

� Truth assignments are to sentential logic what structures (or
interpretations) are to first-order logic

� A structure for a first-order language tells

1. what the universe (the set of objects that ∀ refers to) is, and
2. what the parameters (predicate, constant, function symbols)

mean

Truth and Models

Formally, a structure A is a function whose domain is the set of
parameters and

1. A assigns to the symbol ∀ a nonempty set |A| called the
universe (or domain) of A

∀ — for everything in |A|
2. A assigns to each n-place predicate symbol P an n-ary

relation PA ⊆ |A|n
Pt1, . . . , tn — t1, . . . , tn ∈ |A| is in PA

3. A assigns to each constant symbol c a member cA of |A|
c — cA

4. A assigns to each n-place function symbol f an n-ary
operation f A : |A|n → |A| (the mapping must be total)



Truth and Models

Example

� Language of set theory
∃x∀y¬y ∈ x

� There exists a set s.t. every set is not its member

∀x∀y∃z∀t(t ∈ z ⇔ (t = x ∨ t = y))
� For every two sets x and y , there exists a set z such that for

every set t, t ∈ z iff t = x or t = y (pair-set axiom)

� Language of number theory
Let A be such that |A| = N and ∈A is the set of pairs 〈m, n〉
with m < n
∃x∀y¬y ∈ x

� There exists a natural number that is the smallest
� We say ∃x∀y¬y ∈ x is true in A, or A is a model of

∃x∀y¬y ∈ x

∀x∀y∃z∀t(t ∈ z ⇔ (t = x ∨ t = y))
� The formula is not true (i.e., false) in A

Truth and Models

Example
Consider a language with ∀ and 2-place predicate symbol E
Let structure B have

� |B| = {a, b, c, d} (vertex set)

� EB = {〈a, b〉, 〈b, a〉, 〈b, c〉, 〈c , c〉} (edge set)

a b c d

∃x∀y¬Eyx

� The formula is true in B (there is a vertex not pointed to
from any vertex)



Truth and Models

� A sentence σ is true in A, denoted |=A σ

� To formally define |=A ϕ, let
ϕ be a wff of our language,
A be a structure for the language, and
s : V → |A| for V being the set of all variables.

Then |=A ϕ[s] (meaning A satisfies ϕ with s) iff the
translation of ϕ determined by A is true, where variable x is
translated as s(x) wherever it occurs free.

Truth and Models
Extend s to s

case i (terms)
s : T → |A| for T the set of all terms
s is defined recursively by

1. s(x) = s(x) (x : variable)
2. s(c) = cA (c: constant)
3. s(ft1, . . . , tn) = f A(s(t1), . . . , s(tn)) (f :

function)
commutative diagram of s(ft) = f A(s(t))

T
s ��

��
f

��

|A|
f A

����
T

s ���� |A|

� s is unique
� s depends on both s and A



Truth and Models

Extend s to s (cont’d)

case ii (atomic formulas)
explicit (not recursive) definition with

1. |=A = t1t2[s] iff s(t1) = s(t2)
2. |=A Pt1 · · · tn[s] iff sequence

〈s(t1), . . . , s(tn)〉 ∈ PA

Truth and Models

Extend s to s (cont’d)

case iii (other wffs)
recursive definition with

1. For atomic formulas, see case ii
2. |=A ¬ϕ[s] iff �|=A ϕ[s]
3. |=A (ϕ ⇒ ψ)[s] iff either �|=A ϕ[s] or |=A ψ[s] or

both
4. |=A ∀xϕ[s] iff for every d ∈ |A|, |=A ϕ[s(x |d)],

where s(x |d)(y) =

{
s(y) if y �= x
d if y = x

� |=A (α ∧ β)[s] iff |=A α[s] and |=A β[s]
(similarly for ∨ and ⇔)

� |=A ∃xα[s] iff there is some d ∈ |A| such that
|=A α[s(x |d)]



Truth and Models

� |=A ϕ[s] iff the translation of ϕ determined by A is true for
free variables translated as s(x)

� s only matters for free variables
� If ϕ is a sentence, then s does not matter

Truth and Models
Example
Consider a language with ∀, P (two-place predicate), f (one-place
function), and c (constant); let A = (N;≤, S , 0), i.e.,

� |A| = N

� PA = {〈m, n〉 | m ≤ n}
� f A = S , i.e., f A(n) = n + 1
� cA = 0

Let s(vi ) = i − 1. Then

s(ffv3) = 4

s(c) = 0

s(fffc) = 3

|=A Pcfv1[s] (∵ 0 ≤ 1)

|=A ∀v1Pcv1

�|=A ∀v1Pv2v1[s]

|=A ∀v1∃v2Pv2v1[s]



Truth and Models

Example

a b c d

|=B ∀v2¬Ev1v2[s] iff s(v1) = d

|=B ∀v2¬Ev2v1[s] iff s(v1) = d

|=B ∃v2Ev1v2[s] iff s(v1) = a, b, c

Truth and Models

Theorem
Assume functions s1 and s2 : V → |A| agree at all free variables of
ϕ. Then |=A ϕ[s1] iff |=A ϕ[s2]

(prove by induction)

If A and B agree at all parameters that occur in ϕ, then |=A ϕ[s]
iff |=B ϕ[s]

A and B are elementarily equivalent (denoted A ≡ B) iff for
any sentence σ, |=A σ iff |=B σ



Truth and Models

Notation |=A ϕ[[a1, . . . , ak ]] denotes A satisfies ϕ with s(vi ) = ai ,
where vi is the ith free variable in ϕ

E.g., A = (N;≤,S , 0)
|=A ∀v2Pv1v2[[0]]
�|=A ∀v2Pv1v2[[1]]

Truth and Models

Corollary

For a sentence σ, either

(a) A satisfies σ with every s : V → |A|, or

(b) A does not satisfy σ with any s : V → |A|

For case (a), we say σ is true in A or A is a model of σ (i.e., |=A σ)
For case (b), we say σ is false in A



Truth and Models

A is a model of a set Σ of sentences iff it is a model of every
member of Σ
Examples

� R = (R; 0, 1, +,×); Q = (Q; 0, 1, +,×)
|=R ∃x(x × x = 1 + 1)
�|=Q ∃x(x × x = 1 + 1)

� Consider a language has only the parameters ∀ and a 2-place
predicate P
∀x∀yx = y

� A = (A; R) is a model iff ?

∀x∀yPxy
� A = (A; R) is a model iff ?

∀x∀y¬Pxy
� A = (A; R) is a model iff ?

∀x∃yPxy
� A = (A; R) is a model iff ?

Logical Implication

A set Σ of wffs logically implies a wff ϕ, denoted Σ |= ϕ, iff for
every structure A for the language and every function s : V → |A|
such that if A satisfies every member of Σ with s, the A also
satisfies ϕ with s

� Entailment “|=” is a semantical relation

� Recall “|=” denotes tautological implication in sentential logic

� {γ} |= ϕ will be written as γ |= ϕ

� ϕ and ψ are logically equivalent, denoted ϕ |= =| ψ, iff
ϕ |= ψ and ψ |= ϕ



Logical Implication

sentential logic first-order logic

|= τ |= ϕ
τ is a tautology ϕ is a valid wff, i.e.,

for every A and every s : V → |A|,
A satisfies ϕ with s

Logical Implication

Corollary

For a set Σ; τ of sentences, Σ |= τ iff every model of Σ is also a
model of τ . A sentence is valid iff it is true in every structure.

Examples

� ∀v1Qv1 |= Qv2

� Qv1 �|= ∀v1Qv1

� |= ¬¬σ ⇒ σ

� ∀v1Qv1 |= ∃v2Qv2

� ∃x∀yPxy |= ∀y∃xPxy

� |= ∃x(Qx ⇒ ∀xQx)



Logical Implication

� Checking tautology (of sentential logic) is a finite process
� Checking validity (of first-order logic) is an infinite process

� Must consider every structure

Logical Implication

� The set of valid formulas is not decidable, but semi-decidable
(i.e., effectively enumerable)

� wffs of sentential logic vs. wffs of first-order logic

� Later we will show that validity (|=) and deducibility (�) are
equivalent in first order logic



Definiability in a Structure

� {〈a1, . . . , ak〉 | |=A ϕ[[a1, . . . , ak ]]} is a relation that ϕ defines
in A

� A k-ary relation on |A| is definiable in A iff there is a formula
(with free variables v1, . . . , vk) that defines the relation in A

E.g.,
R = (R; 0, 1, +,×)

� |=R ∃v2v1 = v2 × v2[[a]] ⇔ a ≥ 0
� ∴ [0,∞) is definiable in R

� |=R ∃v3v1 = v2 + v3 × v3[[a, b]] ⇔ a ≥ b
� ∴ {〈a, b〉 ∈ R × R | a ≥ b} is definiable in R

A = ({a, b, c}; E = {〈a, b〉, 〈a, c〉}) where the language has
parameters ∀ and ∃

•a•b �� •c��

� {b, c} is defined by ∃v2Ev2v1

� {b} is not definable in A

Definiability in a Structure

E.g.,
N = (N; 0,S , +, ·) under the language for number theory

� {〈m, n〉 | m < n} is defined in N by ∃v3v1 + Sv3 = v2

� {2} is defined in N by v1 = SS0

� The set of primes is defined in N by
S0 < v1 ∧ ∀v2∀v3(v1 = v2 · v3 ⇒ v2 = 1 ∨ v3 = 1)

� Exponentiation {〈m, n, p〉 | p = mn} is definable in N



Definiability in a Structure

Let L be a language that does not include an n-place predicate
symbol P, L+ be the language that extends L and includes P, and
τ be a theory in L+.

� P is explicitly definable if there is an L formula φ with free
variables x1, . . . , xn such that τ |= Px1 . . . xn ⇔ φ.

� P is implicitly definable if for any structure A and any
R1,R2 ⊆ |A|n if both (|A|,R1) and (|A|, R2) are models of τ ,
then R1 = R2.

Theorem (Beth’s Definiability Theorem)

P is explicitly definable if, and only if, P is implicitly definable.

Definiability in a Structure

� There are uncountably many relations on N, but only
countably many possible defining formulas

� Any decidable relation on N is definable in N (§3.5)



Definability of a Class of Structures

� Let ModΣ be the class of all models of a set Σ of sentences.
(That is, the class of all structures for the language in which
every member of Σ is true.)

� A set is a class
� Classes are beyond sets (e.g., the class of all sets)

� A class K of structures for the language is an elementary
class (EC) iff K = Modτ (i.e., Mod{τ}) for some sentence τ

� where “elementary” means “first order”

� A class K is an elementary class in a wider sense iff
K = ModΣ

Definability of a Class of Structures

E.g., consider the language L with =, ∀, and a 2-place predicate E

� A graph is a structure A = (V ; EA) for L, where |A| = V is
the (nonempty) set of vertices and EA is an edge relation that
is symmetric and irreflexive

� with axiom: ∀x(∀y(Exy ⇔ Eyx) ∧ ¬Exx)

� The class of graphs is an elementary class



Homomorphisms

A homomorphism h of A into B is a function h : |A| → |B| such
that

1. for predicate symbol P
〈a1, . . . , an〉 ∈ PA iff 〈h(a1), . . . , h(an)〉 ∈ PB

2. for function symbol f
h(f A(a1, . . . , an)) = f B(h(a1), . . . , h(an))
h(cA) = cB

E.g., A = (N; +, ·), B = ({e, o}; +B, ·B)
+B e o

e e o
o o e

·B e o

e e e
o e o

h(n) =

{
e if n is even
o if n is odd

h is a homomorphism of A into B

Isomorphism

� A homomorphism h is called an isomorphism (or isomorphic
embedding) of A into B if h is one-to-one

� Two structures A and B are isomorphic (denoted A ∼= B) if
there is an isomorphism of A onto B

� Two isomorphic structures satisfy exactly the same sentences



Substructures

A is a substructure of B, or B is an extension of A, if |A| ⊆ |B|
and the identity map Id : |A| → |B| is an isomorphism of A into
B, equivalently

1. PA is the restriction of PB to |A|
2. f A is the restriction of f B to |A|, and cA = cB

E.g., A = (P; <) for P: positive integers, B = (N; <)

� Id(n) = n is an isomorphism
� A is a substructure of B

� h(n) = n − 1 is an isomorphism

Homomorphism Theorem

Theorem (Homomorphism Theorem)

Let h be a homomorphism of A into B and s : V → |A|, where V
is the set of variables. Then

(a) for any term t, h(s(t)) = h ◦ s(t)

(b) for any quantifier-free formula α not containing the equality
symbol, |=A α[s] iff |=B α[h ◦ s]

� The “quantifier-free” criterion is due to the fact that h may
not be onto

� The exclusion of the equality symbol is due to the fact that h
may not be one-to-one



Homomorphism

E.g., A = (P; <), B = (N; <)

|=A ∀v2(v1 �= v2 → v1 < v2)[[1]]
�|=B ∀v2(v1 �= v2 → v1 < v2)[[1]]

� h = Id : |A| → |B| is not onto

�|=A v1 = v2[[1, 2]]
|=B v1 = v2[[0, 0]]

� h(n) =

{
0 if n = 1
n − 2 if n ≥ 2

is not one-to-one

Elementary Equivalence

Two structures A and B for the language are elementarily
equivalent (denoted A ≡ B) iff for every sentence σ, |=A σ iff
|=B σ

Corollary

If A ∼= B, then A ≡ B

� The converse is not true
E.g., (R; <) ≡ (Q; <), but (R; <) �∼= (Q;<)



Automorphism

An automorphism of the structure A is an isomorphism (namely,
one-to-one homomorphism) of A onto A

Corollary

Let h be an automorphism of A, and R be an n-ary relation on A

definable in A. Then 〈a1, . . . , an〉 ∈ R iff 〈h(a1), . . . , h(an)〉 ∈ R.

Proof.
Let ϕ defines R in A. By Homomorphism Theorem,
|=A ϕ[[a1, . . . , an]] iff |=A ϕ[[h(a1), . . . , h(an)]]

Therefore, automorphism preserves definable relations and is useful
in showing some relation is not definable.
E.g., N is not definable in (R; <)

� By automorphism h(a) = a3 ( 3
√

2 �∈ N, but 2 ∈ N)


