Special Topics on Applied Mathematical Logic

Spring 2012

Lecture 04

Jie-Hong Roland Jiang

National Taiwan University

March 20, 2012

Outline

First-Order Logic

Truth and Models (Semantics)
Logical Implication
Definability
Homomorphisms

- ► Truth assignments are to sentential logic what **structures** (or **interpretations**) are to first-order logic
- ► A structure for a first-order language tells
 - 1. what the universe (the set of objects that \forall refers to) is, and
 - 2. what the parameters (predicate, constant, function symbols) mean

Truth and Models

Formally, a $\textbf{structure}\ \mathfrak A$ is a function whose domain is the set of parameters and

- 1. $\mathfrak A$ assigns to the symbol \forall a nonempty set $|\mathfrak A|$ called the universe (or domain) of $\mathfrak A$ \forall for everything in $|\mathfrak A|$
- 2. $\mathfrak A$ assigns to each n-place predicate symbol P an n-ary relation $P^{\mathfrak A}\subseteq |\mathfrak A|^n$

$$Pt_1,\ldots,t_n-t_1,\ldots,t_n\in |\mathfrak{A}|$$
 is in $P^{\mathfrak{A}}$

- 3. $\mathfrak A$ assigns to each constant symbol c a member $c^{\mathfrak A}$ of $|\mathfrak A|$ $c-c^{\mathfrak A}$
- 4. \mathfrak{A} assigns to each *n*-place function symbol f an *n*-ary operation $f^{\mathfrak{A}}: |\mathfrak{A}|^n \to |\mathfrak{A}|$ (the mapping must be total)

Example

- ▶ Language of set theory $\exists x \forall y \neg y \in x$
 - ► There exists a set s.t. every set is not its member

$$\forall x \forall y \exists z \forall t (t \in z \Leftrightarrow (t = x \lor t = y))$$

- For every two sets x and y, there exists a set z such that for every set t, $t \in z$ iff t = x or t = y (pair-set axiom)
- Language of number theory Let $\mathfrak A$ be such that $|\mathfrak A|=\mathbb N$ and $\in^{\mathfrak A}$ is the set of pairs $\langle m,n\rangle$ with m< n $\exists x \forall y \neg y \in x$
 - ▶ There exists a natural number that is the smallest
 - ▶ We say $\exists x \forall y \neg y \in x$ is **true** in \mathfrak{A} , or \mathfrak{A} is a **model** of $\exists x \forall y \neg y \in x$

$$\forall x \forall y \exists z \forall t (t \in z \Leftrightarrow (t = x \lor t = y))$$

▶ The formula is not true (i.e., false) in $\mathfrak A$

Truth and Models

Example

Consider a language with \forall and 2-place predicate symbol E Let structure $\mathfrak B$ have

- $\blacktriangleright |\mathfrak{B}| = \{a, b, c, d\}$ (vertex set)
- $E^{\mathfrak{B}} = \{ \langle a, b \rangle, \langle b, a \rangle, \langle b, c \rangle, \langle c, c \rangle \} \text{ (edge set)}$

$$\exists x \forall y \neg Eyx$$

► The formula is true in 𝔞 (there is a vertex not pointed to from any vertex)

- ▶ A sentence σ is true in \mathfrak{A} , denoted $\models_{\mathfrak{A}} \sigma$
- ▶ To formally define $\models_{\mathfrak{A}} \varphi$, let φ be a wff of our language, \mathfrak{A} be a structure for the language, and $s: V \to |\mathfrak{A}|$ for V being the set of all variables.

Then $\models_{\mathfrak{A}} \varphi[s]$ (meaning \mathfrak{A} satisfies φ with s) iff the translation of φ determined by \mathfrak{A} is true, where variable x is translated as s(x) wherever it occurs free.

Truth and Models

Extend s to \overline{s}

case i (terms)

 $\overline{s}:T\to |\mathfrak{A}|$ for T the set of all terms

 \overline{s} is defined recursively by

- 1. $\overline{s}(x) = s(x)$ (x: variable)
- 2. $\overline{s}(c) = c^{\mathfrak{A}}(c)$: constant)
- 3. $\overline{s}(ft_1,\ldots,t_n) = f^{\mathfrak{A}}(\overline{s}(t_1),\ldots,\overline{s}(t_n))$ (f: function)

commutative diagram of $\overline{s}(ft) = f^{\mathfrak{A}}(\overline{s}(t))$

$$\begin{array}{ccc}
T & \xrightarrow{\overline{s}} & |\mathfrak{A}| \\
f & & \downarrow & f^{\mathfrak{A}} \\
T & \xrightarrow{\overline{s}} & |\mathfrak{A}|
\end{array}$$

- ightharpoonup is unique
- ightharpoonup depends on both s and $\mathfrak A$

Extend s to \overline{s} (cont'd)

case ii (atomic formulas)
explicit (not recursive) definition with

- 1. $\models_{\mathfrak{A}} = t_1 t_2[s]$ iff $\overline{s}(t_1) = \overline{s}(t_2)$
- 2. $\models_{\mathfrak{A}} Pt_1 \cdots t_n[s]$ iff sequence $\langle \overline{s}(t_1), \ldots, \overline{s}(t_n) \rangle \in P^{\mathfrak{A}}$

Truth and Models

Extend s to \overline{s} (cont'd)

case iii (other wffs)

recursive definition with

- 1. For atomic formulas, see case ii
- 2. $\models_{\mathfrak{A}} \neg \varphi[s]$ iff $\not\models_{\mathfrak{A}} \varphi[s]$
- 3. $\models_{\mathfrak{A}} (\varphi \Rightarrow \psi)[s]$ iff either $\not\models_{\mathfrak{A}} \varphi[s]$ or $\models_{\mathfrak{A}} \psi[s]$ or both
- 4. $\models_{\mathfrak{A}} \forall x \varphi[s]$ iff for every $d \in |\mathfrak{A}|$, $\models_{\mathfrak{A}} \varphi[s(x|d)]$, where $s(x|d)(y) = \begin{cases} s(y) & \text{if } y \neq x \\ d & \text{if } y = x \end{cases}$
- $\models_{\mathfrak{A}} (\alpha \wedge \beta)[s] \text{ iff } \models_{\mathfrak{A}} \alpha[s] \text{ and } \models_{\mathfrak{A}} \beta[s]$ (similarly for \vee and \Leftrightarrow)
- ▶ $\models_{\mathfrak{A}} \exists x \alpha[s]$ iff there is some $d \in |\mathfrak{A}|$ such that $\models_{\mathfrak{A}} \alpha[s(x|d)]$

- $\models_{\mathfrak{A}} \varphi[s]$ iff the translation of φ determined by \mathfrak{A} is true for free variables translated as s(x)
- s only matters for free variables
 - If φ is a sentence, then s does not matter

Truth and Models

Example

Consider a language with \forall , P (two-place predicate), f (one-place function), and c (constant); let $\mathfrak{A} = (\mathbb{N}; \leq, S, 0)$, i.e.,

$$ightharpoonup |\mathfrak{A}| = \mathbb{N}$$

$$P^{\mathfrak{A}} = \{ \langle m, n \rangle \mid m \leq n \}$$

•
$$f^{\mathfrak{A}} = S$$
, i.e., $f^{\mathfrak{A}}(n) = n+1$

$$ightharpoonup c^{\mathfrak{A}}=0$$

Let $s(v_i) = i - 1$. Then

$$\overline{s}(ffv_3) = 4$$

$$\overline{s}(c) = 0$$

$$\overline{s}(fffc) = 3$$

$$\models_{\mathfrak{A}} Pcfv_1[s] \quad (\because 0 \le 1)$$

$$\models_{\mathfrak{A}} \forall v_1 Pcv_1$$

$$\not\models_{\mathfrak{A}} \forall v_1 Pv_2 v_1[s]$$

$$\models_{\mathfrak{A}} \forall v_1 \exists v_2 Pv_2 v_1[s]$$

Example

$$\models_{\mathfrak{B}} \forall v_2 \neg Ev_1 v_2[s] \text{ iff } s(v_1) = d$$

$$\models_{\mathfrak{B}} \forall v_2 \neg Ev_2 v_1[s] \text{ iff } s(v_1) = d$$

$$\models_{\mathfrak{B}} \exists v_2 Ev_1 v_2[s] \text{ iff } s(v_1) = a, b, c$$

Truth and Models

Theorem

Assume functions s_1 and $s_2: V \to |\mathfrak{A}|$ agree at all free variables of φ . Then $\models_{\mathfrak{A}} \varphi[s_1]$ iff $\models_{\mathfrak{A}} \varphi[s_2]$ (prove by induction)

If $\mathfrak A$ and $\mathfrak B$ agree at all parameters that occur in φ , then $\models_{\mathfrak A} \varphi[s]$ iff $\models_{\mathfrak B} \varphi[s]$

 $\mathfrak A$ and $\mathfrak B$ are **elementarily equivalent** (denoted $\mathfrak A \equiv \mathfrak B$) iff for any sentence σ , $\models_{\mathfrak A} \sigma$ iff $\models_{\mathfrak B} \sigma$

Notation $\models_{\mathfrak{A}} \varphi[\![a_1,\ldots,a_k]\!]$ denotes \mathfrak{A} satisfies φ with $s(v_i)=a_i$, where v_i is the *i*th free variable in φ

E.g.,
$$\mathfrak{A} = (\mathbb{N}; \leq, S, 0)$$

 $\models_{\mathfrak{A}} \forall v_2 P v_1 v_2 \llbracket 0 \rrbracket$
 $\not\models_{\mathfrak{A}} \forall v_2 P v_1 v_2 \llbracket 1 \rrbracket$

Truth and Models

Corollary

For a sentence σ , either

- (a) $\mathfrak A$ satisfies σ with every $s:V\to |\mathfrak A|$, or
- (b) ${\mathfrak A}$ does not satisfy σ with any $s:V \to |{\mathfrak A}|$

For case (a), we say σ is true in $\mathfrak A$ or $\mathfrak A$ is a model of σ (i.e., $\models_{\mathfrak A} \sigma$) For case (b), we say σ is false in $\mathfrak A$

 ${\mathfrak A}$ is a model of a set Σ of sentences iff it is a model of every member of Σ

Examples

- $\mathfrak{R} = (\mathbb{R}; 0, 1, +, \times); \ \mathfrak{Q} = (\mathbb{Q}; 0, 1, +, \times)$ $\models_{\mathfrak{R}} \exists x (x \times x = 1 + 1)$ $\not\models_{\mathfrak{Q}} \exists x (x \times x = 1 + 1)$
- ▶ Consider a language has only the parameters \forall and a 2-place predicate P

$$\forall x \forall y x = y$$

• $\mathfrak{A} = (A; R)$ is a model iff?

$$\forall x \forall y Pxy$$

• $\mathfrak{A} = (A; R)$ is a model iff?

$$\forall x \forall y \neg Pxy$$

• $\mathfrak{A} = (A; R)$ is a model iff?

$$\forall x \exists y Pxy$$

• $\mathfrak{A} = (A; R)$ is a model iff?

Logical Implication

A set Σ of wffs **logically implies** a wff φ , denoted $\Sigma \models \varphi$, iff for every structure $\mathfrak A$ for the language and every function $s:V\to |\mathfrak A|$ such that if $\mathfrak A$ satisfies every member of Σ with s, the $\mathfrak A$ also satisfies φ with s

- ► Entailment "⊨" is a *semantical* relation
- ▶ Recall "⊨" denotes tautological implication in sentential logic
- $\{\gamma\} \models \varphi$ will be written as $\gamma \models \varphi$
- φ and ψ are **logically equivalent**, denoted $\varphi \models \exists \psi$, iff $\varphi \models \psi$ and $\psi \models \varphi$

Logical Implication

sentential logic	first-order logic
$\models \tau$	$\models \varphi$
au is a tautology	arphi is a valid wff , i.e.,
	for every ${\mathfrak A}$ and every $s:V o {\mathfrak A} $,
	${\mathfrak A}$ satisfies $arphi$ with s

Logical Implication

Corollary

For a set Σ ; τ of sentences, $\Sigma \models \tau$ iff every model of Σ is also a model of τ . A sentence is valid iff it is true in every structure.

Examples

- $ightharpoonup \forall v_1 Q v_1 \models Q v_2$
- $ightharpoonup Qv_1 \not\models \forall v_1 Qv_1$
- $\blacktriangleright \models \neg \neg \sigma \Rightarrow \sigma$
- $ightharpoonup \forall v_1 Q v_1 \models \exists v_2 Q v_2$
- $\blacktriangleright \models \exists x (Qx \Rightarrow \forall xQx)$

Logical Implication

- Checking tautology (of sentential logic) is a finite process
- Checking validity (of first-order logic) is an infinite process
 - Must consider every structure

Logical Implication

- ► The set of valid formulas is not decidable, but semi-decidable (i.e., effectively enumerable)
 - wffs of sentential logic vs. wffs of first-order logic
- Later we will show that validity (⊨) and deducibility (⊢) are equivalent in first order logic

Definiability in a Structure

- ▶ $\{\langle a_1, \ldots, a_k \rangle \mid \models_{\mathfrak{A}} \varphi \llbracket a_1, \ldots, a_k \rrbracket \}$ is a relation that φ **defines** in \mathfrak{A}
- A k-ary relation on $|\mathfrak{A}|$ is **definiable** in \mathfrak{A} iff there is a formula (with free variables v_1, \ldots, v_k) that defines the relation in \mathfrak{A} E.g.,

 $\mathfrak{R} = (\mathbb{R}; 0, 1, +, \times)$

- $\blacktriangleright \models_{\mathfrak{R}} \exists v_2 v_1 = v_2 \times v_2 \llbracket a \rrbracket \Leftrightarrow a \geq 0$
 - $ightharpoonup :: [0,\infty)$ is definiable in $\mathfrak R$
- $\blacktriangleright \models_{\mathfrak{R}} \exists v_3 v_1 = v_2 + v_3 \times v_3 \llbracket a, b \rrbracket \Leftrightarrow a \geq b$
 - $\therefore \{\langle a,b\rangle \in \mathbb{R} \times \mathbb{R} \mid a \geq b\}$ is definiable in \mathfrak{R}

 $\mathfrak{A}=(\{a,b,c\};E=\{\langle a,b\rangle,\langle a,c\rangle\})$ where the language has parameters \forall and \exists

- $\{b, c\}$ is defined by $\exists v_2 E v_2 v_1$
- $\{b\}$ is not definable in \mathfrak{A}

Definiability in a Structure

E.g.,

 $\mathfrak{N}=(\mathbb{N};0,S,+,\cdot)$ under the language for number theory

- ▶ $\{\langle m, n \rangle \mid m < n\}$ is defined in \mathfrak{N} by $\exists v_3 v_1 + Sv_3 = v_2$
- $\{2\}$ is defined in \mathfrak{N} by $v_1 = SS0$
- ▶ The set of primes is defined in \mathfrak{N} by $S0 < v_1 \land \forall v_2 \forall v_3 (v_1 = v_2 \cdot v_3 \Rightarrow v_2 = 1 \lor v_3 = 1)$
- ▶ Exponentiation $\{\langle m, n, p \rangle \mid p = m^n\}$ is definable in \mathfrak{N}

Definiability in a Structure

Let L be a language that does not include an n-place predicate symbol P, L^+ be the language that extends L and includes P, and τ be a theory in L^+ .

- ▶ P is explicitly definable if there is an L formula ϕ with free variables x_1, \ldots, x_n such that $\tau \models Px_1 \ldots x_n \Leftrightarrow \phi$.
- ▶ P is *implicitly definable* if for any structure \mathfrak{A} and any $R_1, R_2 \subseteq |\mathfrak{A}|^n$ if both $(|\mathfrak{A}|, R_1)$ and $(|\mathfrak{A}|, R_2)$ are models of τ , then $R_1 = R_2$.

Theorem (Beth's Definiability Theorem)

P is explicitly definable if, and only if, P is implicitly definable.

Definiability in a Structure

- ► There are uncountably many relations on N, but only countably many possible defining formulas
- ▶ Any decidable relation on \mathbb{N} is definable in \mathfrak{N} (§3.5)

Definability of a Class of Structures

- Let $Mod\Sigma$ be the *class* of all models of a set Σ of sentences. (That is, the class of all *structures* for the language in which every member of Σ is true.)
 - A set is a class
 - Classes are beyond sets (e.g., the class of all sets)
- ▶ A class K of structures for the language is an **elementary** class (EC) iff $K = Mod\tau$ (i.e., $Mod\{\tau\}$) for some sentence τ
 - where "elementary" means "first order"
- A class $\mathcal K$ is an elementary class in a wider sense iff $\mathcal K = Mod\Sigma$

Definability of a Class of Structures

E.g., consider the language \mathcal{L} with =, \forall , and a 2-place predicate E

- ▶ A graph is a structure $\mathfrak{A} = (V; E^{\mathfrak{A}})$ for \mathcal{L} , where $|\mathfrak{A}| = V$ is the (nonempty) set of vertices and $E^{\mathfrak{A}}$ is an edge relation that is *symmetric* and *irreflexive*
 - with axiom: $\forall x (\forall y (Exy \Leftrightarrow Eyx) \land \neg Exx)$
- ► The class of graphs is an elementary class

Homomorphisms

A **homomorphism** h of $\mathfrak A$ into $\mathfrak B$ is a function $h: |\mathfrak A| \to |\mathfrak B|$ such that

- 1. for predicate symbol P $\langle a_1, \ldots, a_n \rangle \in P^{\mathfrak{A}}$ iff $\langle h(a_1), \ldots, h(a_n) \rangle \in P^{\mathfrak{B}}$
- 2. for function symbol f $h(f^{\mathfrak{A}}(a_1,\ldots,a_n)) = f^{\mathfrak{B}}(h(a_1),\ldots,h(a_n))$ $h(c^{\mathfrak{A}}) = c^{\mathfrak{B}}$

E.g.,
$$\mathfrak{A} = (\mathbb{N}; +, \cdot)$$
, $\mathfrak{B} = (\{e, o\}; +^{\mathfrak{B}}, \cdot^{\mathfrak{B}})$

$$\frac{+^{\mathfrak{B}} \mid e \mid o}{e \mid e \mid o} \qquad \frac{\cdot^{\mathfrak{B}} \mid e \mid o}{e \mid e \mid e}$$

$$o \mid o \mid e \qquad o \qquad e \qquad o$$

$$h(n) = \begin{cases} e & \text{if } n \text{ is even} \\ o & \text{if } n \text{ is odd} \end{cases}$$

$$h \text{ is a homomorphism of } \mathfrak{A} \text{ into } \mathfrak{B}$$

Isomorphism

- ▶ A homomorphism h is called an **isomorphism** (or **isomorphic embedding**) of \mathfrak{A} into \mathfrak{B} if h is *one-to-one*
- ▶ Two structures $\mathfrak A$ and $\mathfrak B$ are **isomorphic** (denoted $\mathfrak A \cong \mathfrak B$) if there is an isomorphism of $\mathfrak A$ onto $\mathfrak B$
- ► Two isomorphic structures satisfy exactly the same sentences

Substructures

 $\mathfrak A$ is a **substructure** of $\mathfrak B$, or $\mathfrak B$ is an **extension** of $\mathfrak A$, if $|\mathfrak A| \subseteq |\mathfrak B|$ and the identity map $Id: |\mathfrak A| \to |\mathfrak B|$ is an *isomorphism* of $\mathfrak A$ into $\mathfrak B$, equivalently

- 1. $P^{\mathfrak{A}}$ is the restriction of $P^{\mathfrak{B}}$ to $|\mathfrak{A}|$
- 2. $f^{\mathfrak{A}}$ is the restriction of $f^{\mathfrak{B}}$ to $|\mathfrak{A}|$, and $c^{\mathfrak{A}} = c^{\mathfrak{B}}$

E.g., $\mathfrak{A}=(\mathbb{P};<)$ for $\mathbb{P}:$ positive integers, $\mathfrak{B}=(\mathbb{N};<)$

- ▶ Id(n) = n is an isomorphism
 - \triangleright $\mathfrak A$ is a substructure of $\mathfrak B$
- ▶ h(n) = n 1 is an isomorphism

Homomorphism Theorem

Theorem (Homomorphism Theorem)

Let h be a homomorphism of $\mathfrak A$ into $\mathfrak B$ and $s:V\to |\mathfrak A|$, where V is the set of variables. Then

- (a) for any term t, $h(\overline{s}(t)) = \overline{h \circ s}(t)$
- (b) for any quantifier-free formula α not containing the equality symbol, $\models_{\mathfrak{A}} \alpha[s]$ iff $\models_{\mathfrak{B}} \alpha[h \circ s]$
 - ► The "quantifier-free" criterion is due to the fact that h may not be onto
 - ► The exclusion of the equality symbol is due to the fact that h may not be one-to-one

Homomorphism

E.g.,
$$\mathfrak{A}=(\mathbb{P};<)$$
, $\mathfrak{B}=(\mathbb{N};<)$

$$\models_{\mathfrak{A}} \forall v_2 (v_1 \neq v_2 \rightarrow v_1 < v_2) \llbracket 1 \rrbracket \\ \not\models_{\mathfrak{B}} \forall v_2 (v_1 \neq v_2 \rightarrow v_1 < v_2) \llbracket 1 \rrbracket$$

▶ $h = Id : |\mathfrak{A}| \rightarrow |\mathfrak{B}|$ is not onto

$$\not\models_{\mathfrak{A}} v_1 = v_2[[1,2]]$$

 $\models_{\mathfrak{B}} v_1 = v_2[[0,0]]$

$$h(n) = \begin{cases} 0 & \text{if } n = 1 \\ n - 2 & \text{if } n \ge 2 \end{cases}$$
 is not one-to-one

Elementary Equivalence

Two structures $\mathfrak A$ and $\mathfrak B$ for the language are **elementarily** equivalent (denoted $\mathfrak A \equiv \mathfrak B$) iff for every sentence σ , $\models_{\mathfrak A} \sigma$ iff $\models_{\mathfrak B} \sigma$

Corollary

If $\mathfrak{A} \cong \mathfrak{B}$, then $\mathfrak{A} \equiv \mathfrak{B}$

► The converse is not true E.g., $(\mathbb{R}; <) \equiv (\mathbb{Q}; <)$, but $(\mathbb{R}; <) \not\cong (\mathbb{Q}; <)$

Automorphism

An **automorphism** of the structure $\mathfrak A$ is an *isomorphism* (namely, one-to-one homomorphism) of $\mathfrak A$ onto $\mathfrak A$

Corollary

Let h be an automorphism of \mathfrak{A} , and R be an n-ary relation on \mathfrak{A} definable in \mathfrak{A} . Then $\langle a_1, \ldots, a_n \rangle \in R$ iff $\langle h(a_1), \ldots, h(a_n) \rangle \in R$.

Proof.

Let
$$\varphi$$
 defines R in \mathfrak{A} . By Homomorphism Theorem,
 $\models_{\mathfrak{A}} \varphi[\![a_1,\ldots,a_n]\!]$ iff $\models_{\mathfrak{A}} \varphi[\![h(a_1),\ldots,h(a_n)]\!]$

Therefore, automorphism preserves definable relations and is useful in showing some relation is not definable.

E.g., \mathbb{N} is not definable in $(\mathbb{R}; <)$

▶ By automorphism $h(a) = a^3$ ($\sqrt[3]{2} \notin \mathbb{N}$, but $2 \in \mathbb{N}$)