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A Deductive Calculus (A Proof System)

We want to prove ¥ =7

A satisfactory proof system should be
1. finitely long
» ensured by Compactness Theorem

2. checkable mechanically (e.g., enumerating provable sentences)
and effectively

» ensured by Enumerability Theorem

Compactness and Enumerability Theorems

Theorem (Compactness Theorem (CT))
If ¥ = T, then there exists a finite Yo C ¥ such that Yo =T

Theorem (Enumerability Theorem (ET))

For a reasonable language, the set of valid wffs can be effectively
enumerated

CT and ET <« satisfactory proofs exist (necessary)
CT and ET = satisfactory proofs exist (sufficient)

CT: There exists X9 = {0g,...,0,} € X such that ¥g = 7. So
oo = -+ = o, = T Is valid.

ET: (0o = --- = 0, = 7) is a proof that can be generated by
enumerating the validities




Formal Deductions

» Let A be an infinite set of wffs, called logical axioms. The
theorems of a set [ of wffs are the wffs that can be obtained

from [' U A by using the rule of inference some finite number
of times.

» [ - ¢ denotes that ¢ is a theorem of [, or ¢ is
deducible/provable from I

» For I - ¢, a deduction of ¢ from [ is a sequence of wffs that
records how ¢ is obtained from I' UA with the rule of inference

Deductions

» The choices of A and the rule(s) of inference are not unique

» We use modus ponens:

a oa=0

&)
as our only one rule of inference (at the expanse of infinite A)
» This is a Hilbert-style deduction system (with a large set of
axioms and a small set of inference rules)

» Approach of the textbook

» On the contrary, a Gentzen-style deduction system (natural

deduction) includes many deduction rules but very few or no
axioms at all

» Approach of theorem provers

» The theorems of [ are the wffs obtained from I' UA by
applying modus ponens some finite number of times




Deductions

A deduction of ¢ from T is a finite sequence (ag, ..., a,) of wffs
such that a, = ¢ and, for each k < n, either

1. ap €T UA, or

2. «y is obtained by modus ponens from «; and o = (o = )
for some 1,j < k

Deductions

A set S of wffs is closed under modus ponens, if « € S and
(e = p)€ S, then 5 €S
» By induction principle, for S that includes ' U A and is closed
under modus ponens, then S contains every theorem of [
» Eg., if{a,8,a= =~} CTUA (not closed), then I' - v

a a=0F=v
B, 8=
Y




Logical Axioms

What is the set A of logical axioms?

» A wff ¢ is a generalization of ¥ iff o = Vxy...Vx,y for
some variables xq1,...,x, and n > 0

> A is the set of all generalizations of wffs of the following
forms:

1.
2.
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Tautologies
Vxa = o, where of is obtained from « by replacing x
(whenever free in «) by term t
Vx(a = B) = (Vxa = Vx[)
a = Vxa, where x does not occur free in «
X = X
x =y = (a= a'), where « is atomic and o’ is obtained from
a by replacing x in some places by y
» Axiom-groups 3 and 4 will be useful in proving Generalization
Theorem
» Axiom-groups 5 and 6 are for languages with equality

Substitution (Axiom-group 2)

In Axiom-group 2, af can be obtained by recursion:

case 1 atomic formula

by replacing variable x by t in «

case 2 —«

(ma)f = =(a)f

case 3 o = (3

(a=PB)f =af = B¢

case 4 Yy«

Vya fx=y
Vya)s = .
(vye) {Vy(a)? Fx £y




Substitution

Eg.
> =P
> (Qx = VxPx); = (Qy = VxPx)
> (Vyx=y);="Vyz=y
> (=Vyx = y)§ 7

A term t is not substitutable for x in « if there is some variable y
in t that is captured by Vy in of

Substitutability

Recursive definition of substitutability ¢3:
t is substitutable for x in ¢ if
case 1 ¢ being atomic formula
always substitutable
case 2  being —«
t is substitutable in «
case 3 ¢ being a = 3
t is substitutable in both o and (3
case 4 ¢ being Vya
either (a) x does not occur free in Vya, or (b) y does
not appear in t and t is substitutable for x in «

» In (a), we do not need to perform substitution,
eg., (Qx = ‘v’xPx); = (Qy = VxPx)

Is (Vxx = t)§ substitutable ?




Tautologies (Axiom-group 1)

Tautologies are wffs obtainable from tautologies of sentential logic
by replacing each sentence symbol by a wff of the first-order
language

E.g.

—~(AAB) < (mAV —B) with A=Vx—Px and B=Qy is a
tautology

Tautologies

Another view of tautologies
wffs

prime nonprime

atomic / Vxa -/ a= 0

» Follow sentential logic, but take sentence symbols to be prime
formulas of our first-order language

» Any formula can be built up from prime formulas by operations
E. and &=

> Vx(Px = Px) is not a tautology
» VxPx = Px is not a tautology

» If [ tautologically implies ¢, then [ logically implies ¢
» The converse is not true, e.g., [ = VxPx and ¢ = Pc




Tautologies

» Note that here we have no assumption that our first-order
language has only countably many formulas

» We are speaking of sentential logic with potentially
uncountably many sentence symbols

Tautologies

Theorem (24B)
[ iff ' UN tautologically implies ¢

Proof.

(=) Note that {a, @ = 3} tautologically implies 5. T I ¢
indicates there is a sequence of modus ponens from ' U A leading
to . By induction, it can be shown [ U A tautologically implies ¢.
(<=) By the corollary of Compactness Theorem of sentential logic
(p.60), there is a finite subset

{fy]-w"?,ym?)\l)---,)\n} g rU/\
that tautologically implies . Hence
M= = Tm=> A== A=

is a tautology and is in A. So ¢ can be derived by applying modus
ponens m -+ n times. ]




Deductions and Metatheorems

E.g., - Px= dyPy
In modus ponens,

Vy=Py = =Px [AG2], (Vy—Py = —=Px) = (Px = =Vy—-Py) [AG]]

Px = —=Vy—-Py
In pedigree tree,

A3 :Px = =Vy—=Py
Ao Vy—=Py = —Px A1 ((Vy=Py = =Px) = (Px = —Vy—Py)

Notice that (A1 = Ay = A3) is a deduction of Px = JyPy

Deductions and Metatheorems

Theorem (Generalization Theorem)
If I' = ¢ and x do not occur free in any formula in ', then I - Vxy

(x can occur free in .)




Proof of Generalization Theorem

By induction, we show that {¢ | I F Vxp} contains ' UA and is closed
under modus ponens (because this set contains every theorem by the
induction principle).
case 1 p €A
Vxp € N\ (check the 6 AGs)

case 2 p €T
".» x does not occur free in ¢ .. p = Vxp is in AG 4
einl, ©=VxpinAG 4
Vxp

case 3 W with I Vxyp and T F Vx(¢) = o)
Vx(¥ = @), Vx(¢ = ¢) = (Vx¢p = Vxp)

VX, Vxy = Vxp
Vxp
Q.E.D.
(AG 3 and AG 4 are needed due to this proof.)
Deductions and Metatheorems
Lemma (Rule T)
IfTFag, ..., T Fa,and{aq,...,a,} tautologically implies (3,
thenT - 3
Proof.

ay == ap,= 0 (i.e, (a1 A--- ANay) = () is a tautology, and
thus in A. By modus ponens n times, we have [ - (3 []




Deductions and Metatheorems

Theorem (Deduction Theorem)
IfI;vE o, thenT v =

Proof.

Ly

iff {I'; v} U A tautologically implies ¢ (by Thm 24B)

iff I U A tautologically implies v = ¢ (by Compactness Thm of
Sentential Logic; either ' U A tautologically implies ¢, or ' U A does not
tautologically imply +)

iff [+~ = ¢ (by Thm 24B) O

The converse of the theorem is true as well, in essence, the rule of
modus ponens. (I'; vy F )

Deductions and Metatheorems

Corollary (Contraposition)
by iffT ¢ —p

Proof.

Il

implies ' - ¢ = =

implies ' =19 = —p

implies ;9 F —p []




Deductions and Metatheorems

Corollary (Reductio ad Absurdum)
If I'; ¢ is inconsistent, the [ = —p

Proof.

We have ;o Fa and T; o = —a.

{p = a,p = —a} tautologically implies —p

A I e 177 ]

A set of formulas is inconsistent iff for some «, both o« and —« are
theorems of the set

Deduction Strategy

1 Show 'y =0byl;¢y+0
2 Show I' - Vxy

1. if x is not free in [, prove [ -
2. if x is free in ', prove I = Vy(¢)} and
Vy()y = Vxi with some variable y

3a Show '+ —(¢p = @) by T4 and T+ —0
3b Show I ——p by T - 9

3c Show ' = =Vxv by I' = =¥ (for t is substitutable
for x in 1))
» Note that this is useful but not always possible
» E.g., when I =0 and ¢p = —(Px = VyPy),
[+ —Vxe and yet, for every t, [ I/ =)
> [ ok Vxy iff I Vxy F -«
» If [;Vxy F —a, then I'; Vya - =Vxy

4 Try reductio ad absurdum if above fail




Deduction Strategy

Eg., VxVy(x =y =y =x)
Proof.
. Fx=y=x=x=y=x (Axb)
2. Fx=x (Axb)
3. FEx=y=y=x(127T)
4. FYXVy(x =y = y = x) (3;gen?)
[]

Deduction Strategy

Theorem (Generalization on Constants)

Assume that I = ¢ and that constant symbol ¢ does not occur in
[. Then there is a variable y (not occur in @) such that

[+ Vy(p)y. Further, there is a deduction of Vy(yp);, from I in
which ¢ does not occur.




Deduction Strategy

Corollary

Assume that I = %, where the constant symbol ¢ does not occur
inT and in ¢. Then I - Vxyp, and there is a deduction of Vx
from [ in which ¢ does not occur.

Deduction Strategy

Corollary (Rule EI)

Assume that constant symbol ¢ does not occur in p, 1, and I', and

that ['; X =1). Then I'; 3xp =1 and there is a deduction of )
from ['; dx@ in which ¢ does not occur.




