Special Topics on Applied Mathematical Logic

Spring 2012

Lecture 06

Jie-Hong Roland Jiang

National Taiwan University

March 24, 2012

Outline

First-Order Logic

Soundness and Completeness Compactness

Soundness and Completeness

- ▶ entailment |= vs. deduction |-

Validity of Logical Axioms

Lemma

Every logical axiom is valid.

Proof.

Consider logical axioms that are not generalizations of other axioms. (Any generalization of a valid formula is valid.)

Ax1 If ϕ tautologically implies α , then ϕ logically implies α (check §2.4 Ex3)

Ax3
$$\forall x(\alpha \Rightarrow \beta) \models \forall x\alpha \Rightarrow \forall x\beta \text{ (check } \S 2.2 \text{ Ex3)}$$

Ax4 $\alpha \models \forall x \alpha$ for x does not occur free in α (check §2.2 Ex4)

$$Ax5 \models x = x$$

Validity of Logical Axioms

Proof (cont'd).

Ax6 To show $\{x=y,\alpha\} \models \alpha'$, where α' is obtained from atomic formula α by replacing x at some places by y. For any $\mathfrak A$ and s such that $\models_{\mathfrak A} x=y[s]$, i.e., s(x)=s(y), then we have $\overline{s}(t)=\overline{s}(t')$, where t is any term and t' is obtained from t by replacing x at some places by y.

If
$$\alpha$$
 is $t_1 = t_2$, then α' is $t_1' = t_2'$
 $\models_{\mathfrak{A}} \alpha[s]$ iff $\overline{s}(t_1) = \overline{s}(t_2)$ iff $\overline{s}(t_1') = \overline{s}(t_2')$ iff $\models_{\mathfrak{A}} \alpha'[s]$

If
$$\alpha$$
 is $Pt_1 \cdots t_n$, then α' is $Pt'_1 \cdots t'_n$
 $\models_{\mathfrak{A}} \alpha[s]$ iff $\langle \overline{s}(t_1), \dots, \overline{s}(t_n) \rangle \in P^{\mathfrak{A}}$ iff $\langle \overline{s}(t'_1), \dots, \overline{s}(t'_n) \rangle \in P^{\mathfrak{A}}$ iff $\models_{\mathfrak{A}} \alpha'[s]$

Validity of Logical Axioms

Proof (cont'd).

Ax2 $(\forall x \alpha \Rightarrow \alpha_t^x \text{ for } t \text{ substitutable for free } x \text{ in } \alpha)$

Lemma (25B)

For any term u, let u_t^x be obtained from u by replacing variable x in u by term t. (Always substitutable!) Then $\overline{s}(u_t^x) = \overline{s(x|\overline{s}(t))}(u)$.

Proof.

By induction on term u.

Validity of Logical Axioms

Proof (cont'd).

Lemma (Substitution Lemma)

If the term t is substitutable for the variable x in the wff φ , then $\models_{\mathfrak{A}} \varphi_t^{\mathsf{x}}[s]$ iff $\models_{\mathfrak{A}} \varphi[s(x|\overline{s}(t))]$

Proof of Substitution Lemma.

By induction on φ ,

case 1 φ is atomic E.g., $\varphi = Pu$ $\models_{\mathfrak{A}} Pu_t^{\times}[s]$ iff $\overline{s}(u_t^{\times}) \in P^{\mathfrak{A}}$ iff $\overline{s(x|\overline{s}(t))}(u) \in P^{\mathfrak{A}}$ iff $\models_{\mathfrak{A}} Pu[s(x|\overline{s}(t))]$

case 2 φ is $\neg \psi$ or $\psi \Rightarrow \theta$

The proof follows from inductive hypotheses (IH) for ψ and θ

case 3 φ is $\forall y\psi$, with x does not occur free in φ $\varphi_t^{\mathbf{x}} = \varphi$

Validity of Logical Axioms

Proof of Substitution Lemma (cont'd).

case 4 φ is $\forall y\psi$, with x occurs free in φ

For t substitutable for x in φ , (1) y must not occur in t and (2) t is substitutable for x in ψ By (1), for every $d \in |\mathfrak{A}|$,

$$\overline{s}(t) = \overline{s(y|d)}(t) \tag{*}$$

Since $x \neq y$, $\varphi_t^x = \forall y \psi_t^x$ $\models_{\mathfrak{A}} \varphi_t^x[s]$ iff for every d, $\models_{\mathfrak{A}} \psi_t^x[s(y|d)]$ by (*) iff for every d, $\models_{\mathfrak{A}} \psi[s(y|d)(x|\overline{s}(t))]$ by IH iff $\models_{\mathfrak{A}} \varphi[s(x|\overline{s}(t))]$

By induction, Substitution Lemma holds for all φ .

Q.E.D. (Substitution Lemma)

Validity of Logical Axioms

Proof (cont'd).

Back to Ax2 ($\forall x \varphi \Rightarrow \varphi_t^X$):

Assume \mathfrak{A} satisfies $\forall x \varphi$ with s. To show $\models_{\mathfrak{A}} \varphi_t^{\mathsf{x}}[s]$:

Since for any $d \in |\mathfrak{A}|$, $\models_{\mathfrak{A}} \varphi[s(x|d)]$, letting $d = \overline{s}(t)$ yields $\models_{\mathfrak{A}} \varphi[s(x|\overline{s}(t))]$.

By Substitution Lemma, $\models_{\mathfrak{A}} \varphi_t^{\mathsf{x}}[s]$.

That is, Ax2 is valid.

Consequently, from the above we know every logical axiom is valid.

Q.E.D.

Soundness

Theorem (Soundness Theorem)

If
$$\Gamma \vdash \varphi$$
, then $\Gamma \models \varphi$

Proof.

Show by induction.

case 1
$$\varphi$$
 is a logical axiom, i.e., $\varphi \in \Lambda$
By the previous lemma, $\models \varphi$ and thus $\Gamma \models \varphi$
case 2 $\varphi \in \Gamma$
 $\Gamma \models \varphi$
case 3 $\frac{\psi, \quad \psi \Rightarrow \varphi}{\varphi}$
By IH, $\Gamma \models \psi$ and $\Gamma \models \psi \Rightarrow \varphi$
It follows that $\Gamma \models \varphi$

Soundness

Corollary (25C)

If $\vdash (\varphi \Leftrightarrow \psi)$, then φ and ψ are logically equivalent, i.e., $\varphi \models \exists \psi$

Proof.

$$\vdash \varphi \Rightarrow \psi \text{ implies } \varphi \vdash \psi \text{ implies } \varphi \models \psi \\ \vdash \psi \Rightarrow \varphi \text{ implies } \psi \vdash \varphi \text{ implies } \psi \models \varphi$$

Soundness

Corollary (25D)

If φ' is an alphabetic variant of φ , then φ and φ' are logically equivalent

Soundness

Corollary (25E)

If Γ is satisfiable, then Γ is consistent

Proof.

(This corollary is equivalent to Soundness Theorem.)

Recall Γ is *consistent* iff there is no formula φ such that both $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \varphi$ (syntactical)

Define Γ to be **satisfiable** iff there is some $\mathfrak A$ and s such that $\mathfrak A$ satisfies every member of Γ with s (semantical)

Completeness

Theorem (Completeness Theorem; Gödel, 1930)

- (a) If $\Gamma \models \varphi$, then $\Gamma \vdash \varphi$
- (b) If Γ is consistent, then Γ is satisfiable
- (a) and (b) are equivalent
- \therefore (a) \Leftrightarrow If $\Gamma \not\vdash \varphi$, then $\Gamma \not\models \varphi$
- \Leftrightarrow If Γ ; $\neg \varphi$ is consistent, then Γ ; $\neg \varphi$ is satisfiable
- \Leftrightarrow (b)

Completeness Theorem

Proof Outline (for (b)).

- Steps 1-3 Extend Γ to Δ such that
 - (i) $\Gamma \subset \Delta$
 - (ii) Δ is consistent and maximal in the sense that for any formula, either $\alpha \in \Delta$ or $(\neg \alpha) \in \Delta$
 - (iii) For any formula φ and variable x, there is a constant c such that $(\neg \forall x \varphi \Rightarrow \neg \varphi_c^x) \in \Delta$
 - Step 4 From a structure $\mathfrak A$ where members of Γ not containing = can be satisfied. In particular, $|\mathfrak A|$ is the set of terms and $\langle t_1,\ldots,t_n\rangle\in P^{\mathfrak A}$ iff $Pt_1\ldots t_n\in \Delta$
- Steps 5,6 Modify $\mathfrak A$ to work for formulas containing =

Completeness Theorem

Proof.

- Step 1 Expand the language by adding a countably infinite set of new constant symbols. Then Γ remains a consistent set of wffs in the new language.
- Step 2 For every wff φ in the new language and every variable x, we add the wff $(\neg \forall x \varphi \Rightarrow \neg \varphi_c^x)$ to Γ , for c to be some new constant symbol. (So c provides a counterexample to φ if any.) This can be done such that Γ together with the set Θ of all the added wffs is still consistent.
- Step 3 Extend $\Gamma \cup \Theta$ to a consistent set maximal in the sense that for any wff φ either $\varphi \in \Delta$ or $(\neg \varphi) \in \Delta$. Note that Δ is deductively closed. That is, $\Delta \vdash \varphi \Rightarrow \Delta \not\vdash \neg \varphi \Rightarrow (\neg \varphi) \not\in \Delta \Rightarrow \varphi \in \Delta.$

Completeness Theorem

Proof (cont'd).

- Step 4 From Δ , we construct a structure $\mathfrak A$ for the new language, but with = replaced by a new 2-place predicate symbol E. $\mathfrak A$ is such that
 - (a) $|\mathfrak{A}| =$ the set of all terms of the new language
 - (b) $\langle u, t \rangle \in E^{\mathfrak{A}}$ iff wff $(u = t) \in \Delta$
 - (c) $\langle t_1, \ldots, t_n \rangle \in P^{\mathfrak{A}}$ iff $Pt_1 \ldots t_n \in \Delta$
 - (d) $f^{\mathfrak{A}}(t_1,\ldots,t_n)=ft_1\ldots t_n$ and $c^{\mathfrak{A}}=c$

Besides define $s:V\to |\mathfrak{A}|$ be the identity function, i.e., s(x)=x on V. Then for any term t, $\overline{s}(t)=t$. For any wff φ , let φ^* be obtained from φ by replacing = by E. Then $\models_{\mathfrak{A}} \varphi^*[s]$ iff $\varphi \in \Delta$. (Prove by induction on the # of places at which connective/quantifier symbols appear.)

Completeness Theorem

Proof (cont'd).

To see that $\mathfrak A$ cannot be used directly in the language, consider Γ containing a sentence $(c_1=c_2)$, for c_1 and c_2 are distinct constant symbols. We have $\langle c_1^{\mathfrak A}, c_2^{\mathfrak A} \rangle \in E^{\mathfrak A}$ but $c_1^{\mathfrak A} \neq c_2^{\mathfrak A}$. It does not hold that $\models_{\mathfrak A} (c_1=c_2)[s]$ iff $(c_1=c_2) \in \Delta$. Rather we need a new structure $\mathfrak B$ such that $c_1^{\mathfrak B}=c_2^{\mathfrak B}$.

- Step 5 We obtain $\mathfrak B$ as the quotient structure $\mathfrak A/E$ of $\mathfrak A$ modulo $E^{\mathfrak A}$. Note that $E^{\mathfrak A}$ is an equivalence relation on $|\mathfrak A|$ that forms a *congruence relation* for $\mathfrak A$:
 - (i) $E^{\mathfrak{A}}$ is an equivalence relation on $|\mathfrak{A}|$
 - (ii) $P^{\mathfrak{A}}$ is compatible with $E^{\mathfrak{A}}$: $\langle t_1, \ldots, t_n \rangle \in P^{\mathfrak{A}}$ and $\langle t_i, t_i' \rangle \in E^{\mathfrak{A}}$ for $1 \leq i \leq n$ implies $\langle t_1', \ldots, t_n' \rangle \in P^{\mathfrak{A}}$
 - (iii) $f^{\mathfrak{A}}$ is compatible with $E^{\mathfrak{A}}$: $\langle t_i, t_i' \rangle \in E^{\mathfrak{A}}$ for $1 \leq i \leq n$ implies $\langle f^{\mathfrak{A}}(t_1, \ldots, t_n), f^{\mathfrak{A}}(t_1', \ldots, t_n') \rangle \in E^{\mathfrak{A}}$

Completeness Theorem

Proof (cont'd).

Let [t] be the equivalence class of term t in $|\mathfrak{A}|$. We define \mathfrak{A}/E as follows.

- (1) $|\mathfrak{A}/E|$ is the set of all equivalence classes of members of $|\mathfrak{A}|$
- (2) $\langle [t_1], \ldots, [t_n] \rangle \in P^{\mathfrak{A}/E}$ iff $\langle t_1, \ldots, t_n \rangle \in P^{\mathfrak{A}}$
- (3) $f^{\mathfrak{A}/E}([t_1],\ldots,[t_n]) = [f^{\mathfrak{A}}(t_1,\ldots,t_n)], c^{\mathfrak{A}/E} = [c^{\mathfrak{A}}]$

Let $h: |\mathfrak{A}| \to |\mathfrak{A}/E|$ such that h(t) = [t]. So h is a homomorphism of \mathfrak{A} onto \mathfrak{A}/E .

Hence for any φ :

$$\varphi \in \Delta \quad \Leftrightarrow \quad \models_{\mathfrak{A}} \varphi^*[s]$$

$$\Leftrightarrow \quad \models_{\mathfrak{A}/E} \varphi^*[h \circ s] \text{ (by Homomorphism Theorem)}$$

$$\Leftrightarrow \quad \models_{\mathfrak{A}/E} \varphi[h \circ s] \text{ (}\langle [t], [t'] \rangle \in E^{\mathfrak{A}/E} \text{ iff } \langle t, t' \rangle \in E^{\mathfrak{A}} \text{ iff } [t] = [t'] \text{ (by Homomorphism Theorem)}$$

That is, \mathfrak{A}/E satisfies every member of Δ with $h \circ s$.

Completeness Theorem

Proof (cont'd).

Step 6 Restrict \mathfrak{A}/E to the *original* language. \mathfrak{A}/E satisfies every member of Γ with $h \circ s$.

Q.E.D.

Compactness

Theorem (Compactness Theorem)

- (a) If $\Gamma \models \varphi$, then for some finite $\Gamma_0 \subseteq \Gamma$ we have $\Gamma_0 \models \varphi$
- (b) If every finite subset Γ_0 of Γ is satisfiable, then Γ is satisfiable In particular, a set Σ of sentences has a model iff every finite subset has a model. (Similar to that in sentential logic.)

(a)

$$\Gamma \models \varphi \Rightarrow \Gamma \vdash \varphi
\Rightarrow \Gamma_0 \vdash \varphi \text{ (deduction is finite)}
\Rightarrow \Gamma_0 \models \varphi$$

Compactness Theorem

Proof (cont'd).

(b) If every finite subset Γ_0 of Γ is satisfiable, then by Soundness Theorem every Γ_0 is consistent. Since deduction is finite, Γ is consistent. By Completeness Theorem, Γ is satisfiable.

Q.E.D.

Note that

- ▶ (a) and (b) of Compactness Theorem are equivalent
- ► Compactness Theorem involves only semantical notions

Enumerability

Theorem (Enumerability Theorem)

For a reasonable language, the set of valid wffs can be effectively enumerated

A language is *reasonable* if its set of parameters can be effectively enumerated and

```
\{\langle P, n \rangle \mid P \text{ is an } n\text{-place predicate symbol}\} and \{\langle f, n \rangle \mid f \text{ is an } n\text{-place function symbol}\}
```

are decidable

Enumerability

Corollary (25F)

Let Γ be a decidable set of formulas in a reasonable language.

- (a) The set $\{\varphi \mid \Gamma \vdash \varphi\}$ of theorems of Γ is effectively enumerable
- (b) The set $\{\varphi \mid \Gamma \models \varphi\}$ of formulas logically implied by Γ is effectively enumerable

Enumerability

Corollary (25G)

Assume that Γ is a decidable set of formulas in a reasonable language, and for any sentence σ either $\Gamma \models \sigma$ or $\Gamma \models \neg \sigma$. Then the set of sentences implied by Γ is decidable.

(related to Corollary 26I)