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Soundness and Completeness

» entailment = vs. deduction -

. Soundness TFo=TEyp
Completeness T=p=TF ¢

Validity of Logical Axioms

Lemma
Every logical axiom is valid.

Proof.
Consider logical axioms that are not generalizations of other
axioms. (Any generalization of a valid formula is valid.)

Ax1 If ¢ tautologically implies «, then ¢ logically implies o (check
§2.4 Ex3)

Ax3 Vx(a = ) | Vxa = Vx3 (check §2.2 Ex3)

Ax4 o = Vxa for x does not occur free in « (check §2.2 Ex4)
Ax5 = x = x




Validity of Logical Axioms

Proof (cont'd).

Ax6 To show {x = y,a} | o/, where o/ is obtained from atomic
formula o by replacing x at some places by y. For any 2l and
s such that =g x = y|[s], i.e., s(x) = s(y), then we have
5(t) = 5(t'), where t is any term and t’ is obtained from t by
replacing x at some places by y.

If avis t; = tp, then o is t] =t}
=o afs] iff 5(t1) = 5(t2) iff 5(t]) = 5(t5) iff =g o[5]

If ais Pty ---tp, then & is Pt] - - t),
o afs] iff (3(t1),...,3(t,)) € Piff (3(t]),...,3(t))) € P
iff |:Q[ Oé/[S]

Validity of Logical Axioms

Proof (cont’d).

Ax2 (Vxa = «of for t substitutable for free x in «)
Lemma (25B)

For any term u, let uf be obtained from u by replacing variable x
in u by term t. (Always substitutable!) Then s(uy) = s(x|5(t))(u).

Proof.

By induction on term wu. [

substitute t for x

ms
S0 /




Validity of Logical Axioms
Proof (cont'd).

Lemma (Substitution Lemma)
If the term t is substitutable for the variable x in the wff ¢, then

=a prls] iff Ea pls(x[5(t))]
Proof of Substitution Lemma.
By induction on ¢,
case 1 ¢ is atomic
E.g., o = Pu
=q PuX[s] iff 5(uX) € P iff s(x|5(t))(u) € P iff
o Puls(x[s(t))]
case 2 @ is — or Y = 0
The proof follows from inductive hypotheses (IH) for
v and 6

case 3 ¢ is Yy, with x does not occur free in ¢
Pt =@

Validity of Logical Axioms

Proof of Substitution Lemma (cont'd).

case 4 o is Yy, with x occurs free in ¢
For t substitutable for x in ¢, (1) y must not occur
in t and (2) t is substitutable for x in 9
By (1), for every d € |2,

s(t) = s(y|d)(¢) (+)

Since x # y, ¥ = Vyy¥

o @¥[s] iff for every d, = ¢ [s(y|d)] by () iff for
every d, [=q 9[s(y|d)(x[s(t))] by IH iff

= pls(x[5(t))]

By induction, Substitution Lemma holds for all .

Q.E.D. (Substitution Lemma)




Validity of Logical Axioms

Proof (cont'd).

Back to Ax2 (Vx¢ = ¢7):

Assume 2 satisfies Vxp with s. To show =y ¢¥[s]:

Since for any d € ||, =q ¢[s(x|d)], letting d = 5(t) yields

o pls(x[s(t))].

By Substitution Lemma, =g ¢5[s].

That is, Ax2 is valid.

Consequently, from the above we know every logical axiom is valid.

Q.E.D.

Soundness

Theorem (Soundness Theorem)
IFT F o, then T =

Proof.
Show by induction.

case 1 ¢ is a logical axiom, i.e., p € A

By the previous lemma, = ¢ and thus I = ¢
case 2 p el

M=

©
ByIHTE¢Yand T =v¢ = ¢
It follows that I' = ¢

[




Soundness

Corollary (25C)
If= (¢ < 1), then ¢ and v are logically equivalent, i.e., p == ¢

Proof.
= @ = 1 implies ¢ 1) implies ¢ =
-1 = ¢ implies ¥ - ¢ implies ¥ = ¢ ]

Soundness

Corollary (25D)

If ©' is an alphabetic variant of p, then © and ¢’ are logically
equivalent




Soundness

Corollary (25E)

If T is satisfiable, then ' is consistent

Proof.

[ inconsistent
M=o

[ ==
M=
=
{ M=~
= [ unsatisfiable ]

(This corollary is equivalent to Soundness Theorem.)

Recall I is consistent iff there is no formula ¢ such that both

[ ¢ and I = = (syntactical)

Define I' to be satisfiable iff there is some 2l and s such that 2
satisfies every member of I' with s (semantical)

Completeness

Theorem (Completeness Theorem; Godel, 1930)

(a) IfT =, thenT F ¢
(b) IfT is consistent, then I is satisfiable

(a) and (b) are equivalent

c(a) e IfTH ¢, then T}~ ¢
& If T'; = is consistent, then [; = is satisfiable

< (b)




Completeness Theorem

Proof Outline (for (b)).

Steps 1-3 Extend I' to A such that
(i) rcA
(i) A is consistent and maximal in the sense that
for any formula, either a € A or (—a) € A
(iii) For any formula ¢ and variable x, there is a
constant ¢ such that (=Vxp = %) € A

Step 4 From a structure 2l where members of [ not
containing = can be satisfied. In particular, |2| is the
set of terms and (t1,...,t,) € PXiff Pty...t, € A

Steps 5,6 Modify 2 to work for formulas containing =

Completeness Theorem

Proof.

Step 1 Expand the language by adding a countably infinite
set of new constant symbols. Then [ remains a
consistent set of wffs in the new language.

Step 2 For every wff ¢ in the new language and every
variable x, we add the wff (=Vxp = —¢¥) to I, for ¢
to be some new constant symbol. (So ¢ provides a
counterexample to ¢ if any.) This can be done such
that [ together with the set © of all the added wffs
is still consistent.

Step 3 Extend ' U © to a consistent set maximal in the
sense that for any wff ¢ either ¢ € A or (—p) € A.
Note that A is deductively closed. That is,
AFp= Al —p=(-p)€A=pecA.




Completeness Theorem

Proof (cont’d).

Step 4 From A, we construct a structure 2 for the new
language, but with = replaced by a new 2-place
predicate symbol E. 2l is such that

(a) |2A| = the set of all terms of the new language
(b) (u,t) € EXiff wff (u=1t)ec A

(c) (t1,....ty) € PLiff Pty...t, € A

(d) fm(tl,...,tn) — ft;...t, and ¥ = ¢

Besides define s : V — |2l| be the identity function,
i.e., s(x) = x on V. Then for any term t, 5(t) = t.
For any wff ¢, let ©* be obtained from ¢ by
replacing = by E. Then =gy ¢*[s] iff ¢ € A. (Prove
by induction on the # of places at which
connective/quantifier symbols appear.)

Completeness Theorem

Proof (cont'd).

To see that 2 cannot be used directly in the language, consider I
containing a sentence (¢; = &), for ¢; and ¢, are distinct constant
A 2 2A 2 2A
symbols. We have (¢, ¢5') € E* but ¢ # ¢ It does not hold

that =g (a1 = @)[s] iff (c1 = ) € A. Rather we need a new

structure B such that ¢® = ¢

Step 5 We obtain B as the quotient structure 2/E of 2
modulo E*. Note that E% is an equivalence relation
on || that forms a congruence relation for 2.

(i) E® is an equivalence relation on |2

(i) P*is compatible with E®: (t,...,t,) € P*
and (t;, t!) € E® for 1 <i < nimplies
(t],...,th) € P

(iii) f2 is compatible with E*: (ti, th) € E™ for
1 < i < nimplies
(FMtr, ..., t), F(t],. .. ) € EX




Completeness Theorem

Proof (cont'd).
Let [t] be the equivalence class of term t in |2(|. We define A/E as
follows.

(1) |A/E]| is the set of all equivalence classes of members of ||
(2) ([t1],...,[ta]) € PYMEiff (t1,... t,) € P%

(3) FYE([t],...,[ta]) = [F*(t1,. .., tn)], VE =[]

Let h: || — |2A/E]| such that h(t) = [t]. So his a homomorphism

of /A onto A/E.
Hence for any ¢:

pel & Fapls
< [aye ¢*[hos] (by Homomorphism Theorem)
& Faye elhos] ([ 1)) € EVE iff () € EX i [t] = [¢]

That is, 2/ E satisfies every member of A with hos.

Completeness Theorem

Proof (cont’d).

Step 6 Restrict 2(/E to the original language. 21/E satisfies
every member of [ with hos.

Q.E.D.




Compactness

Theorem (Compactness Theorem)

(a) IfT = ¢, then for some finite Ty C T we have Iy = ¢
(b) If every finite subset Ty of T is satisfiable, then I is satisfiable

In particular, a set 2. of sentences has a model iff every finite
subset has a model. (Similar to that in sentential logic.)

Proof.
(a)

fEe = Tk
= [oF ¢ (deduction is finite)

= oy

Compactness Theorem

Proof (cont'd).

(b) If every finite subset 'y of I is satisfiable, then by Soundness
Theorem every [ is consistent. Since deduction is finite, I is
consistent. By Completeness Theorem, [ is satisfiable.

Q.E.D.

Note that
» (a) and (b) of Compactness Theorem are equivalent

» Compactness Theorem involves only semantical notions




Enumerability

Theorem (Enumerability Theorem)

For a reasonable language, the set of valid wffs can be effectively
enumerated

A language is reasonable if its set of parameters can be effectively
enumerated and

{(P,n) | P is an n-place predicate symbol} and
{(f,n) | fis an n-place function symbol}

are decidable

Enumerability

Corollary (25F)
Let I be a decidable set of formulas in a reasonable language.
(a) Theset {¢ | F ¢} of theorems of I is effectively enumerable

(b) The set {p | T = @} of formulas logically implied by T is
effectively enumerable




Enumerability

Corollary (25G)

Assume that I is a decidable set of formulas in a reasonable
language, and for any sentence o either I =0 or = —0. Then
the set of sentences implied by [ is decidable.

(related to Corollary 26l)




