Special Topics on Applied Mathematical Logic

Spring 2012

Lecture 06

Jie-Hong Roland Jiang

National Taiwan University

March 24, 2012

Outline

First-Order Logic
Soundness and Completeness
Compactness

Soundness and Completeness

- entailment \models vs. deduction \vdash
- $\begin{cases}\text { Soundness } & \Gamma \vdash \varphi \Rightarrow \Gamma \models \varphi \\ \text { Completeness } & \Gamma \models \varphi \Rightarrow \Gamma \vdash \varphi\end{cases}$

Lemma
Every logical axiom is valid.
Proof.
Consider logical axioms that are not generalizations of other axioms. (Any generalization of a valid formula is valid.)
Ax1 If ϕ tautologically implies α, then ϕ logically implies α (check §2.4 Ex3)
Ax3 $\forall x(\alpha \Rightarrow \beta) \models \forall x \alpha \Rightarrow \forall x \beta$ (check $\S 2.2$ Ex3)
Ax4 $\alpha \models \forall x \alpha$ for x does not occur free in α (check $\S 2.2$ Ex4)
$A \times 5 \vDash x=x$

Validity of Logical Axioms

Proof (cont'd).
Ax6 To show $\{x=y, \alpha\} \models \alpha^{\prime}$, where α^{\prime} is obtained from atomic formula α by replacing x at some places by y. For any \mathfrak{A} and s such that $\models_{\mathfrak{A}} x=y[s]$, i.e., $s(x)=s(y)$, then we have $\bar{s}(t)=\bar{s}\left(t^{\prime}\right)$, where t is any term and t^{\prime} is obtained from t by replacing x at some places by y.

If α is $t_{1}=t_{2}$, then α^{\prime} is $t_{1}^{\prime}=t_{2}^{\prime}$ $\vDash{ }_{\mathfrak{A}} \alpha[s]$ iff $\bar{s}\left(t_{1}\right)=\bar{s}\left(t_{2}\right)$ iff $\bar{s}\left(t_{1}^{\prime}\right)=\bar{s}\left(t_{2}^{\prime}\right)$ iff $\models_{\mathfrak{A}} \alpha^{\prime}[s]$

If α is $P t_{1} \cdots t_{n}$, then α^{\prime} is $P t_{1}^{\prime} \cdots t_{n}^{\prime}$ $\models_{\mathfrak{A}} \alpha[s]$ iff $\left\langle\bar{s}\left(t_{1}\right), \ldots, \bar{s}\left(t_{n}\right)\right\rangle \in P^{\mathfrak{A}}$ iff $\left\langle\bar{s}\left(t_{1}^{\prime}\right), \ldots, \bar{s}\left(t_{n}^{\prime}\right)\right\rangle \in P^{\mathfrak{A}}$ iff $\models \mathfrak{A}^{\prime} \alpha^{\prime}[s]$

Validity of Logical Axioms

Proof (cont'd).
Ax2 $\left(\forall x \alpha \Rightarrow \alpha_{t}^{x}\right.$ for t substitutable for free x in $\left.\alpha\right)$
Lemma (25B)
For any term u, let u_{t}^{x} be obtained from u by replacing variable x in u by term t. (Always substitutable!) Then $\bar{s}\left(u_{t}^{x}\right)=\overline{s(x \mid \bar{s}(t))}(u)$.

Proof.
By induction on term u.

Validity of Logical Axioms

Proof (cont'd).
Lemma (Substitution Lemma)
If the term t is substitutable for the variable x in the wff φ, then $\models_{\mathfrak{A}} \varphi_{t}^{x}[s]$ iff $\models_{\mathfrak{A}} \varphi[s(x \mid \bar{s}(t))]$
Proof of Substitution Lemma.
By induction on φ,
case 1φ is atomic
E.g., $\varphi=P u$
$\models_{\mathfrak{A}} P u_{t}^{\times}[s]$ iff $\bar{s}\left(u_{t}^{\times}\right) \in P^{\mathfrak{A}}$ iff $\overline{s(x \mid \bar{s}(t))}(u) \in P^{\mathfrak{A}}$ iff $\models_{\mathfrak{A}} P u[s(x \mid \bar{s}(t))]$
case 2φ is $\neg \psi$ or $\psi \Rightarrow \theta$
The proof follows from inductive hypotheses (IH) for ψ and θ
case 3φ is $\forall y \psi$, with x does not occur free in φ $\varphi_{t}^{X}=\varphi$

Validity of Logical Axioms

Proof of Substitution Lemma (cont'd).
case 4φ is $\forall y \psi$, with x occurs free in φ
For t substitutable for x in φ, (1) y must not occur in t and (2) t is substitutable for x in ψ
By (1), for every $d \in|\mathfrak{A}|$,

$$
\begin{equation*}
\bar{s}(t)=\overline{s(y \mid d)}(t) \tag{*}
\end{equation*}
$$

Since $x \neq y, \varphi_{t}^{x}=\forall y \psi_{t}^{x}$
$\models_{\mathfrak{A}} \varphi_{t}^{x}[s]$ iff for every $d, \models_{\mathfrak{A}} \psi_{t}^{x}[s(y \mid d)]$ by $(*)$ iff for every $d, \models_{\mathfrak{A}} \psi[s(y \mid d)(x \mid \bar{s}(t))]$ by IH iff $\models_{\mathfrak{A}} \varphi[s(x \mid \bar{s}(t))]$

By induction, Substitution Lemma holds for all φ.

Validity of Logical Axioms

Proof (cont'd).
Back to Ax2 $\left(\forall x \varphi \Rightarrow \varphi_{t}^{x}\right)$:
Assume \mathfrak{A} satisfies $\forall x \varphi$ with s. To show $\models_{\mathfrak{A}} \varphi_{t}^{x}[s]$:
Since for any $d \in|\mathfrak{A}|, \models_{\mathfrak{A}} \varphi[s(x \mid d)]$, letting $d=\bar{s}(t)$ yields
$\models_{\mathfrak{A}} \varphi[s(x \mid \bar{s}(t))]$.
By Substitution Lemma, $\models_{\mathfrak{A}} \varphi_{t}^{x}[s]$.
That is, $A \times 2$ is valid.
Consequently, from the above we know every logical axiom is valid.

Q.E.D.

Soundness

Theorem (Soundness Theorem)
If $\Gamma \vdash \varphi$, then $\Gamma \models \varphi$
Proof.
Show by induction.

```
case 1 \varphi is a logical axiom, i.e., }\varphi\in
    By the previous lemma, }\models\varphi\mathrm{ and thus }\Gamma\models
    case 2 \varphi\in\Gamma
    \digamma
    case 3 \frac{\psi, \psi=>\varphi}{\varphi}
        By IH, }\Gamma\models\psi\mathrm{ and }\Gamma\models\psi=>
        It follows that }\Gamma\models
```


Soundness

Corollary (25C)
If $\vdash(\varphi \Leftrightarrow \psi)$, then φ and ψ are logically equivalent, i.e., $\varphi \models \neq \psi$
Proof.
$\vdash \varphi \Rightarrow \psi$ implies $\varphi \vdash \psi$ implies $\varphi \models \psi$
$\vdash \psi \Rightarrow \varphi$ implies $\psi \vdash \varphi$ implies $\psi \models \varphi$

Soundness

Corollary (25D)
If φ^{\prime} is an alphabetic variant of φ, then φ and φ^{\prime} are logically equivalent

Soundness

Corollary (25E)
If Γ is satisfiable, then Γ is consistent
Proof.
「 inconsistent
$\Rightarrow\left\{\begin{array}{l}\Gamma \vdash \varphi \\ \Gamma \vdash \neg \varphi\end{array}\right.$
$\Rightarrow\left\{\begin{array}{l}\Gamma \models \varphi \\ \Gamma \models \neg \varphi\end{array}\right.$
\Rightarrow 「 unsatisfiable
(This corollary is equivalent to Soundness Theorem.)
Recall Γ is consistent iff there is no formula φ such that both $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \varphi$ (syntactical)
Define Γ to be satisfiable iff there is some \mathfrak{A} and s such that \mathfrak{A} satisfies every member of Γ with s (semantical)

Completeness

Theorem (Completeness Theorem; Gödel, 1930)
(a) If $\Gamma \models \varphi$, then $\Gamma \vdash \varphi$
(b) If Γ is consistent, then Γ is satisfiable
(a) and (b) are equivalent
$\because(a) \Leftrightarrow$ If $\Gamma \nvdash \varphi$, then $\Gamma \not \vDash \varphi$
\Leftrightarrow If $\Gamma ; \neg \varphi$ is consistent, then $\Gamma ; \neg \varphi$ is satisfiable
$\Leftrightarrow(b)$

Completeness Theorem

Proof Outline (for (b)).
Steps 1-3 Extend Γ to Δ such that
(i) $\Gamma \subseteq \Delta$
(ii) Δ is consistent and maximal in the sense that for any formula, either $\alpha \in \Delta$ or $(\neg \alpha) \in \Delta$
(iii) For any formula φ and variable x, there is a constant c such that $\left(\neg \forall x \varphi \Rightarrow \neg \varphi_{c}^{x}\right) \in \Delta$
Step 4 From a structure \mathfrak{A} where members of Γ not containing $=$ can be satisfied. In particular, $|\mathfrak{A}|$ is the set of terms and $\left\langle t_{1}, \ldots, t_{n}\right\rangle \in P^{\mathfrak{A}}$ iff $P t_{1} \ldots t_{n} \in \Delta$
Steps 5,6 Modify \mathfrak{A} to work for formulas containing $=$

Completeness Theorem

Proof.
Step 1 Expand the language by adding a countably infinite set of new constant symbols. Then 「 remains a consistent set of wffs in the new language.

Step 2 For every wff φ in the new language and every variable x, we add the wff $\left(\neg \forall x \varphi \Rightarrow \neg \varphi_{c}^{x}\right)$ to Γ, for c to be some new constant symbol. (So c provides a counterexample to φ if any.) This can be done such that Γ together with the set Θ of all the added wffs is still consistent.

Step 3 Extend $\Gamma \cup \Theta$ to a consistent set maximal in the sense that for any wff φ either $\varphi \in \Delta$ or $(\neg \varphi) \in \Delta$. Note that Δ is deductively closed. That is, $\Delta \vdash \varphi \Rightarrow \Delta \nvdash \neg \varphi \Rightarrow(\neg \varphi) \notin \Delta \Rightarrow \varphi \in \Delta$.

Completeness Theorem

Proof (cont'd).
Step 4 From Δ, we construct a structure \mathfrak{A} for the new language, but with $=$ replaced by a new 2 -place predicate symbol E, \mathfrak{A} is such that
(a) $|\mathfrak{A}|=$ the set of all terms of the new language
(b) $\langle u, t\rangle \in E^{\mathfrak{A}}$ iff wff $(u=t) \in \Delta$
(c) $\left\langle t_{1}, \ldots, t_{n}\right\rangle \in P^{\mathfrak{A}}$ iff $P t_{1} \ldots t_{n} \in \Delta$
(d) $f^{\mathfrak{A}}\left(t_{1}, \ldots, t_{n}\right)=f t_{1} \ldots t_{n}$ and $c^{\mathfrak{A}}=c$

Besides define $s: V \rightarrow|\mathfrak{A}|$ be the identity function, i.e., $s(x)=x$ on V. Then for any term $t, \bar{s}(t)=t$. For any wff φ, let φ^{*} be obtained from φ by replacing $=$ by E. Then $=_{\mathfrak{A}} \varphi^{*}[s]$ iff $\varphi \in \Delta$. (Prove by induction on the $\#$ of places at which connective/quantifier symbols appear.)

Completeness Theorem

Proof (cont'd).

To see that \mathfrak{A} cannot be used directly in the language, consider 「 containing a sentence $\left(c_{1}=c_{2}\right)$, for c_{1} and c_{2} are distinct constant symbols. We have $\left\langle c_{1}^{\mathfrak{A}}, c_{2}^{\mathfrak{A}}\right\rangle \in E^{\mathfrak{A}}$ but $c_{1}^{\mathfrak{A}} \neq c_{2}^{\mathfrak{A}}$. It does not hold that $\models_{\mathfrak{A}}\left(c_{1}=c_{2}\right)[s]$ iff $\left(c_{1}=c_{2}\right) \in \Delta$. Rather we need a new structure \mathfrak{B} such that $c_{1}^{\mathfrak{B}}=c_{2}^{\mathfrak{B}}$.

Step 5 We obtain \mathfrak{B} as the quotient structure \mathfrak{A} / E of \mathfrak{A} modulo $E^{\mathfrak{A}}$. Note that $E^{\mathfrak{A}}$ is an equivalence relation on $|\mathfrak{A}|$ that forms a congruence relation for \mathfrak{A} :
(i) $E^{\mathfrak{A}}$ is an equivalence relation on $|\mathfrak{A}|$
(ii) $P^{\mathfrak{A}}$ is compatible with $E^{\mathfrak{A}}:\left\langle t_{1}, \ldots, t_{n}\right\rangle \in P^{\mathfrak{A}}$ and $\left\langle t_{i}, t_{i}^{\prime}\right\rangle \in E^{\mathfrak{A}}$ for $1 \leq i \leq n$ implies $\left\langle t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right\rangle \in P^{\mathfrak{A}}$
(iii) $f^{\mathfrak{A}}$ is compatible with $E^{\mathfrak{A}}:\left\langle t_{i}, t_{i}^{\prime}\right\rangle \in E^{\mathfrak{A}}$ for $1 \leq i \leq n$ implies

$$
\left\langle f^{\overline{\mathfrak{A}}}\left(t_{1}, \ldots, t_{n}\right), f_{\mathfrak{A}}\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)\right\rangle \in E^{\mathfrak{A}}
$$

Completeness Theorem

Proof (cont'd).
Let $[t]$ be the equivalence class of term t in $|\mathfrak{A}|$. We define \mathfrak{A} / E as follows.
(1) $|\mathfrak{A} / E|$ is the set of all equivalence classes of members of $|\mathfrak{A}|$
(2) $\left\langle\left[t_{1}\right], \ldots,\left[t_{n}\right]\right\rangle \in P^{\mathfrak{A} / E}$ iff $\left\langle t_{1}, \ldots, t_{n}\right\rangle \in P^{\mathfrak{A}}$
(3) $f^{\mathfrak{A} / E}\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right)=\left[f^{\mathfrak{A}}\left(t_{1}, \ldots, t_{n}\right)\right], c^{\mathfrak{A} / E}=\left[c^{\mathfrak{A}}\right]$

Let $h:|\mathfrak{A}| \rightarrow|\mathfrak{A} / E|$ such that $h(t)=[t]$. So h is a homomorphism of \mathfrak{A} onto \mathfrak{A} / E.
Hence for any φ :

$$
\begin{aligned}
\varphi \in \Delta & \Leftrightarrow \models_{\mathfrak{A}} \varphi^{*}[s] \\
& \Leftrightarrow \models_{\mathfrak{A} / E} \varphi^{*}[h \circ s] \text { (by Homomorphism Theorem) } \\
& \Leftrightarrow \models_{\mathfrak{A} / E} \varphi[h \circ s]\left(\left\langle[t],\left[t^{\prime}\right]\right\rangle \in E^{\mathfrak{A} / E} \text { iff }\left\langle t, t^{\prime}\right\rangle \in E^{\mathfrak{A}} \text { iff }[t]=\left[t^{\prime}\right] .\right.
\end{aligned}
$$

That is, \mathfrak{A} / E satisfies every member of Δ with $h \circ s$.

Completeness Theorem

Proof (cont'd).
Step 6 Restrict \mathfrak{A} / E to the original language. \mathfrak{A} / E satisfies every member of Γ with $h \circ s$.
Q.E.D.

Compactness

Theorem (Compactness Theorem)

(a) If $\Gamma \models \varphi$, then for some finite $\Gamma_{0} \subseteq \Gamma$ we have $\Gamma_{0} \models \varphi$
(b) If every finite subset Γ_{0} of Γ is satisfiable, then Γ is satisfiable In particular, a set Σ of sentences has a model iff every finite subset has a model. (Similar to that in sentential logic.)
Proof.
(a)

$$
\begin{aligned}
\ulcorner\models \varphi & \Rightarrow\ulcorner\vdash \varphi \\
& \Rightarrow \Gamma_{0} \vdash \varphi \text { (deduction is finite) } \\
& \Rightarrow \Gamma_{0} \models \varphi
\end{aligned}
$$

Compactness Theorem

Proof (cont'd).
(b) If every finite subset Γ_{0} of Γ is satisfiable, then by Soundness Theorem every Γ_{0} is consistent. Since deduction is finite, Γ is consistent. By Completeness Theorem, Γ is satisfiable.
Q.E.D.

Note that

- (a) and (b) of Compactness Theorem are equivalent
- Compactness Theorem involves only semantical notions

Enumerability

Theorem (Enumerability Theorem)

For a reasonable language, the set of valid wffs can be effectively enumerated

A language is reasonable if its set of parameters can be effectively enumerated and

$$
\begin{aligned}
& \{\langle P, n\rangle \mid P \text { is an } n \text {-place predicate symbol }\} \text { and } \\
& \{\langle f, n\rangle \mid f \text { is an } n \text {-place function symbol }\}
\end{aligned}
$$

are decidable

Enumerability

Corollary (25F)

Let Γ be a decidable set of formulas in a reasonable language.
(a) The set $\{\varphi \mid \Gamma \vdash \varphi\}$ of theorems of Γ is effectively enumerable
(b) The set $\{\varphi \mid \Gamma \models \varphi\}$ of formulas logically implied by Γ is effectively enumerable

Enumerability

Corollary (25G)
Assume that Γ is a decidable set of formulas in a reasonable language, and for any sentence σ either $\Gamma \models \sigma$ or $\Gamma \models \neg \sigma$. Then the set of sentences implied by Γ is decidable.
(related to Corollary 26I)

