Special Topics on Applied Mathematical Logic

Spring 2012

Lecture 07

Jie-Hong Roland Jiang

National Taiwan University

April 23, 2012

Outline

First-Order Logic

Models of Theories Decision Problems and Finite Structures Size of Models Theories

Models of Theories

Models of theories in the light of soundness and completeness theorems

- ▶ The sentence $\forall v_1 \forall v_2 \exists v_3 (v_1 < v_2 \Rightarrow (v_3 \neq v_2 \land v_2 < v_3))$ has only infinite models (i.e., $|\mathfrak{A}|$ infinite)
- ▶ The sentence $\forall v_1 \forall v_2 v_1 = v_2$ has only finite models (singleton $|\mathfrak{A}|$)

If a sentence σ has only infinite models, then $\neg \sigma$ is *finitely valid*, i.e., true in every finite structure. (: either $\models_{\mathfrak{A}} \sigma$ or $\models_{\mathfrak{A}} \neg \sigma$ for any sentence σ)

Models of Theories

Theorem (26A)

If a set Σ of sentences has arbitrarily large finite models, then it has an infinite model.

Proof.

Let λ_k be

$$\exists v_1 \cdots \exists v_k (v_1 \neq v_2 \wedge \cdots \wedge v_1 \neq v_k \wedge v_2 \neq v_3 \wedge \cdots \wedge v_2 \neq v_k \wedge \cdots \wedge v_{k-1} \neq v_k)$$

for $k \geq 2$. Then any finite subset of $\Sigma \cup \{\lambda_2, \lambda_3, \ldots\}$ has a model. By compactness, the entire set has an infinite model.

Decision Problems and Finite Structures

Definition

For a structure \mathfrak{A} , the **theory of** \mathfrak{A} , written $\mathrm{Th}\mathfrak{A}$, is the set of all sentences true in \mathfrak{A} .

We study if $Th\mathfrak{A}$ is decidable for any finite structure, and if the set of sentences having finite models is decidable.

Decision Problems and Finite Structures

Observations:

- 1. Any finite structure $\mathfrak A$ is isomorphic to a structure with universe $\{1, 2, \ldots, n\}$ for n being the size of $\mathfrak A$
- 2. A finite structure for a *finite language* (with finitely many parameters) can be specified by a finite string of symbols
- 3. Given a finite structure for a finite language, a wff φ , and an assignment s, we can effectively decide if $\models_{\mathfrak{A}} \varphi[s]$. Restricting ourselves to sentences, we can effectively decide if \mathfrak{A} is a model of σ .

Theorem (26C)

For a finite structure $\mathfrak A$ in a finite language, $\operatorname{Th} \mathfrak A$ is decidable $(\because \text{ either } \models_{\mathfrak A} \sigma \text{ or } \models_{\mathfrak A} \neg \sigma \text{ for any sentence } \sigma)$

Decision Problems and Finite Structures

Observations (cont'd):

4. Given a sentence σ and a positive integer n, we can effectively decide if σ has an n-element model. That is, the relation

$$\{\langle \sigma, n \rangle \mid \sigma \text{ has a model of size } n\}$$

is decidable.

(Note that there are only finitely many structures to check. E.g., if the language has only parameters \forall and a 2-place predicate symbol E, then there are 2^{n^2} different structures. By Observation 3, we can decide if σ has a model of size n.)

Decision Problems and Finite Structures

Observations (cont'd):

5. The set $\{n \mid \sigma \text{ has a model of size } n\}$ of any sentence σ is a decidable set of positive integers

Theorem (26D)

For a finite language, $\{\sigma \mid \sigma \text{ has a finite model}\}\$ is effectively enumerable

Proof.

Given σ , first check if σ has a model of size one by Observation 4. If not, try size 2, and so on.

Decision Problems and Finite Structures

Corollary (26E)

For a finite language, let Φ be the set of sentences true in every finite structure. Then its complement $\overline{\Phi}$ is effectively enumerable.

Proof.

 $\sigma \in \overline{\Phi}$ iff $(\neg \sigma)$ has a finite model. We can apply the semidecision procedure of the previous theorem to $(\neg \sigma)$.

Decision Problems and Finite Structures

Theorem (Trakhtenbrot, 1950)

The set of sentences

 $\Phi = \{ \sigma \mid \sigma \text{ is true in every finite structure} \}$

(i.e., σ is valid for finite structures) is not decidable or effectively enumerable

- ► As a consequence of Trakhtenbrot's theorem, Enumerability Theorem for finite structures only does not hold
 - ▶ Recall Enumerability Theorem says: For a reasonable language, the set of valid wffs can be effectively enumerated.

In the proof of Completeness Theorem, if the language is countable, then $|\mathfrak{A}/E|$ is a countable set. Hence a consistent set of sentences in a countable language has a countable model.

Size of Models

Theorem (Löwenheim-Skolem Theorem, 1915)

- (a) Let Γ be a satisfiable set of formulas in a countable language. Then Γ is satisfiable in some countable structure.
- (b) Let Σ be a set of sentences in a countable language. If Σ has any model, then it has a countable model.

Proof.

 Γ must be consistent (by Soundness Theorem). Then Γ can be satisfied in a countable structure (by Completeness Theorem with the remark of the previous slide).

Theorem

For any structure $\mathfrak A$ for a countable language, there is a countable elementarily equivalent structure $\mathfrak B$

Proof.

If
$$\mathfrak B$$
 is a (countable) model of $\mathrm{Th}\mathfrak A$, then $\models_{\mathfrak A}\sigma \ \Rightarrow \ \sigma \in \mathrm{Th}\mathfrak A \ \Rightarrow \ \models_{\mathfrak B}\sigma \ \text{and}$ $\not\models_{\mathfrak A}\sigma \ \Rightarrow \ \models_{\mathfrak A}\neg\sigma \ \Rightarrow \ (\neg\sigma)\in \mathrm{Th}\mathfrak A \ \Rightarrow \ \models_{\mathfrak B}\neg\sigma \ \Rightarrow \ \not\models_{\mathfrak B}\sigma.$ Hence $\mathfrak A \equiv \mathfrak B$.

Size of Models

Theorem (Löwenheim-Skolem Theorem)

- (a) Let Γ be a satisfiable set of formulas in a language of cardinality λ . Then Γ is satisfiable in some structure of size no greater than λ .
- (b) Let Σ be a set of sentences in a language of cardinality λ . If Σ has any model, then it has a model of cardinality no greater than λ .

Let $\mathfrak B$ be a countable structure. Is there an uncountable $\mathfrak A$ such that $\mathfrak A\equiv \mathfrak B?$

Yes, if B is infinite. No, otherwise.

Size of Models

Theorem (L-S-Tarski Theorem)

Let Γ be a satisfiable set of formulas in a language of cardinality λ , and assume Γ is satisfiable in some infinite structure. Then for every cardinal $\kappa \geq \lambda$, there is a structure of cardinality κ in which Γ is satisfiable.

Corollary (26F)

- (a) Let Σ be a set of sentences in a countable language. If Σ has some infinite model, then Σ has models of every infinite cardinality.
- (b) Let $\mathfrak A$ be an infinite structure for a countable language. Then for any infinite cardinal λ , there is a structure $\mathfrak B$ of cardinality λ such that $\mathfrak B \equiv \mathfrak A$.

Mod vs. Th

 $\mod au$: the *class* of all models of sentence au

 $\mathrm{Mod}\Sigma$: the *class* of all models of all sentences in Σ

 $\mathrm{Th}\mathfrak{A}$: the *set* of all sentences true in \mathfrak{A}

 $\mathrm{Th}\mathcal{K}:$ the set of all sentences true in every member of $\mathcal{K},$

where ${\cal K}$ is a class of structures

Definition

A theory is a set of sentences closed under logical implication

- ▶ For a theory T, if $T \models \sigma$, then $\sigma \in T$
- ► E.g., the smallest theory: the set of valid sentences of the language the largest theory: the set of all the sentences of the language (the only unsatisfiable theory)
- "theory" vs. "theorem"

Theories

Definition

For a class \mathcal{K} of structures for the language, the **theory of** \mathcal{K} is $\mathrm{Th}\mathcal{K} = \{\sigma \mid \sigma \text{ is true in every member of } \mathcal{K}\}$

Theorem (26G)

 $\mathrm{Th}\mathcal{K}$ is indeed a theory

Proof.

Suppose σ is true in every model of $\operatorname{Th}\mathcal{K}$. Since any member of \mathcal{K} is a model of $\operatorname{Th}\mathcal{K}$, σ is true in every member of \mathcal{K} . $\sigma \in \operatorname{Th}\mathcal{K}$ ($\sigma \notin \operatorname{Th}\mathcal{K}$, then $\exists \mathfrak{A} \in \mathcal{K}, \not\models_{\mathfrak{A}} \sigma$, then $\operatorname{Th}\mathcal{K} \not\models \sigma$)

Corollary (26B)

The class of all finite structures (for a fixed language) is not EC_{Δ} ; the class of all infinite structures is not EC (but EC_{Δ}).

► This corollary refers to Theorem 26A

Theories

 $\operatorname{ThMod}\Sigma$ is the set of all sentences *true* in all models of Σ . That is, the set of all sentences *logically implied by* Σ .

Definition

The set of **consequences** of Σ , $Cn\Sigma = {\sigma \mid \Sigma \models \sigma} = \mathrm{ThMod}\Sigma$

- ▶ Hence a set T of sentences is a theory iff $T = \operatorname{Cn} T$
- ► E.g., set theory is the set of consequences of the axioms for set theory

Definition

A theory is **complete** iff for every sentence σ , either $\sigma \in T$ or $(\neg \sigma) \in T$

- ▶ E.g., Th $\mathfrak A$ is always a complete theory for any structure $\mathfrak A$ (:: either $\models_{\mathfrak A} \sigma$ or $\models_{\mathfrak A} \neg \sigma$: either $\sigma \in \operatorname{Th} \mathfrak A$ or $\neg \sigma \in \operatorname{Th} \mathfrak A$)
- ▶ Th \mathcal{K} is a complete theory iff any two members of \mathcal{K} are elementarily equivalent. ($\mathfrak{A} \equiv \mathfrak{B}$ iff $\forall \sigma, \models_{\mathfrak{A}} \sigma \Leftrightarrow \models_{\mathfrak{B}} \sigma$)
- ► A theory *T* is complete iff any two models of *T* are elementarily equivalent

Theories

Definition

A theory T is **axiomatizable** iff there is a *decidable* (existing effective procedures deciding membership) set Σ of sentences such that $T=\mathrm{Cn}\Sigma$

Definition

A theory T is **finitely axiomatizable** iff $T=\mathrm{Cn}\Sigma$ for some finite set Σ of sentences

$$(Cn\Sigma = Cn\sigma \text{ with } \sigma = \bigwedge_{\sigma_i \in \Sigma} \sigma_i \text{ for } \Sigma \text{ finite})$$

Theorem (26H)

If $\mathrm{Cn}\Sigma$ is finitely axiomatizable, then there is a finite $\Sigma_0\subseteq\Sigma$ such that $\mathrm{Cn}\Sigma_0=\mathrm{Cn}\Sigma$

Proof.

From the definition of "finitely axiomatizable," it only says there is some Σ_0 with $\mathrm{Cn}\Sigma_0=\mathrm{Cn}\Sigma$. However we don't know if $\Sigma_0=\Sigma$.

Theories

Corollary (261)

- (a) An axiomatizable theory (in a reasonable language) is effectively enumerable
- (b) A complete axiomatizable theory (in a reasonable language) is decidable

(Recall Corollary 25F and 25G)

- ▶ (§3.7) Set theory (if consistent) is not decidable and not complete
- ▶ (§3.5) Number theory is complete but not effectively enumerable and hence not axiomatizable

Theories

Definition

A theory T is κ -categorical for a cardinal κ iff all models of T having cardinality κ are isomorphic

(If T is a theory in a language of cardinality λ , then we must demand $\lambda \leq \kappa$)

▶ A theory T is \aleph_0 -categorical iff all the infinite countable models of T are isomorphic

Theorem (Łoś-Vaught Test, 1954)

Let T be a theory in a countable language. Assume T has no finite models.

- (a) If T is \aleph_0 -categorical, then T is complete
- (b) If T is κ -categorical for some infinite cardinal κ , then T is complete

Proof.

By LST Theorem, for any 2 infinite models $\mathfrak A$ and $\mathfrak B$, there exist structures $\mathfrak A'\equiv\mathfrak A$ and $\mathfrak B'\equiv\mathfrak B$ with cardinality κ . Since $\mathfrak A'\cong\mathfrak B'$, we have $\mathfrak A\equiv\mathfrak A'\cong\mathfrak B'\equiv\mathfrak B$. $\therefore\mathfrak A\equiv\mathfrak B$

(The converse is not true as there are complete theories not κ -categorical for any κ)