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Incompleteness

Gödel’s incompleteness theorems, proved by Kurt Gödel in 1931,
are two theorems stating inherent limitations of formal systems for
arithmetic. The theorems are of considerable importance to the
philosophy of mathematics. They are widely regarded as showing
that Hilbert’s program to find a complete and consistent set of
axioms for all of mathematics is impossible, thus giving a negative
answer to Hilbert’s second problem.
[See Wikipedia about “incompleteness theorems”]

Incompleteness Theorems

Theorem (Gödel’s first incompleteness theorem)

Any effectively generated theory capable of expressing elementary
arithmetic cannot be both consistent and complete. In particular,
for any consistent, effectively generated formal theory that proves
certain basic arithmetic truths, there is an arithmetical statement
that is true, but not provable in the theory.

Theorem (Gödel’s second incompleteness theorem)

For any formal effectively generated theory T including basic
arithmetical truths and also certain truths about formal provability,
T includes a statement of its own consistency if and only if T is
inconsistent.

[Wiki about “incompleteness theorems”]



Incompleteness

To informally introduce incompleteness theorems, we follow
Gödel’s Proof by E. Nagel and J. Newman, 1958.

Gödel Numbering

It is possible to assign a unique number to each parameter, each
logical symbol, each formula, and each proof.

E.g., in the language of number theory

symbols:
parameters (Gödel numbers) logical symbols (Gödel numbers)

∀ (0) ( (1)
0 (2) ) (3)
S (4) ¬ (5)
< (6) ⇒ (7)
+ (8) = (9)
· (10) v1 (11)
E (12) v2 (13)

...



Gödel Numbering

E.g., (cont’d)

formulas:
Let ϕ be

¬ ∀ v1 ¬ ( v1 = S v2 )

5 0 11 5 1 11 9 4 13 3

The Gödel number of ϕ is
25 · 30 · 511 · 75 · 111 · 1311 · 179 · 194 · 2313 · 293

� Primes are used to record the order of a sequence

proofs:
A proof α0 ⇒ α1 ⇒ . . . ⇒ αn can be flatten into a big formula.
So its Gödel number is obtainable as well.

Gödel Numbering

Given a Gödel number, one can uniquely determine its represented
parameter, logical symbol, formula, or proof.



Arithmetization of Metamathematics

� Since every expression in the language is associated with a
Gödel number, a metamathematical statement about
expressions and their relations to one another can be
constructed as a statement about the corresponding Gödel
numbers and their arithmetical relations to one another.

E.g., the Gödel number of ϕ1 is a factor of the Gödel number
of ϕ2 if and only if ϕ1 is an initial part of ϕ2 (for instance,
ϕ1 = (v1 = v2) and ϕ2 = ((v1 = v2) ⇒ (v1 = v3)))

Arithmetization of Metamathematics

� Let Pv(x , z) denote the metamathematical statement: “The
sequence of formulas with Gödel number x is a proof of the
formula with Gödel number z .”

� The statement can be represented by a formula in the language
representing a purely arithmetical relation between x and z

� Pv(x , z) is a relation on a pair of Gödel numbers
� What do Pv(x , z) and ¬Pv(x , z) mean?



Arithmetization of Metamathematics

Consider the formula ∃x(x = Sy), i.e., formally ¬∀v1¬(v1 = Sv2).
Let m be its Gödel number.

� What does ∃x(x = Sm) mean?

� What is the Gödel number of the formula ∃x(x = Sm)?

Arithmetization of Metamathematics

� Let “sub(m, 13, m)” mean the “The Gödel number of the
formula obtained from the formula with Gödel number m, by
substituting for the variable with the Gödel number 13, i.e.,
v2, the numeral for m.”

� Numerals are number names, e.g., number three is named by
(Arabic) numeral “3”

� What does “sub(v2, 13, v2)” mean?
� The Gödel number of the formula obtained from the formula

with Gödel number v2, by substituting for the variable with
Gödel number 13 the numeral for v2



Gödel’s Argument

(i) Consider ∀v1¬Pv(v1, sub(v2, 13, v2))
� The formula is in the language of number theory and has a

Gödel number that can be calculated, say n
� The corresponding metamathematical statement is “The

formula sub(v2, 13, v2) is not provable”

Let G denote ∀v1¬Pv(v1, sub(n, 13, n))
� What is the Gödel number of G?

� It equals sub(n, 13, n)
� Since G is not provable, this formula can be constructed as

asserting of itself that it is not provable

Gödel’s Argument

(ii) We can show that
� If G were provable, then ¬G would also be provable
� If ¬G were provable, then G would also be provable

=⇒ G is provable iff ¬G is provable
=⇒ The axioms (of number theory) are not consistent
=⇒ If the axioms are consistent, then G is undecidable, that
is, neither G nor ¬G can be deduced from the axioms



Gödel’s Argument

(iii) Although G is undeciable if the axioms are consistent, it can
be shown by metamathematical reasoning that G is true.
That is, G formulas a complex but definite numerical property
that necessarily holds of all integers.
This is because

1. For consistent axioms, G is not provable
2. The statement “G is not provable” is represented within

arithmetic by the very formula mentioned in the statement
3. Metamathematical statements have been mapped onto the

arithmetical formula in such a way that true metamathematical
statements correspond to true arithmetical formulas

Gödel’s Argument

(iv) Definition

The axioms of a deductive system are complete if and only if every
true statement that can be expressed in the system is formally
deducible from the axioms

� Since G is a true formula of arithmetic (number theory) not
formally deducible within it, the axioms of arithmetic are
incomplete

� In fact, the incompleteness is essential. That is, even if G were
added as a further axiom, the augmented set would still not
suffice to yield formally all arithmetical truths. It shows a
fundamental limitation in the power of the axiomatic method!



Gödel’s Argument

(v) To show:
The conditional metamathematical statement “If arithmetic is
consistent (denoted as C ), it is incomplete (denoted as I )”
taken as a whole is represented by a provable formula within
formalized arithmetic

C : ∃v2∀v1¬Pv(v1, v2)
� There is at least one formula of arithmetic that is not provable,

i.e., arithmetic is consistent (∵ if inconsistent, everything can
be proved.)

I : G
� There is a true arithmetical statement that is not formally

provable in arithmetic

We will not show but it can be proved that the formula C ⇒ I
is provable. By modus ponens, C is not provable.

Gödel’s Argument

� Note that if the metamathematical statement of C could be
established by any argument that can be mapped onto a
sequence of formulas which constitutes a proof in the
language of number theory, the formula C would itself be
provable. But this is impossible if arithmetic is consistent.

� So we conclude that if arithmetic is consistent, its consistency
cannot be established by any metamathematical reasoning
that can be represented within the formalism of arithmetic!



Gödel’s Argument

Remark:
The above conclusion does not exclude a metamathematical proof
of the consistency of arithmetic. What is excluded is a proof of
consistency that can be “mirrored” by the formal deductions of
arithmetic. In fact, metamathematical proofs of the consistency of
arithmetic have been shown by Gentzen in 1936. The class of
inference rules needs to be enlarged (not finitistic) if the
consistency of arithmetic is to be established.


