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Design Automation?
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Course Info (1/4)
Instructor

Jie-Hong R. Jiang
email: jhjiang@cc.ee.ntu.edu.tw
office: 242, EE2 Building
phone: (02)3366-3685
office hour: 15:00-17:00 Fridays

TA
Po-Ya Hsu
email: neilhahaha@eda.ee.ntu.edu.tw
phone: (02)3366-3700 ext 6406
office: 406, BL Hall
office hour: 13:00-15:00 Mondays

Email contact list
NTU email addresses of enrolled students will be used for future contact

Course webpage
http://cc.ee.ntu.edu.tw/~jhjiang/instruction/courses/spring13-eda/eda.html
please look up the webpage frequently to keep updated
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Course Info (2/4)
Grading rules (raw score)

 Homework 40% 
 Midterm 25%
 Final Quiz 10%
 Project 25%
(Note that the final grade is based on grading on a curve.)

Homework
 discussions encouraged, but solutions should be written down individually and separately 
 4 assignments in total
 late homework (20% off per day)

Midterm exam/final quiz
 in-class exam

Project
 Team or individual work on selected topics (CAD Contest problems / paper reading / 

implementation / problem solving, etc.)

Academic integrity: no plagiarism allowed
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Course Info (3/4)
 Prerequisite

 Switching circuits and logic design, or by instructor’s consent

 Main lecture basis
 Lecture slides and/or handouts

 Textbook
 Y.-W. Chang, K.-T. Cheng, and L.-T. Wang (Editors). Electronic 

Design Automation: Synthesis, Verification, and Test. Elsevier, 
2009.

 Reference
 S. H. Gerez. Algorithms for VLSI Design Automation. John 

Wiley & Sons, 1999.
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Course Info (4/4)

Objectives:
 Peep into EDA
Motivate interest
 Learn problem formulation and solving
Have fun!
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FYI

2013 CAD Contest will be announced in 
March
An international event
 Program submission deadline in Sep. 2013
Award ceremony in ICCAD, Nov. 2013
 http://cad_contest.cs.nctu.edu.tw/cad13/

2012 CAD Contest
 http://cad_contest.cs.nctu.edu.tw/cad12/
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FAQ
 What’s EDA?

 What are we concerned about?
 What’s unique in EDA compared to other EE/CS disciplines?

 What time is good to take Intro to EDA?
 Am I qualified? Do I have enough backgrounds?

 How’s the loading?
 Program to death!?

 What kind of skills and domain knowledge can I learn? Other 
applications?

 What are the career opportunities?

 Yet another question?
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Course Outline
 Introduction

 Computation in a nutshell

 High-level synthesis 

 Logic synthesis

 Formal verification 

 Physical design 

 Testing 

 Advanced topics
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Introduction
 EDA, where HW and SW meet each other

Electrical engineering Computer science

Hardware

VLSI design
Microelectronics & circuit theory
DSP/multimedia
Communications...

Software

Algorithms & data structure
Computation theory
Programming language
Scientific computing ...
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Introduction

EDA is concerned about HW/SW design in 
terms of
Correctness
 Productivity
Optimality
Scalability
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Introduction

EDA (in a strict sense) and industries
 Impact - solving a problem may benefit vast 

electronic designs

Semiconductor

IC

EDA
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Introduction
 Today’s contents:

 Introduction to VLSI design flow, methodologies, and 
styles

 Introduction to VLSI design automation tools
 Semiconductor technology roadmap
 CMOS technology

 Reading:
 Chapters 1, 2
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Milestones of IC Industry
 1947: Bardeen, Brattain & Shockly invented the transistor, 

foundation of the IC industry.
 1952: SONY introduced the first transistor-based radio.
 1958: Kilby invented integrated circuits (ICs).
 1965: Moore’s law.
 1968: Noyce and Moore founded Intel.
 1970: Intel introduced 1 K DRAM.

First transistor First IC by Noyce
First IC by Kilby
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Milestones of IC Industry
 1971: Intel announced 4-bit 4004 microprocessors (2250 

transistors).
 1976/81: Apple II/IBM PC.
 1985: Intel began focusing on microprocessor products.
 1987: TSMC was founded (fabless IC design).
 1991: ARM introduced its first embeddable RISC IP core (chipless

IC design).

4004

Intel founders IBM PC
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Milestones of IC Industry
 1996: Samsung introduced 1G DRAM.
 1998: IBM announces 1GHz experimental microprocessor. 
 1999/earlier: System-on-Chip (SoC) methodology applications.
 2002/earlier: System-in-Package (SiP) technology
 An Intel P4 processor contains 42 million transistors (1 billion by 

2005)
 Today, we produce > 1 billion transistors per person.
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IC Design & Manufacturing Process
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From Wafer to Chip
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Standard VLSI Design Cycles
1. System specification
2. Functional design
3. Logic synthesis
4. Circuit design
5. Physical design and verification
6. Fabrication 
7. Packaging

 Other tasks involved: testing, simulation, etc.
 Design metrics: area, speed, power dissipation, noise, design 

time, testability, etc.
 Design revolution: interconnect (not gate) delay dominates 

circuit performance in deep submicron era.
 Interconnects are determined in physical design.
 Shall consider interconnections in early design stages.
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VLSI Design Flow



21

VLSI Design Flow
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Design Actions
 Synthesis: increasing information about the 

design by providing more detail (e.g., logic 
synthesis, physical synthesis).

 Analysis: collecting information on the quality of 
the design (e.g., timing analysis).

 Verification: checking whether a synthesis step 
has left the specification intact (e.g., function, 
layout verification).

Optimization: increasing the quality of the 
design by rearrangements in a given description 
(e.g., logic optimizer, timing optimizer).

Design management: storage of design data, 
cooperation between tools, design flow, etc. (e.g., 
database).
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Design Issues and Tools
 System-level design

 Partitioning into hardware and software, co-
design/simulation, etc.

 Cost estimation, design-space exploration
 Algorithmic-level design

 Behavioral descriptions (e.g. in Verilog, VHDL)
 High-level simulation

 From algorithms to hardware modules
 High-level (or architectural) synthesis

 Logic design:
 Register-transfer level and logic synthesis
 Gate-level simulation (functionality, power, etc)
 Timing analysis
 Formal verification
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Logic Design/Synthesis

 Logic synthesis programs transform Boolean expressions 
into logic gate networks in a particular library.

 Optimization goals: minimize area, delay, power, etc
 Technology-independent optimization: logic optimization

 Optimizes Boolean expression equivalent.
 Technology-dependent optimization: technology 

mapping/library binding
 Maps Boolean expressions into a particular cell library.
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Logic Optimization Examples
 Two-level: minimize the # of product terms.



 Multi-level: minimize the #'s of literals, variables.
 E.g., equations are optimized using a smaller number of literals.

 Methods/CAD tools: Quine-McCluskey method (exponential-time 
exact algorithm),  Espresso (heuristics for two-level logic), SIS 
(heuristics for multi-level logic),  ABC, etc.
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Design Issues and Tools (cont’d)
 Transistor-level design

 Switch-level simulation
 Circuit simulation

 Physical (layout) design:
 Partitioning
 Floorplanning and placement 
 Routing
 Layout editing and compaction
 Design-rule checking
 Layout extraction

 Design management
 Data bases, frameworks, etc.

 Silicon compilation: from algorithm to mask patterns
 The idea is approached more and more, but still far away from 

a single push-button operation
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Circuit Simulation
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Physical Design

 Physical design converts a circuit description into a geometric description.
 The description is used to manufacture a chip.
 Physical design cycle:

1. Logic partitioning
2. Floorplanning and placement
3. Routing
4. Compaction

 Others: circuit extraction, timing verification and design rule checking
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Physical Design Flow
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Floorplan Examples

Pentium 4PowerPC 604

A floorplan
with 9800 

blocks
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Routing Example
 0.18um technology, two layers, pitch = 1 um, 8109 nets
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IC Design Considerations

 Several conflicting considerations:
 Design complexity: large number of devices/transistors
 Performance: optimization requirements for high 

performance
 Time-to-market: about a 15% gain for early birds
 Cost: die area, packaging, testing, etc.
 Others: power, signal integrity (noise, etc), testability, 

reliability, manufacturability, etc.
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Moore’s Law: Driving Technology 
Advances
 Logic capacity doubles per IC at a regular interval

 Moore: Logic capacity doubles per IC every two years (1975)
 D. House: Computer performance doubles every 18 months (1975)

4004 80386 PentiumPro8086 Pentium 4

Intel uP
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Technology Roadmap for 
Semiconductors

 Source: International Technology Roadmap for Semiconductors, 
Nov, 2002. http://www.itrs.net/ntrs/publntrs.nsf

 Deep submicron technology: node (feature size) < 0.25 m
 Nanometer Technology: node < 0.1 m
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Nanometer Design Challenges
 In 2005, feature size  0.1 m,  P frequency  3.5 GHz, die size 

520 mm2,  P transistor count per chip  200M, wiring level  8 
layers, supply voltage  1 V, power consumption  160 W.
 Chip complexity 

effective design and verification methodology? more 
efficient optimization algorithms? time-to-market?

 Power consumption 
power & thermal issues?

 Supply voltage 
signal integrity (noise, IR drop, etc)?

 Feature size, dimension
sub-wavelength lithography (impacts of process 

variation)? noise? wire coupling? reliability? 
manufacturability? 3D layout?

 Frequency
 interconnect delay? electromagnetic field effects? 

timing closure?
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Design Complexity Challenges
 Design issues

 Design space exploration
 More efficient optimization algorithms

 Verification issues
 State explosion problem
 For modern designs, about 60%-80% of 

the overall design time was spent on 
verification; 3-to-1 head count ratio 
between verification engineers and logic 
designers

Pentium 4

PowerPC 604

10     atoms80

10   transistors7

100,000 registers

10           states
30,000
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Power Dissipation Challenges
 Power density increases exponentially!
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Semiconductor Fabrication Challenges
 Feature-size shrinking approaches physical limitation
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Design Productivity Challenges

 Human factors may limit design more than technology
 Keys to solve the productivity crisis: hierarchical design, 

abstraction, CAD (tool & methodology), IP reuse, etc.

1980 1985 1990 2000 20101995 2005

0.01M

0.1M

1M

10M

100M

1,000M

10,000MLogic transistors per chip 0.1K

1K

10K

100K

1,000K

10,000K

100,000K Productivity in transistors 
per staff-m

onth21%/yr compound 
productivity growth rate

58%/yr compound 
complexity growth rate Complexity 

limiter
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Cope with Complexity
 Hierarchical design

 Design cannot be done in one step  partition the design 
hierarchically

 Hierarchy: something is composed of simpler things

flattened

hierarchical
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Cope with Complexity
 Abstraction

 Trim away unnecessarily detailed info at proper abstract levels
 Design domains:

 Behavioral: black box view
 Structural: interconnection of subblocks
 Physical: layout properties 
 Each design domain has its own hierarchy

system

module

circuit

gate

device
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Three Design Views
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Gajski’s Y-Chart
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Top-Down Structural Design
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Design Styles

There are various design styles:
 Full custom, standard cell, sea of gates, FPGA, 

etc.

Why having different design styles?
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Design Styles
 Specific design styles shall require specific CAD 

tools
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SSI/SPLD Design Style
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Full Custom Design Style
 Designers can control the shape of all mask patterns
 Designers can specify the design up to the level of 

individual transistors
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Standard Cell Design Style
 Selects pre-designed cells (of same height) to 

implement logic
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Standard Cell Example
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Gate Array Design Style
 Prefabricates a transistor array
 Needs wiring customization to implement logic
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FPGA Design Style
 Logic and interconnects 

are both prefabricated
 Illustrated by a symmetric 

array-based FPGA
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Array-Based FPGA Example

Lucent 15K ORCA FPGA 
•0.5 um 3LM CMOS
• 2.45 M Transistors
• 1600 Flip-flops
• 25K bit user RAM
• 320 I/Os
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FPGA Design Process
 Illustrated by a symmetric array-based FPGA
 No fabrication is needed
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Comparisons of Design Styles
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Comparisons of Design Styles
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Design Style Trade-offs
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MOS Transistors
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Complementary MOS (CMOS)
 The most popular VLSI technology (v.s. BiCMOS, nMOS)
 CMOS uses both n-channel and p-channel transistors
 Advantages: lower power dissipation, higher regularity, more 

reliable performance, higher noise margin, larger fanout, etc. 
 Each type of transistor must sit in a material of the 

complementary type (the reverse-biased diodes prevent 
unwanted current flow)
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CMOS Inverter
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CMOS Inverter Cross Section
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CMOS NAND Gate
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CMOS NOR Gate
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Basic CMOS Logic Library
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Construction of Compound Gates (1/2)
 Example: 
 Step 1 (n-network): Invert F to derive n-network



 Step 2 (n-network): Make connections of transistors: 
 AND  Series connection
 OR  Parallel connection
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Construction of Compound Gates (2/2)
 Step 3 (p-network): Expand F to derive p-network


 each input is inverted

 Step 4 (p-network): Make connections of transistors (same 
as Step 2).

 Step 5: Connect the n-network to GND (typically, 0V) and 
the p-network to VDD (5V, 3.3V, or 2.5V, etc).

67

Complex CMOS Gate
 The functions realized by the n and p networks must be 

complementary, and one of the networks must conduct for 
every input combination

 Duality is not necessary
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CMOS Properties
 There is always a path from one supply (VDD or 

GND) to the output.
 There is never a path from one supply to the 

other. (This  is the basis for the low power 
dissipation in CMOS--virtually no static power 
dissipation.)

 There is a momentary drain of current (and thus 
power consumption) when the gate switches from 
one state to another.
 Thus, CMOS circuits have dynamic power dissipation.
 The amount of power depends on the switching 

frequency.
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Stick Diagram
 Intermediate representation between the transistor level 

and the mask (layout) level. 
 Gives topological information (identifies different layers and 

their relationship)
 Assumes that wires have no width.
 Possible to translate stick diagram automatically to layout 

with correct design rules.
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Stick Diagram
 When the same material (on the same layer) touch or cross, they are 

connected and belong to the same electrical node.

 When polysilicon crosses N or P diffusion, an N or P transistor is formed. 
 Polysilicon is drawn on top of diffusion.
 Diffusion must be drawn connecting the source and the drain.
 Gate is automatically self-aligned during fabrication.

 When a metal line needs to be connected to one of the other three 
conductors, a contact cut (via) is required.
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CMOS Inverter Stick Diagram
 Basic layout

 More area efficient layout
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CMOS NAND/NOR Stick Diagram
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Design Rules
 Layout rules are used for preparing the masks for fabrication.
 Fabrication processes have inherent limitations in accuracy.
 Design rules specify geometry of masks to optimize yield and 

reliability (trade-offs: area, yield, reliability).
 Three major rules:

 Wire width: Minimum dimension associated with a given feature.
 Wire separation: Allowable separation.
 Contact: overlap rules.

 Two major approaches:
 “Micron” rules: stated at micron resolution.
  rules: simplified micron rules with limited scaling attributes.

  may be viewed as the size of minimum feature.
 Design rules represents a tolerance which insures very high 

probability of correct fabrication (not a hard boundary between 
correct and incorrect fabrication).  

 Design rules are determined by experience.
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MOSIS Layout Design Rules
MOSIS design rules (SCMOS rules) are available 

at http://www.mosis.org
 3 basic design rules: Wire width, wire separation, 

contact rule.
MOSIS design rule examples
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SCMOS Design Rules


