Introduction to Electronic
Design Automation

Jie-Hong Roland Jiang
NI

/\\
Department of Electrical Engineering ‘\
National Taiwan University

Spring 2013

Computation & Optimization in a
Nutshell

] Course contents:
B Computational complexity
B NP-completeness; PSPACE-completeness
M Algorithmic paradigms
B Mathematical optimization

0 Readings
M Chapter 4

M Reference:

OT. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 2001.

COM. Sipser. Introduction to the Theory of Computation.
Cengage Learning, 2nd edition, 2005.

Computation Complexity

0 We would like to characterize the efficiency/hardness of problem
solving

0 By that, we can have a better idea on how to come up with good
algorithms

B Algorithm: a well-defined procedure transforming some input to a
desired output in finite computational resources in time and space

(c.f. semi-algorithm)

0 Why does complexity matter?

Time Big-Oh n=10 n = 100 n= 103 n=10°
500 o 5x 107 sec | 5x 10~ 7 sec 5x 107 sec | 5 x 10~ 7 sec
3n O(n) 3 x 10~ 8 sec 3 x 107 sec 3x 1076 sec 0.003 sec
nlogn | O(nlogn) | 3x 1078 sec | 2x 1077 sec | 3x 1079 sec 0.006 sec
n on?) 1x107 sec | 1x 105 sec 0.001 sec 16.7 min
n3 0(n3) 1x 1076 gec 0.001 sec 1 sec 3 x 105 cent.
on oem) 1x 1075 sec | 3x 1017 cent. 00 oo

7l O(n!) 0.003 sec oo oo 0o

assuming 10° instructions per second

O: Upper Bounding Function

O Definition: f(n)= O(g(n)) if 3 ¢=0 and n,>0 such that
0 <f(n) <cg(n) for all n > n,
®m E.g., 2n?2+ 3n = 0O(n?), 2n2= 0O(n3), 3nlg n = O(n?)

B Intuition: f(n) “<” g(n) when we ignore constant multiples and
small values of n

]
¢ g(n)

Jn)

l = |

o f(m)=0(g(n)) 4

Big-O Notation

O How to show O (Big-Oh) relationships?
f
m f(n) = O(g(n)) iff lim, % = c for some c>0

O “An algorithm has worst-case running time O(g(n))”: there
IS a constant c s.t. for every n large enough, every
execution on an input of size n takes at most ¢ g(n) time

F
¢ g(n)

J(n)

- i

ng fln)=0(g(n)) °

Big-O Notation (cont'd)

0 Only the dominating term needs to be kept while
constant coefficients are immaterial

0 Example
0.3 n2 = 0(n?
3 n?+ 152 n+ 1777= O(n?)
n? Ig n+ 3n2 = O(n?lg n)

The following are correct but not used
3n2 = 0O(n?lg n)
3n? = 0(0.1 n?)
3n2= O(n?+ n)

Other Asymptotic Bounds

Other notations (though not important for now):
O Definition: f(n)= Q(g(n)) if 3 ¢, n, > 0 such that
O <cg(n) <f(n) for all n = n,.
B Q-notation provides an asymptotic lower bound on a function

O Definition: f(n)= ®(g(n)) if 3 c;, c,, ny = 0 such that
O <c, g(n) <f(n) <c, g(n) for all n > n,.
B ®-notation provides an asymptotic tight bound on a function

O Showing the complexity upper bound of solving a problem
(not an instance) is often much easier than showing the
complexity lower bound

B Why?

Computational Complexity

0 Computational complexity: an abstract measure
of the time and space necessary to execute an
algorithm as function of its “input size”

[l Input size examples:

M sort n words of bounded length = n

M the input is the integer n = Ig n

B the input is the graph G(V, E) = |V| and |E]|
0 Time complexity is expressed in elementary

computational steps (e.g., an addition,
multiplication, pointer indirection)

0 Space complexity is expressed in memory
locations (e.g. bits, bytes, words)

Computational Complexity

0 Example
B Computing longest delay path of a directed acyclic graph
a

b EC BF

O(IVI+EI)

Asymptotic Functions

0 Polynomial-time complexity: O(nk), where n is the
input size and k is a constant
0 Example polynomial functions:
B 999: constant
M Ig n: logarithmic
® /n : sublinear
M n: linear
B n Ig n: loglinear
B n2: quadratic
m n3: cubic
0 Example non-polynomial functions
m 2", 3": exponential
® n!: factorial

10

Run-time Comparison

|

COJAssume 1000 MIPS (Yr: 200x), 1

INStruction /operatlon

Time Big-Oh n=10 n = 100 n= 103 n=100

500 o) 5x 10— 7 sec 5 x 10— 7 sec 5x 10—7 sec | 5 x 10—’ sec

3n O(n) 3 x 108 sec 3 x 107 sec 3 x 105 sec 0.003 sec

nlogn | O(nlogn) | 3 x 108 sec 2 x 107 sec 3x 1079 sec 0.006 sec

n 0(n?) 1x107 sec | 1 x 10~5 sec 0.001 sec 16.7 min

n3 O(n3) 1 x 106 sec 0.001 sec 1 sec 3 x 105 cent.

on o™ 1x 1076 sec | 3 x 1017 cent. oo 00

7l O(n!) 0.003 sec 0o 0o 0o

11

Computation Problems

C0Two common types of problems in
computer science:
B Optimization problems

OOften discrete/combinatorial rather than continuous

CE.g., Minimum Spanning Tree (MST), Travelling
Salesman Problem (TSP), etc.

M Decision problems

CE.g., Fixed-weight Spanning Tree, Satisfiability (SAT),
etc.

12

Terminology

O Problem: a general class, e.g., “the shortest-path problem for
directed acyclic graphs”

O Instance: a specific case of a problem, e.g., “the shortest-
path problem in a specific graph, between two given vertices”

O Optimization problems: those finding a legal configuration
such that its cost is minimum (or maximum)

B MST: Given a graph G=(V, E), find the cost of a minimum
spanning tree of G

OO0 An instance | = (F, c) where
B F is the set of feasible solutions, and

B c is a cost function, assigning a cost value to each feasible
solutionc : F > R

B The solution of the optimization problem is the feasible
solution with optimal (minimal/maximal) cost

O c.f., optimal solutions/costs, optimal (exact) algorithms (Attn:
optimal # exact in the theoretic computer science community)

13

Optimization problem: Minimum

Spanning Tree (MST)

0 MST: Given an undirected graph G = (V, E) with
weights on the edges, a minimum spanning tree
of G is a subgraph T < G such that

B T has no cycles (i.e. a tree)
B T contains all vertices in V
B Sum of the weights of all edges in T is minimum

1 6
W, O)
2 9 3
4 7
O O O
10 12 5

o012 o1

¢
o

14

Optimization Problem: Traveling
Salesman Problem (TSP)

0 TSP: Given a set of cities and the distance between each
pair of cities, find the distance of a minimum tour starts
and ends at a given city and visits every city exactly once

%) €3 € Gy € & Gy

€
e

(@ & 15

Terminology

0 Decision problems: problem that can only be answered
with “yes” or “no”
B MST: Given a graph G=(V, E) and a bound K, is there a
spanning tree with a cost at most K?

B TSP: Given a set of cities, distance between each pair of cities,
and a bound B, is there a route that starts and ends at a given
city, visits every city exactly once, and has total distance at

most B?
O A decision problem /77, has instances: | = (F, c, k)
B The set of instances for which the answer is “yes” is given by
YH

B A subtask of a decision problem is solution checking: given f €
F, checking whether the cost c(f) is less than k

0 Can apply binary search on decision problems to obtain
solutions to optimization problems

O NP-completeness is associated with decision problems

16

Decision Problem: Fixed-weight

Spanning Tree

C0Given an undirected graph G = (V, E), is
there a spanning tree of G with weight c?

C0Can solve MST by posing it as a sequence
of decision problems (with binary search)

17

Decision Problem: Satisfiability
Problem (SAT)

[0 Satisfiability Problem (SAT):

B Instance: A Boolean formula ¢ in conjunctive normal
form (CNF), a.k.a. product-of-sums (POS)

B Question: Is there an assignment of Boolean values to
the variables that makes ¢ true ?
0 A Boolean formula ¢ is satisfiable if there exists a
a set of Boolean input values that makes ¢
valuate to true. Otherwise, ¢ is unsatisfiable.

B (a+b)(—-a+c)(—b+-c) is satisfiable since <a, b, c> = <0,
1, 0> makes the formula true.

B (a+b)(—-a+c)(—b)(-c) is unsatisfiable

18

Decision Problem: Circuit
Satisfiability Problem (CSAT)

O Circuit-Satisfiability Problem (CSAT):

B Instance: A combinational circuit C composed of AND, OR,
and NOT gates

B Question: Is there an assignment of Boolean values to the
inputs that makes the output of C to be 1?
0 A circuit is satisfiable if there exists a a set of Boolean input
values that makes the output of the circuit to be 1

m Circuit (a) is satisfiable since <x,, X,, X;> = <1, 1, 0> makes
the output to be 1

(a) satisfiable circuit (b) unsatisfiable circuit

19

Complexity Hierarchy

O Tractable: solvable in deterministic polynomial time (P)
O Intractable: unsolvable in deterministic polynomial time (P)

EXPTIME

PSPACE

()

20

Complexity Class P

O Complexity class P contains those problems that can be
solved in polynomial time in the size of input

B Input size: size of encoded “binary” strings
B Edmonds: Problems in P are considered tractable

OO0 The computer concerned is a deterministic Turing machine

B Deterministic means that each step in computation is
predictable

B A Turing machine is a mathematical model of a universal
computer (any computation that needs polynomial time
on a Turing machine can also be performed in
polynomial time on any other machine)

OO0 MST and shortest path problems are in P

21

Complexity Class NP

O Suppose that solution checking for some problem can be done in
polynomial time on a deterministic machine = the problem can be
solved in polynomial time on a nondeterministic Turing machine

B Nondeterministic: the machine makes a guess, e.g., the right one (or
the machine evaluates all possibilities in parallel)

OO0 The class NP (Nondeterministic Polynomial): class of problems
that can be verified in polynomial time in the size of input

B NP: class of problems that can be solved in polynomial time on a
nondeterministic machine

O Is TSP € NP?
B Need to check a solution in polynomial time
O Guess a tour
O Check if the tour visits every city exactly once
O Check if the tour returns to the start
O Check if total distance < B
B All can be done in O(n) time, so TSP € NP

22

P vs. NP

AN issue which is still unsettled:

P = NP or P = NP?

M There is a strong belief that P # NP, due to the
existence of NP-complete problems.

M One of the 7 Clay Millennium Prize Problems

NP

most likely
case

23

NP-Completeness

0 The NP-complete (NPC) class:
B Developed by S. Cook and R. Karp in early 1970
[0 Cook showed the first NP-complete problem (SAT) in 1971

0 Karp showed many other problems are NP-complete (by
polynomial reduction) in 1972

B Thousands of combinatorial problems are known to be
NP-complete

COONP-complete problems: SAT, 3SAT, CSAT, TSP, Bin Packing,
Hamiltonian Cycles, ...

m All problems in NPC have the same degree of difficulty:
Any NPC problem can be solved in polynomial time =
All problems in NP can be solved in polynomial time

24

Beyond NP

0 A quantified Boolean formula (QBF) is
Q1 X1, Q2 X, -y Qp Xy- @

where Qi is either a existential (3) or universal

quantifier (v), x; is a Boolean variable, and ¢ is a
Boolean formula

[Zi: 3X1,VX2,E|X3, ---1ani' ¢
[| HI: vxl,HXZ,VXQ,, ---1ani' (P
00X is a variable set (XX, = @ for i # j)

0 The polynomial-time hierarchy

B> ENP)c2,c..clic....
B [[(=coNP) cIL,c...cllc....

25

Polynomial Hierarchy

PSPACE

26

PSPACE-Completeness

C0The satisfiability problem for quantified
Boolean formulae (QSAT) is PSPACE-
complete

M GO is PSPACE-complete!

B Many sequential verification problems are
PSPACE-complete

27

Polynomial-time Reduction

O Motivation: Let L, and L, be two decision problems.
Suppose algorlthm A, can solve L,. Can we use A, to solve
?

17
O Polynomial-time reduction f from L, toL,: L; < L,

mf reduces input for L, into an input for L s.t. the reduced input
is a yes |nput for L iff the original mput is a “yes” input for L,

if 3 polynomlal -time computable function f: {0,
1’} {6 1} sit. x e Ly iff f(x) € L,, V X € {0, 1}*

OL, isatleastas hard as L,
O fis computable in polynomial time

o '_-"‘{"—{E-: ! A = Algorithm for Lt
L,
> X F f(x) ()C)e Lz? xe LL? {yesina) -
MR m answer for L2 on fix)
-~ For iy ;‘jg;‘ffﬁ,f,’,’;, f ,12 Aigortrhm for by O ower for Ly anx
Ll Sp)

28

Significance of Reduction

O Significance of L; < L:
B 3 polynomial-time algorithm for L, = 3 polynomial-time
algorithm for L, (L, e P= 1L, € P)
B A polynomial-time algorithm for L, = A polynomial-
time algorithm for L, (L, ¢ P=> L, ¢ P)

O < is transitive, i.e., L, S L, and L, o Ly = L) $p

L3
A 2 Algorithm for L
X J(x) fe Lz? X e Ll? {(vesino)
input - £ _tb A, = .l
L ; answer for L2 on f{x)
dict
for Ly ; ‘;g:;;;g; for L, Algorithm for L, = answer for Ly on x

29

Polynomial-time Reduction

0 The Hamiltonian Circuit, a.k.a. Hamiltonian Cycle, Problem (HC)

B Instance: an undirected graph G = (V, E)

B Question: is there a cycle in G that includes every vertex exactly once?
O TSP (The Traveling Salesman Problem)
O How to show HC <, TSP?

1. Define a function f mapping any HC instance into a TSP instance, and
show that f can be computed in polynomial time

2. Prove that G has an HC iff the reduced instance has a TSP tour with
distance < B (X € HC < f(x) € TSP)

Hamiltonian nonhamiltonian

30

HC <, TSP: Step 1

O Define a reduction function f for HC <, TSP
B Given an arbitrary HC instance G = (V, E) with n vertices
O Create a set of n cities labeled with names in V
O Assian distance between u and v
1, if {(u,v)eF
d —_ 3 . 3 !
(u, v) { 2, if (u,v) € E.
O Set bound B = n
B f can be computed in O(V2) time
HC instance TSP instance
oL\ L
‘ "
HC: <1,5,2,3,4, 1> tour <1, 5, 2, 3, 4, 1> with
distance bound B =5
31
HC <, 'TSP: Step 2

0 G has an HC iff the reduced instance has a TSP with
distance < B
B xXeHC = f(x)eTSP

O Suppose the HC is h = <v,, v,, ..., v, V;>. Then, h is also
a tour in the transformed TSP instance

O The distance of the tour h is n = B since there are n
consecutive edges in E, and so has distance 1 in f(x)

OThus, f(xX) € TSP (f(x) has a TSP tour with distance < B)

HC instance TSP instance

HC:<1,5.2.3.4, 1> tour <1, S, 2. 3,4, 1> with
distance bound B = 5
32

HC <, TSP: Step 2 (cont'd)

O G has an HC iff the reduced instance has a TSP with
distance < B
B f(X)eTSP = xeHC

O Suppose there is a TSP tour with distance < n = B. Let it be
<V, Vo, ..o, V, V=

[0 Since distance of the tour < n and there are n edges in the
TSP tour, the tour contains only edges in E

OThus, <v,, V,, ..., V,, V,> is a Hamiltonian cycle (x € HC)

HC instance TSP instance

HC:<1,5,2.3.4, 1> tour <1, 5, 2, 3,4, 1> with
distance bound B = 5
33

NP-Completeness and NP-Hardness

0 NP-completeness: worst-case analyses for
decision problems

O L is NP-complete if
B L eNP
B NP-Hard: L'<, L forevery L' e NP

0 NP-hard: If L satisfies the 2nd property, but not
necessarily the 1st property, we say that L is NP-
hard

1 Significance of NPC class:
Suppose L € NPC

m If L € P, then there exists a polynomial-time algorithm
for every L' € NP (i.e., P = NP)

m If L ¢ P, then there exists no polynomial-time algorithm
for any L' € NPC (i.e., P # NP)

34

Proving NP-Completeness

0 Five steps for proving that L is NP-complete:
1.Prove L € NP
2.Select a known NP-complete problem L'

3.Construct a reduction f transforming every
instance of L' to an instance of L

4.Prove that x € L" iff f(x) € L for all x € {0, 1}~
5.Prove that f is a polynomial-time transformation

®m E.g., we showed that TSP is NP-complete

A problem L
to be proved
NP-complete

A known
NP-complete
problem L’

35

FEasy vs. Hard Problems

COMany seemly similar problems may have
substantial difference in their inherent
hardness
M Shortest path € P; longest path € NPC
M Spanning tree € P; Steiner tree € NPC

M Linear programming (LP) € P; integer linear
programming (ILP) € NPC
I

36

Spanning Tree vs. Steiner Tree

O Manhattan distance: If two points (nodes) are located at coordinates (X,
y;1) and (X,, ¥,), the Manhattan distance between them is given by d;, =
[X1-%o] + [Y1-Yal

O Rectilinear spanning tree: a spanning tree that connects its nodes using
Manhattan paths (Fig. (b) below)

O Steiner tree: a tree that connects its nodes, and additional points
(Steiner points) are permitted to be used for the connections

O The minimum rectilinear spanning tree problem is in P, while the minimum
rectilinear Steiner tree (Fig. (c)) problem is NP-complete

B The spanning tree algorithm can be an approximation for the Steiner tree
problem (at most 50% away from the optimum)

Steiner

. . E %onts
. H+H+H HHH

(a) (&) (©
37

Hardness of Problem Solving
CIMost optimization problems are intractable

® Cannot afford to search the exact optimal
solution

M Global optimal (optimum) vs. local optimal
(optimal)

[C0Search a reasonable solution within a
reasonable bound on computational
resources

38

Coping with NP-hard Problems

O

Approximation algorithms
B Guarantee to be a fixed percentage away from the optimum
B E.g., MST for the minimum Steiner tree problem
Randomized algorithms
B Trade determinism for efficiency
Pseudo-polynomial time algorithms

B Has the form of a polynomial function for the complexity, but is not to
the problem size

m E.g., O(nW) for the 0-1 knapsack problem
Restriction

B Work on some subset of the original problem

B E.g., longest path problem restricted to directed acyclic graphs
Exhaustive search/Branch and bound

B |s feasible only when the problem size is small
Local search:

B Simulated annealing (hill climbing), genetic algorithms, etc.
Heuristics: No guarantee of performance

39

Algorithmic Paradigms

oooo

O O O OO

Exhaustive search: Search the entire solution space
Branch and bound: A search technique with pruning
Greedy method: Pick a locally optimal solution at each step

Dynamic programming: Partition a problem into a collection of
sub-problems, the sub-problems are solved, and then the original
problem is solved by combining the solutions (applicable when the
sub-problems are NOT independent)

Hierarchical approach: Divide-and-conquer

Mathematical programming: A system of solving an objective
function under constraints

Simulated annealing: An adaptive, iterative, non-deterministic
algorithm that allows “uphill” moves to escape from local optima

Tabu search: Similar to simulated annealing, but does not
decrease the chance of “uphill” moves throughout the search

Genetic algorithm: A population of solutions is stored and
allowed to evolve through successive generations via mutation,
crossover, etc.

40

Exhaustive Search v.s. Branch and
Bound

fi= 6
O TSP example & 5 o
I © () © B ®Q ® &

B DO OO BOECDORODOOD
H=-EEOEOOEOEEEOEOEOOG ®® ©

x x

H=EEEOE N TEEEEE®E® N T ®E ©
- T E® O T’ olo ®

27 31 33 27 20 27 33 3L 20 27
Backtracking/exhaustive search

Branch and bound

41

Dynamic Programming (DP) v.s.
Divide-and-Conquer

0 Both solve problems by combining the solutions to sub-problems
O Divide-and-conquer algorithms

B Partition a problem into independent sub-problems, solve the
sub-problems recursively, and then combine their solutions to
solve the original problem

B Inefficient if they solve the same sub-problem more than once
OO0 Dynamic programming (DP)

B Applicable when the sub-problems are not independent

B DP solves each sub-problem just once

42

Example: Bin Packing

OO0 The Bin-Packing Problem IT :
Items U = {u,, u,, ..., u,}, where u; is of an integer size s;
set B of bins, each with capacity b
O Goal:
Pack all items, minimizing # of bins used (NP-hard!)
] = TN
b b2 43 HH hi
Ibi'n b2
size=h N w2
Exp:b =6, 5=(1,4,2,1,2,3,5) u3
optimal: [3
3 bk
1 2 un
{ /
43
Algorithms for Bin Packing

OO0 Greedy approximation algorithm:
First-Fit Decreasing (FFD)
B FFD(II) < 110PT(I1)/9 + 4)

O Dynamic Programming? Hierarchical Approach? Genetic
Algorithm? ...

O Mathematical Programming:

Use integer linear programming (ILP) to find a solution
using |B| bins, then search for the smallest feasible |B|

] =t B ul e 0 =
ulf 2 TR HH b
hin 2
size=4h . b2
Exp:b=6, S=(1,4,21,2,3,5) wi
optimeal: >

3
4 2 n
I i 44

bk

ILLP Formulation for Bin Packing

I
O 0O-1 variable: x;=1 if item u; is placed in bin b;, O otherwise
max Z wi'-jzi}j
(#.7)cE
aubject to
E wijzi; < by, ¥iEB / * capacity conatraint « /(1)
Wielr
Z z; = LYieU / * asgignment comastraint+ [{2)
YiER
Zm,-j = n [*completencas conatraint + / (3)
13
z; € {0,1} /%0, 1 constraint+ / {4)
B Step 1: Set |B] to the lower bound of the # of bins
B Step 2: Use the ILP to find a feasible solution
B Step 3: If the solution exists, the # of bins required is |B|. Then exit.
B Step 4: Otherwise, set |B| « |B| + 1. Goto Step 2.
45
Mathematical Programming
I
O Many optimization problems can be formulated as
minimize (or maximize) f,(x) objective function

subject to f(x) <g¢c, 1=1, ..., m. constraints

O Some special common mathematical programming
B Linear programming (LP)
B Integer linear programming (ILP)
B Nonlinear programming

O Convex optimization
= Semi-definite programming, geometric programming, ...

46

