Introduction to Electronic
Design Automation I

Jie-Hong Roland Jiang
LR

/\\
Department of Electrical Engineering I\
National Taiwan University

Spring 2013

Computation & Optimization in a

Nutshell

O Course contents:
B Computational complexity
B NP-completeness; PSPACE-completeness
B Algorithmic paradigms
B Mathematical optimization

[0 Readings
B Chapter 4

B Reference:
OT. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 2001.
OM. Sipser. Introduction to the Theory of Computation.
Cengage Learning, 2nd edition, 2005.

Computation Complexity

a

O

W? would like to characterize the efficiency/hardness of problem
solving

B?/ that, we can have a better idea on how to come up with good
algorithms

B Algorithm: a well-defined procedure transforming some input to a
desired output in finite computational resources in time and space

(c.f. semi-algorithm)

Why does complexity matter?

Time Big-Oh n=10 n =100 n=10% n=100
500 o(1) 5x10~7 sec | 5x 107 sec | 5x 10~ 7 sec | 5 x 10~ 7 sec
3n O(n) 3x108sec | 3x 107 sec | 3x 105 sec 0.003 sec
nlogn | O(nlogn) | 3 x 1077 sec 2 x 1077 sec 3x 1079 gec 0.006 sec
n o®?) 1x10~7 sec | 1x10~5 sec 0.001 sec 16.7 min
n3 0=3) 1x 1079 sec 0.001 sec 1 sec 3 x 105 cent.
an o@E™ 1x 1079 sec | 3x 1017 cent. oo oo

n! O(nh) 0.003 sec (=] (=] 0o

assuming 109 instructions per second

O: Upper Bounding Function

O Definition: f(n)= O(g(n)) if 3 ¢c=0 and n,=>0 such that
0<f(n) <cg(n) forallnzn,
B E.g., 2n2+ 3n = O(n?), 2n?= O(n®), 3nlg n = O(n?)
B Intuition: f(n) “<” g(n) when we ignore constant multiples and
small values of n

b
¢ gln)

fln)

12

o fm)=0(g(n)) 4

Big-O Notation

O How to show O (Big-Oh) relationships?
f
m f(n) = O(g(n)) iff lim, _, % =c forsomec>0

O “An algorithm has worst-case running time O(g(n))”: there
is a constant c¢ s.t. for every n large enough, every
execution on an input of size n takes at most ¢ g(n) time

cgln)

fln)

1

no fim)y=0(g(n) i °

Big-O Notation (cont’'d)

0 Only the dominating term needs to be kept while
constant coefficients are immaterial

O Example
0.3 n? =0(n?)
3 n2 + 152 n+ 1777= O(n?)
n? Ig n+ 3n?2 = O(n?lg n)

The following are correct but not used
3n2= 0O(n?lg n)
3n2=0(0.1 n?)
3n2=0(n?+ n)

Other Asymptotic Bounds

Other notations (though not important for now):
O Definition: f(n)= Q(g(n)) if 3 ¢, n, > 0 such that
0 <c g(n) < f(n) for all n 2 n,.
B Q-notation provides an asymptotic lower bound on a function

O Definition: f(n)= ©(g(n)) if 3 ¢, ¢,, n, = 0 such that
0 <c, g(n) <f(n) <c, g(n) for all n > n,.
B O-notation provides an asymptotic tight bound on a function

O Showing the complexity upper bound of solving a problem
(not an instance) is often much easier than showing the
complexity lower bound

® Why?

Computational Complexity

OO0 Computational complexity: an abstract measure
of the time and space necessary to execute an
algorithm as function of its “input size”

O Input size examples:

B sort n words of bounded length = n
B the input is the integer n = Ig n
B the input is the graph G(V, E) = |V] and |E]|

O Time complexity is expressed in elementary
computational steps (e.g., an addition,
multiplication, pointer indirection)

0 Space complexity is expressed in memory
locations (e.g. bits, bytes, words)

Computational Complexity

O Example

B Computing longest delay path of a directed acyclic graph

a

T

==

O(IVI+IE]

Asymptotic Functions

O Polynomial-time complexity: O(n), where n is the
input size and k is a constant
O Example polynomial functions:
B 999: constant
B [g n: logarithmic
® /n : sublinear
Hn: linear
® n Ig n: loglinear
B n2: quadratic
® n3: cubic
OO0 Example non-polynomial functions
m 2" 3": exponential
m n!: factorial

10

Run-time Comparison

I

CJAssume 1000 MIPS (Yr: 200x), 1

Instruction /operatlon

Time Big-Oh n=10 n =100 n=103 n=10°

500 o) 5x10 7 sec | 5x 107 sec | 5x 107 sec | 5 x 10~ 7 sec

3n of(n) 3x108 sec | 3x 1077 sec | 3x 109 sec 0.003 sec

nlogn | Onlogn) | 3x107 % sec | 2x 1077 sec | 3x 1070 sec 0.006 sec

n2 0On2) 1x10~7 sec | 1x 105 sec 0.001 sec 16.7 min

n3 o= 1 x 1076 sec 0.001 sec 1 sec 3 x 105 cent.

on o™y 1x1078 sec | 3 x 1017 cent. oo oo

n! O(nh) 0.003 sec o0 o0 oo

11

Computation Problems

COTwo common types of problems in
computer science:
B Optimization problems
OOften discrete/combinatorial rather than continuous

OE.g., Minimum Spanning Tree (MST), Travelling
Salesman Problem (TSP), etc.

B Decision problems
OE.qg., Fixed-weight Spanning Tree, Satisfiability (SAT),
etc.

12

Terminology

O Problem: a general class, e.g., “the shortest-path problem for
directed acyclic graphs”

O Instance: a specific case of a problem, e.g., “the shortest-
path problem in a specific graph, between two given vertices”

O Optimization problems: those finding a legal configuration
such that its cost is minimum (or maximum)

B MST: Given a graph G=(V, E), find the cost of a minimum
spanning tree of G

O An instance | = (F, ¢) where
B F is the set of feasible solutions, and

B c is a cost function, assigning a cost value to each feasible
solutionc : F > R

B The solution of the optimization problem is the feasible
solution with optimal (minimal/maximal) cost

O c.f., optimal solutions/costs, optimal (exact) algorithms (Attn:
optimal # exact in the theoretic computer science community)

13

Optimization problem: Minimum
Spanning Tree (MST)

OO0 MST: Given an undirected graph G = (V, E) with
weights on the edges, a minimum spanning tree
of G is a subgraph T < G such that

B T has no cycles (i.e. a tree)
B T contains all vertices in V
B Sum of the weights of all edges in T is minimum

6
3
7

1 ()
2 9
4
10 12 5
13
N\

14

Optimization Problem: Traveling
Salesman Problem (TSP)

O TSP: Given a set of cities and the distance between each
pair of cities, find the distance of a minimum tour starts
and ends at a given city and visits every city exactly once

€ 6 €3 € 6 €3 € 6 &3
Ca e L €4 Cq €y Cg Cy
® ®
C7
o, © @ o
9 Cg Cs €y Cs
. Cs Cs Cs

(&) (b)Y 15

Terminology

O Decision problems: problem that can only be answered
with “yes” or “no”
B MST: Given a graph G=(V, E) and a bound K, is there a
spanning tree with a cost at most K?

B TSP: Given a set of cities, distance between each pair of cities,
and a bound B, is there a route that starts and ends at a given

city, visits every city exactly once, and has total distance at
most B?

O A decision problem 77, has instances: | = (F, c, k)
B The set of instances for which the answer is “yes” is given by

I1
B A subtask of a decision problem is solution checking: given f e

F, checking whether the cost c(f) is less than k

O Can apply binary search on decision problems to obtain
solutions to optimization problems

O NP-completeness is associated with decision problems

16

Decision Problem: Fixed-weight

Spanning Tree

CGiven an undirected graph G = (V, E), is
there a spanning tree of G with weight c?

C0Can solve MST by posing it as a sequence
of decision problems (with binary search)

17

Decision Problem: Satisfiability
Problem (SAT)

O Satisfiability Problem (SAT):

B Instance: A Boolean formula ¢ in conjunctive normal
form (CNF), a.k.a. product-of-sums (POS)

B Question: Is there an assignment of Boolean values to
the variables that makes ¢ true ?

OO0 A Boolean formula ¢ is satisfiable if there exists a
a set of Boolean input values that makes ¢
valuate to true. Otherwise, ¢ is unsatisfiable.

B (a+b)(—a+c)(—=b+-c) is satisfiable since <a, b, c> = <0,
1, 0= makes the formula true.

B (a+b)(—a+c)(—b)(—c) is unsatisfiable

18

Decision Problem: Circuit
Satisfiability Problem (CSAT)

O Circuit-Satisfiability Problem (CSAT):

B Instance: A combinational circuit C composed of AND, OR,
and NOT gates

B Question: Is there an assignment of Boolean values to the
inputs that makes the output of C to be 1?
O A circuit is satisfiable if there exists a a set of Boolean input
values that makes the output of the circuit to be 1

® Circuit (a) is satisfiable since <x,, X,, X;= = <1, 1, 0= makes
the output to be 1

(a) satisfiable circuit (b) unsatisfiable circuit

19

Complexity Hierarchy

O Tractable: solvable in deterministic polynomial time (P)
O Intractable: unsolvable in deterministic polynomial time (P)

EXPTIME

PSPACE

)

20

Complexity Class P

O Complexity class P contains those problems that can be
solved in polynomial time in the size of input
B Input size: size of encoded “binary” strings
B Edmonds: Problems in P are considered tractable

O The computer concerned is a deterministic Turing machine

B Deterministic means that each step in computation is
predictable

B A Turing machine is a mathematical model of a universal
computer (any computation that needs polynomial time
on a Turing machine can also be performed in
polynomial time on any other machine)

O MST and shortest path problems are in P

21

Complexity Class NP

O Suppose that solution checking for some problem can be done in
polynomial time on a deterministic machine = the problem can be
solved in polynomial time on a nondeterministic Turing machine

B Nondeterministic: the machine makes a guess, e.g., the right one (or
the machine evaluates all possibilities in parallel)

O The class NP (Nondeterministic Polynomial): class of problems
that can be verified in polynomial time in the size of input

B NP: class of problems that can be solved in polynomial time on a
nondeterministic machine

O Is TSP € NP?
B Need to check a solution in polynomial time
O Guess a tour
O Check if the tour visits every city exactly once
O Check if the tour returns to the start
O Check if total distance < B
m All can be done in O(n) time, so TSP € NP

22

P vs. NP

AN issue which is still unsettled:

P < NP or P = NP?

M There is a strong belief that P # NP, due to the
existence of NP-complete problems.

B One of the 7 Clay Millennium Prize Problems

most likely
case

23

NP-Completeness

O The NP-complete (NPC) class:
B Developed by S. Cook and R. Karp in early 1970
OCook showed the first NP-complete problem (SAT) in 1971

OKarp showed many other problems are NP-complete (by
polynomial reduction) in 1972

B Thousands of combinatorial problems are known to be
NP-complete

ONP-complete problems: SAT, 3SAT, CSAT, TSP, Bin Packing,
Hamiltonian Cycles, ...

m All problems in NPC have the same degree of difficulty:
Any NPC problem can be solved in polynomial time =
All problems in NP can be solved in polynomial time

24

Beyond NP

O A quantified Boolean formula (QBF) is
Qp X1, Qy Xy ooy, Qp X,- @
where Qi is either a existential (3) or universal

quantifier (V), x; is a Boolean variable, and ¢ is a
Boolean formula

B 33X, VX,,3X,, ., QuX 0
B I VX,3X,,VX;, ..., Q% @
OX; is a variable set (XnX; = @ for i = J)

O The polynomial-time hierarchy

B> =ENP)c,c..crc...
BJ[,coNP)cILc..cllc....

25

Polynomial Hierarchy

26

PSPACE-Completeness

O The satisfiability problem for quantified
Boolean formulae (QSAT) is PSPACE-
complete

B GO is PSPACE-complete!

B Many sequential verification problems are
PSPACE-complete

27

Polynomial-time Reduction

O Motivation: Let L, and L, be two decision problems.
Suppose algorlthm A, can solve L,. Can we use A, to solve
Ll
O Polynomial-time reduction f from L, to L,z L; <p L,
mf reduces input for L, into an input for L s.t. the reduced input
is a yes |nput for L iff the original |nput is a “yes” input for L,

if 3 polynomlal -time computable function f: {0,
1} {% } st xel,ifff(x) e L, Vx e {0, 1}*

OL, is at least as hard as L,
O fis computable in polynomial time

A * Algorithm for 11

i = /e,
e ﬂxll—,‘f(n’;i’z X L7 tyesina)

reduction answer for L2 on fix)
algerithm fur L Algorithm for L = answer for L) on x

28

Significance of Reduction

O Significance of L; <p L,:
B 3 polynomial-time algorithm for L, = 3 polynomial-time
algorithm for L, (L, e P= L, € P)
B A polynomial-time algorithm for L, = A polynomial-
time algorithm for L, (L, ¢ P=> L, ¢ P)
O < is transitive, i.e., Ly S L, and L, Sp Ly = Ly <p
Ls

A 1 Algorithm for 1

X S - fne L{_{_ X € L, (vesho) _
gt input
re s,

e = answer for L2 on f{x)
Jor iy afg;ffrg; Jor L Algorithm for = answer for L1 on x

29

Polynomial-time Reduction

O The Hamiltonian Circuit, a.k.a. Hamiltonian Cycle, Problem (HC)
B Instance: an undirected graph G = (V, E)
B Question: is there a cycle in G that includes every vertex exactly once?
O TSP (The Traveling Salesman Problem)
O How to show HC <, TSP?
1. Define a function f mapping any HC instance into a TSP instance, and
show that f can be computed in polynomial time
2. Prove that G has an HC iff the reduced instance has a TSP tour with
distance < B (x € HC < f(x) € TSP)

Hamiltonian nonhamiltonian

30

HC <, TSP: Step 1

O Define a reduction function f for HC <, TSP

B Given an arbitrary HC instance G = (V, E) with n vertices
[Create a set of n cities labeled with names in V
O Assian distance between u and v

_ |1, if {u,v) €E,
d(u, v) _{ 2, it (w,v) g E.

O Set bound B = n
® f can be computed in O(V2) time

HC instance TSP instance
2
HC: «1,5,2,3,4, 1> tour <1, 5, 2, 3, 4, 1> with

distance bound B=15
31

HC <, TSP: Step 2

O G has an HC iff the reduced instance has a TSP with
distance < B
B XeHC = f(X)eTSP

O Suppose the HC is h = <v,, v,, ..., v, v;>. Then, h is also
a tour in the transformed TSP instance

OThe distance of the tour h is n = B since there are n
consecutive edges in E, and so has distance 1 in f(x)

OThus, f(x) € TSP (f(x) has a TSP tour with distance < B)

HC instance TSP instance

HC: <l,5,2,3, 4, 1> tour <1, 5, 2, 3,4, 1> with
distance bound B =5
32

HC <, TSP: Step 2 (cont'd)

O G has an HC iff the reduced instance has a TSP with
distance < B
B f(x)eTSP = xeHC

O Suppose there is a TSP tour with distance < n = B. Let it be
<V, Vy,, oy V, V>

OSince distance of the tour < n and there are n edges in the
TSP tour, the tour contains only edges in E

OThus, <v,, v,, ..., v, v;> is a Hamiltonian cycle (x € HC)

HC instance TSP instance

HC:<l,5,2, 3.4, 1> tour <1, 5, 2,3, 4, 1> with
distahce bound B = 5
33

NP-Completeness and NP-Hardness

0 NP-completeness: worst-case analyses for
decision problems

OL is NP-complete if
B L eNP
B NP-Hard: L'< L forevery L' e NP

O NP-hard: If L satisfies the 2"d property, but not
necessarily the 1st property, we say that L is NP-
hard

O Significance of NPC class:
Suppose L € NPC

H If L € P, then there exists a polynomial-time algorithm
for every L' € NP (i.e., P = NP)

m If L ¢ P, then there exists no polynomial-time algorithm
for any L' € NPC (i.e., P = NP)

34

Proving NP-Completeness

O Five steps for proving that L is NP-complete:
1.Prove L € NP
2.Select a known NP-complete problem L*

3.Construct a reduction f transforming every
instance of L' to an instance of L

4.Prove that x e L" iff f(x) e L for all x € {0, 1}~
5.Prove that f is a polynomial-time transformation

B E.g., we showed that TSP is NP-complete

A known f A problem L
NP-complete) —> to be proved
problem L’ reduce NP-complete

35

FEasy vs. Hard Problems

COMany seemly similar problems may have
substantial difference in their inherent
hardness
B Shortest path € P; longest path € NPC
B Spanning tree € P; Steiner tree € NPC

B Linear programming (LP) € P; integer linear
programming (ILP) € NPC
m..

36

Spanning Tree vs. Steiner Tree

O Manhattan distance: If two points (nodes) are located at coordinates (X,
y;1) and (X,, Y,), the Manhattan distance between them is given by d,, =
IX1-%5] + [y1-Yol
Rectilinear spanning tree: a spanning tree that connects its nodes using
Manhattan paths (Fig. (b) below)

O Steiner tree: a tree that connects its nodes, and additional points
(Steiner points) are permitted to be used for the connections

The minimum rectilinear spanning tree problem is in P, while the minimum
rectilinear Steiner tree (Fig. (c)) problem is NP-complete

® The spanning tree algorithm can be an approximation for the Steiner tree
problem (at most 50% away from the optimum)

Steiner

: e
ks
HHHHH HHHHH

() ® ©
37

Hardness of Problem Solving
CO0Most optimization problems are intractable

B Cannot afford to search the exact optimal
solution

M Global optimal (optimum) vs. local optimal
(optimal)

O Search a reasonable solution within a
reasonable bound on computational
resources

38

Coping with NP-hard Problems

O Approximation algorithms
B Guarantee to be a fixed percentage away from the optimum
B E.g., MST for the minimum Steiner tree problem

O Randomized algorithms
B Trade determinism for efficiency

O Pseudo-polynomial time algorithms

® Has the form of a polynomial function for the complexity, but is not to
the problem size

B E.g., O(nW) for the 0-1 knapsack problem
O Restriction
B Work on some subset of the original problem
B E.g., longest path problem restricted to directed acyclic graphs
O Exhaustive search/Branch and bound
m |s feasible only when the problem size is small
O Local search:
B Simulated annealing (hill climbing), genetic algorithms, etc.
O Heuristics: No guarantee of performance

39

Algorithmic Paradigms

Exhaustive search: Search the entire solution space
Branch and bound: A search technique with pruning
Greedy method: Pick a locally optimal solution at each step

Dynamic programming: Partition a problem into a collection of
sub-problems, the sub-problems are solved, and then the original
problem is solved by combining the solutions (applicable when the
sub-problems are NOT independent)

Hierarchical approach: Divide-and-conquer

Mathematical programming: A system of solving an objective
function under constraints

Simulated annealing: An adaptive, iterative, non-deterministic
algorithm that allows “uphill” moves to escape from local optima
Tabu search: Similar to simulated annealing, but does not
decrease the chance of “uphill” moves throughout the search
Genetic algorithm: A population of solutions is stored and
allowed to evolve through successive generations via mutation,
crossover, etc.

oooo

O O o oo

40

Exhaustive Search v.s. Branch and
Bound

OO0 TSP example

Branch and bound

41

Dynamic Programming (DP) v.s.
Divide-and-Conquer

O Both solve problems by combining the solutions to sub-problems
O Divide-and-conquer algorithms
B Partition a problem into independent sub-problems, solve the
sub-problems recursively, and then combine their solutions to
solve the original problem
B |nefficient if they solve the same sub-problem more than once
O Dynamic programming (DP)
B Applicable when the sub-problems are not independent
B DP solves each sub-problem just once

1.4
1.1 24 12 3.4 1.3
223423 10 22 33 4400458 A2 .

3.34.4 2&

19
iv
[¥%)
[
=
i
12
i

42

Example: Bin Packing

O The Bin-Packing Problem IT :
Items U = {u,, u,, ..., u,}, where u; is of an integer size s;;
set B of bins, each with capacity b

O Goal:

Pack all items, minimizing # of bins used (NP-hard!)

uf 2 ul 1
bin
size =4

Exp:b=6 S=(1,4,2,1,2 3,5)

optimal: 3 3
5

4 2
I I

43

Algorithms for Bin Packing

O Greedy approximation algorithm:
First-Fit Decreasing (FFD)
B FFD(IT) < 110PT(I1)/9 + 4)

O Dynamic Programming? Hierarchical Approach? Genetic
Algorithm? ...

O Mathematical Programming:

Use integer linear programming (ILP) to find a solution
using |B] bins, then search for the smallest feasible |B|

—
Exp:b =6, S=(1,4,2,1,2,3,5)

optinal: E

a4

ILP Formulation for Bin Packing

I
0O 0-1 variable: x;=1 if item u; is placed in bin b;, O otherwise
max z wljz‘ij
(ij)EE
aubrect to
Z wigzyy < byViER / + capacity eonstraint /(1)
el
Z iy = 1,% € U /[«aseignment constraint v / (2)
VYiCR
Z‘Ei.‘f = n [+complateneass congiraint « [(€3]
i
By € {0,1} /+0, 1 eonatraint « / (4)
B Step 1: Set |B]| to the lower bound of the # of bins
B Step 2: Use the ILP to find a feasible solution
B Step 3: If the solution exists, the # of bins required is |B|. Then exit.
B Step 4: Otherwise, set |B| « |B| + 1. Goto Step 2.
45

Mathematical Programming

O Many optimization problems can be formulated as

minimize (or maximize) f,(x) objective function
subject to f(x) <c,i=1, .., m. constraints

O Some special common mathematical programming
B Linear programming (LP)
B Integer linear programming (ILP)
B Nonlinear programming

O Convex optimization
= Semi-definite programming, geometric programming, ...

46

