Introduction to Electronic Design Automation

Jie-Hong Roland Jiang 江介宏

Department of Electrical Engineering National Taiwan University

Spring 2013

Computation & Optimization in a Nutshell

- □ Course contents:
 - Computational complexity
 - NP-completeness; PSPACE-completeness
 - Algorithmic paradigms
 - Mathematical optimization
- Readings
 - Chapter 4
 - Reference:
 - ■T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 2001.
 - ■M. Sipser. Introduction to the Theory of Computation. Cengage Learning, 2nd edition, 2005.

Computation Complexity

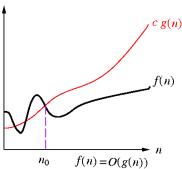
- We would like to characterize the efficiency/hardness of problem
- By that, we can have a better idea on how to come up with good
 - Algorithm: a well-defined procedure transforming some input to a desired output in finite computational resources in time and space (c.f. semi-algorithm)
- Why does complexity matter?

Time	Big-Oh	n = 10	n = 100	$n = 10^3$	$n = 10^6$
500	O(1)	$5 \times 10^{-7} \text{ sec}$	$5 \times 10^{-7} \text{ sec}$	$5 \times 10^{-7} \text{ sec}$	5×10^{-7} sec
3n	O(n)	3 × 10 ⁻⁸ sec	$3 \times 10^{-7} \text{ sec}$	3 × 10 ⁻⁶ sec	0.003 sec
$n \log n$	$O(n \log n)$	3 × 10 ⁻⁸ sec	$2 \times 10^{-7} \text{ sec}$	3 × 10 ⁻⁶ sec	0.006 sec
$ _{n}^{2}$	$O(n^2)$	$1 \times 10^{-7} \text{ sec}$	$1 \times 10^{-5} \text{ sec}$	0.001 sec	16.7 min
_n 3	$O(n^3)$	1 × 10 ⁻⁶ sec	0.001 sec	1 sec	3 × 10 ⁵ cent.
2^n	$O(2^n)$	$1 \times 10^{-6} \text{ sec}$	3×10^{17} cent.	œ	œ
n!	O(n!)	0.003 sec	œ	000	œ

assuming 109 instructions per second

O: Upper Bounding Function

- □ Definition: f(n) = O(g(n)) if $\exists c > 0$ and $n_0 > 0$ such that $0 \le f(n) \le c g(n)$ for all $n \ge n_0$
 - E.g., $2n^2 + 3n = O(n^2)$, $2n^2 = O(n^3)$, $3n \log n = O(n^2)$
 - Intuition: f(n) "≤" g(n) when we ignore constant multiples and small values of n

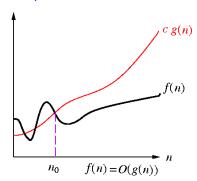


Big-O Notation

□ How to show *O* (Big-Oh) relationships?

■
$$f(n) = O(g(n))$$
 iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$ for some $c \ge 0$

"An algorithm has worst-case running time O(g(n))": there is a constant c s.t. for every n large enough, **every execution** on an input of size n takes **at most** c g(n) time



5

Big-O Notation (cont'd)

- □ Only the dominating term needs to be kept while constant coefficients are immaterial
- Example

$$0.3 n^2 = O(n^2)$$

$$3 n^2 + 152 n + 1777 = O(n^2)$$

$$n^2 \lg n + 3n^2 = O(n^2 \lg n)$$

The following are correct but not used

$$3n^2 = O(n^2 \lg n)$$

$$3n^2 = O(0.1 n^2)$$

$$3n^2 = O(n^2 + n)$$

6

Other Asymptotic Bounds

Other notations (though not important for now):

- Definition: $f(n) = \Omega(g(n))$ if $\exists c, n_0 > 0$ such that $0 \le c g(n) \le f(n)$ for all $n \ge n_0$.
 - lacksquare Ω -notation provides an asymptotic *lower* bound on a function
- Definition: $f(n) = \Theta(g(n))$ if $\exists c_1, c_2, n_0 > 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.
 - ⊕-notation provides an asymptotic *tight* bound on a function
- Showing the complexity upper bound of solving a problem (not an instance) is often much easier than showing the complexity lower bound
 - Why?

Computational Complexity

- □ Computational complexity: an abstract measure of the time and space necessary to execute an algorithm as function of its "input size"
- Input size examples:
 - sort n words of bounded length $\Rightarrow n$
 - the input is the integer $n \Rightarrow \lg n$
 - the input is the graph $G(V, E) \Rightarrow |V|$ and |E|
- ☐ Time complexity is expressed in *elementary* computational steps (e.g., an addition, multiplication, pointer indirection)
- □ Space complexity is expressed in *memory locations* (e.g. bits, bytes, words)

Ŭ

Computational Complexity

Example

■ Computing longest delay path of a directed acyclic graph



Asymptotic Functions

- □ Polynomial-time complexity: $O(n^k)$, where n is the **input size** and k is a constant
- Example polynomial functions:
 - 999: constant
 - lg n: logarithmic
 - $\blacksquare \sqrt{n}$: sublinear
 - *n*: linear
 - \blacksquare *n* lg *n*: loglinear
 - \blacksquare n^2 : quadratic
 - \blacksquare n^3 : cubic
- Example non-polynomial functions
 - \blacksquare 2ⁿ, 3ⁿ: exponential
 - n!: factorial

10

Run-time Comparison

□ Assume 1000 MIPS (Yr: 200x), 1 instruction /operation

Time	Big-Oh	n = 10	n = 100	$n = 10^3$	$n = 10^6$
500	O(1)	$5 \times 10^{-7} \text{ sec}$	$5 \times 10^{-7} \text{ sec}$	5×10^{-7} sec	$5 \times 10^{-7} \text{ sec}$
3n	O(n)	3 × 10 ⁻⁸ sec	$3 \times 10^{-7} \text{ sec}$	$3 \times 10^{-6} \text{ sec}$	0.003 sec
$n \log n$	$O(n \log n)$	3 × 10 ⁻⁸ sec	$2 \times 10^{-7} \text{ sec}$	$3 \times 10^{-6} \text{ sec}$	0.006 sec
n^2	$O(n^2)$	$1 \times 10^{-7} \text{ sec}$	1×10^{-5} sec	0.001 sec	16.7 min
_n 3	$O(n^3)$	$1 \times 10^{-6} \text{ sec}$	0.001 sec	1 sec	3×10^5 cent.
2 ⁿ	$O(2^n)$	1×10^{-6} sec	3×10^{17} cent.	œ	œ
n!	O(n!)	0.003 sec	œ	∞	000

11

Computation Problems

- ■Two common types of problems in computer science:
 - Optimization problems
 - □Often discrete/combinatorial rather than continuous
 - ■E.g., Minimum Spanning Tree (MST), Travelling Salesman Problem (TSP), etc.
 - Decision problems
 - □ E.g., Fixed-weight Spanning Tree, Satisfiability (SAT), etc.

Terminology

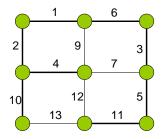
- □ Problem: a general class, e.g., "the shortest-path problem for directed acyclic graphs"
- ☐ Instance: a specific case of a problem, e.g., "the shortestpath problem in a specific graph, between two given vertices"
- □ Optimization problems: those finding a legal configuration such that its cost is minimum (or maximum)
 - MST: Given a graph G=(V, E), find the cost of a minimum spanning tree of G
- \square An instance I = (F, c) where
 - F is the set of *feasible solutions*, and
 - c is a cost function, assigning a cost value to each feasible solution $c: F \rightarrow R$
 - The solution of the optimization problem is the feasible solution with optimal (minimal/maximal) cost
- □ c.f., optimal solutions/costs, optimal (exact) algorithms (Attn: optimal ≠ exact in the theoretic computer science community)

13

15

Optimization problem: Minimum Spanning Tree (MST)

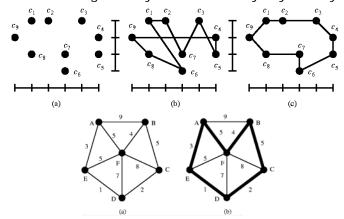
- \square MST: Given an undirected graph G = (V, E) with weights on the edges, a minimum spanning tree of G is a subgraph $T \subseteq G$ such that
 - Thas no cycles (i.e. a tree)
 - T contains all vertices in V
 - Sum of the weights of all edges in *T* is minimum



14

Optimization Problem: Traveling Salesman Problem (TSP)

□ TSP: Given a set of cities and the distance between each pair of cities, find the distance of a minimum tour starts and ends at a given city and visits every city exactly once



Terminology

- □ Decision problems: problem that can only be answered with "yes" or "no"
 - MST: Given a graph G=(V, E) and a bound K, is there a spanning tree with a cost at most K?
 - TSP: Given a set of cities, distance between each pair of cities, and a bound B, is there a route that starts and ends at a given city, visits every city exactly once, and has total distance at most B?
- \square A decision problem Π_i has instances: $I = (F_i, c_i, k)$
 - The set of instances for which the answer is "ves" is given by
 - A subtask of a decision problem is *solution checking*: given $f \in$ F, checking whether the cost c(f) is less than k
- ☐ Can apply binary search on decision problems to obtain solutions to optimization problems
- □ NP-completeness is associated with decision problems

Decision Problem: Fixed-weight Spanning Tree

- □ Given an undirected graph G = (V, E), is there a spanning tree of G with weight c?
- □ Can solve MST by posing it as a sequence of decision problems (with binary search)

Decision Problem: Satisfiability Problem (SAT)

■ Satisfiability Problem (SAT):

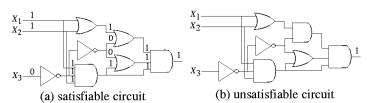
- Instance: A Boolean formula φ in conjunctive normal form (CNF), a.k.a. product-of-sums (POS)
- **Question:** Is there an assignment of Boolean values to the variables that makes φ true ?
- **Δ** A Boolean formula φ is *satisfiable* if there exists a a set of Boolean input values that makes φ valuate to true. Otherwise, φ is *unsatisfiable*.
 - $(a+b)(\neg a+c)(\neg b+\neg c)$ is satisfiable since <a, b, c>=<0, 1, 0> makes the formula true.
 - $(a+b)(\neg a+c)(\neg b)(\neg c)$ is unsatisfiable

17

18

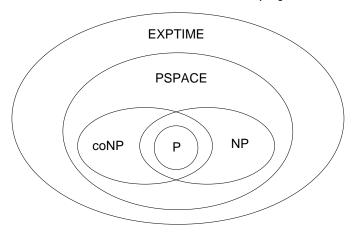
Decision Problem: Circuit Satisfiability Problem (CSAT)

- □ Circuit-Satisfiability Problem (CSAT):
 - Instance: A combinational circuit *C* composed of AND, OR, and NOT gates
 - Question: Is there an assignment of Boolean values to the inputs that makes the output of C to be 1?
- □ A circuit is satisfiable if there exists a a set of Boolean input values that makes the output of the circuit to be 1
 - Circuit (a) is satisfiable since $\langle x_1, x_2, x_3 \rangle = \langle 1, 1, 0 \rangle$ makes the output to be 1



Complexity Hierarchy

- □ Tractable: solvable in deterministic polynomial time (P)
- ☐ Intractable: unsolvable in deterministic polynomial time (P)



Complexity Class P

- □ Complexity class *P* contains those problems that can be solved in polynomial time in the size of input
 - Input size: size of encoded "binary" strings
 - Edmonds: Problems in P are considered tractable
- ☐ The computer concerned is a *deterministic Turing machine*
 - Deterministic means that each step in computation is predictable
 - A Turing machine is a mathematical model of a universal computer (any computation that needs polynomial time on a Turing machine can also be performed in polynomial time on any other machine)
- MST and shortest path problems are in P

Complexity Class NP

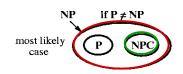
- □ Suppose that *solution checking* for some problem can be done in polynomial time on a deterministic machine ⇒ the problem can be solved in polynomial time on a *nondeterministic Turing machine*
 - Nondeterministic: the machine makes a guess, e.g., the right one (or the machine evaluates all possibilities in parallel)
- ☐ The class NP (Nondeterministic Polynomial): class of problems that can be verified in polynomial time in the size of input
 - NP: class of problems that can be solved in polynomial time on a nondeterministic machine
- □ Is TSP \in NP?
 - Need to check a solution in polynomial time
 - Guess a tour
 - □ Check if the tour visits every city exactly once
 - □ Check if the tour returns to the start
 - □ Check if total distance ≤ B
 - All can be done in O(n) time, so TSP \in NP

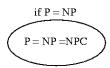
P vs. NP

■An issue which is still unsettled:

 $P \subset NP$ or P = NP?

- There is a strong belief that $P \neq NP$, due to the existence of NP-complete problems.
- One of the 7 Clay Millennium Prize Problems





NP-Completeness

☐ The NP-complete (NPC) class:

- Developed by S. Cook and R. Karp in early 1970
 - □ Cook showed the first NP-complete problem (SAT) in 1971
 - Karp showed many other problems are NP-complete (by polynomial reduction) in 1972
- Thousands of combinatorial problems are known to be NP-complete
 - □ NP-complete problems: SAT, 3SAT, CSAT, TSP, Bin Packing, Hamiltonian Cycles, ...
- All problems in NPC have the same degree of difficulty:
 Any NPC problem can be solved in polynomial time ⇒
 All problems in NP can be solved in polynomial time

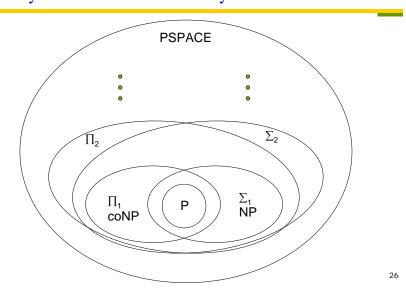
22

Beyond NP

□ A quantified Boolean formula (QBF) is $Q_1 x_1, Q_2 x_2, ..., Q_n x_n$. φ where Qi is either a existential (∃) or universal quantifier (\forall), x_i is a Boolean variable, and φ is a Boolean formula

- \sum_{i} : $\exists X_{1}, \forall X_{2}, \exists X_{3}, \dots, Q_{n}X_{i}$. φ ■ \prod_{i} : $\forall X_{1}, \exists X_{2}, \forall X_{3}, \dots, Q_{n}X_{i}$. φ □ X_{i} is a variable set $(X_{i} \cap X_{i} = \emptyset \text{ for } i \neq j)$
- The polynomial-time hierarchy
 - \blacksquare $\Sigma_1 (= NP) \subseteq \Sigma_2 \subseteq ... \subseteq \Sigma_i \subseteq ...$
 - $\blacksquare \ \prod_1 (= \text{coNP}) \subseteq \prod_2 \subseteq \dots \subseteq \prod_i \subseteq \dots$

Polynomial Hierarchy

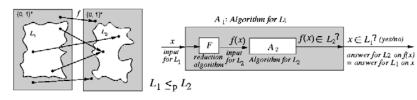


PSPACE-Completeness

- □ The satisfiability problem for quantified Boolean formulae (QSAT) is PSPACEcomplete
 - GO is PSPACE-complete!
 - Many sequential verification problems are PSPACE-complete

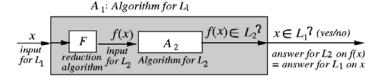
Polynomial-time Reduction

- **Motivation:** Let L_1 and L_2 be two decision problems. Suppose algorithm A_2 can solve L_2 . Can we use A_2 to solve L_1 ?
- □ Polynomial-time reduction f from L_1 to L_2 : $L_1 \leq_{P} L_2$
 - f reduces input for L_1 into an input for L_2 s.t. the reduced input is a "yes" input for L_2 iff the original input is a "yes" input for L_1 $\square L_1 \le _p L_2$ if \exists polynomial-time computable function f: $\{0, 1\}^* \rightarrow \{0, 1\}^*$ s.t. $x \in L_1$ iff $f(x) \in L_2$, $\forall x \in \{0, 1\}^*$ $\square L_2$ is at least as hard as L_1
- \Box f is computable in polynomial time



Significance of Reduction

- □ Significance of $L_1 \leq_{\mathbf{P}} L_2$:
 - 3 polynomial-time algorithm for $L_2 \Rightarrow 3$ polynomial-time algorithm for L_1 ($L_2 \in P \Rightarrow L_1 \in P$)
 - \not polynomial-time algorithm for $L_1 \Rightarrow \not$ polynomial-time algorithm for L_2 ($L_1 \notin P \Rightarrow L_2 \notin P$)
- $\square \leq_{\mathbf{p}}$ is transitive, i.e., $L_1 \leq_{\mathbf{p}} L_2$ and $L_2 \leq_{\mathbf{p}} L_3 \Rightarrow L_1 \leq_{\mathbf{p}}$

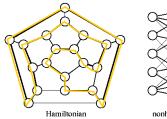


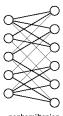
29

31

Polynomial-time Reduction

- ☐ The Hamiltonian Circuit, a.k.a. Hamiltonian Cycle, Problem (HC)
 - Instance: an undirected graph G = (V, E)
 - **Question:** is there a cycle in G that includes every vertex exactly once?
- TSP (The Traveling Salesman Problem)
- How to show HC ≤_p TSP?
 - 1. Define a function f mapping any HC instance into a TSP instance, and show that f can be computed in polynomial time
 - 2. Prove that G has an HC iff the reduced instance has a TSP tour with distance $\leq B$ ($x \in HC \Leftrightarrow f(x) \in TSP$)





30

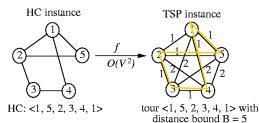
$HC \leq_p TSP$: Step 1

- □ Define a reduction function f for HC \leq_{P} TSP
 - Given an arbitrary HC instance G = (V, E) with n vertices
 - □ Create a set of *n* cities labeled with names in *V*
 - □ Assign distance between u and v

$$d(u,v) = \begin{cases} 1, & \text{if } (u,v) \in E, \\ 2, & \text{if } (u,v) \notin E. \end{cases}$$

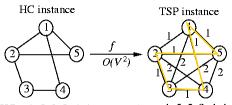
 \square Set bound B = n

 \blacksquare f can be computed in $O(V^2)$ time



$HC \leq_p TSP$: Step 2

- □ G has an HC iff the reduced instance has a TSP with distance ≤ B
 - $\blacksquare x \in HC \Rightarrow f(x) \in TSP$
 - □ Suppose the HC is $h = \langle v_1, v_2, ..., v_n, v_1 \rangle$. Then, h is also a tour in the transformed TSP instance
 - The distance of the tour h is n = B since there are nconsecutive edges in E_i and so has distance 1 in f(x)
 - □ Thus, $f(x) \in TSP(f(x))$ has a TSP tour with distance $\leq B$)

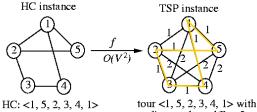


HC: <1, 5, 2, 3, 4, 1>

tour <1, 5, 2, 3, 4, 1> with distance bound B = 5

$HC \leq_p TSP$: Step 2 (cont'd)

- \Box *G* has an HC iff the reduced instance has a TSP with distance ≤ *B*
 - $\blacksquare f(x) \in \mathsf{TSP} \Rightarrow x \in \mathsf{HC}$
 - □ Suppose there is a TSP tour with distance $\leq n = B$. Let it be $\langle v_1, v_2, ..., v_n, v_1 \rangle$.
 - □ Since distance of the tour $\leq n$ and there are n edges in the TSP tour, the tour contains only edges in E
 - □ Thus, $\langle v_1, v_2, ..., v_n, v_1 \rangle$ is a Hamiltonian cycle $(x \in HC)$



distance bound B = 5

33

35

NP-Completeness and NP-Hardness

- NP-completeness: worst-case analyses for decision problems
- □ L is **NP-complete** if
 - L ∈ NP
 - **NP-Hard:** L' ≤ _P L for every L' ∈ NP
- NP-hard: If L satisfies the 2nd property, but not necessarily the 1st property, we say that L is NP-hard
- □ Significance of NPC class:

Suppose $L \in NPC$

- If $L \in P$, then there exists a polynomial-time algorithm for every $L' \in NP$ (i.e., P = NP)
- If $L \notin P$, then there exists no polynomial-time algorithm for any $L' \in NPC$ (i.e., $P \neq NP$)

34

Proving NP-Completeness

- □ Five steps for proving that *L* is NP-complete:
 - 1. Prove / \in NP
 - 2. Select a known NP-complete problem L'
 - 3. Construct a reduction *f* transforming **every** instance of *L*' to an instance of *L*
 - 4. Prove that $x \in L'$ iff $f(x) \in L$ for all $x \in \{0, 1\}^*$
 - 5. Prove that *f* is a polynomial-time transformation
 - E.g., we showed that TSP is NP-complete

A **known**NP-complete
problem **L**'

A problem L to be proved NP-complete

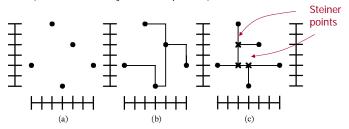
Easy vs. Hard Problems

- Many seemly similar problems may have substantial difference in their inherent hardness
 - Shortest path ∈ P; longest path ∈ NPC
 - Spanning tree ∈ P; Steiner tree ∈ NPC
 - Linear programming (LP) ∈ P; integer linear programming (ILP) ∈ NPC

■...

Spanning Tree vs. Steiner Tree

- y_1) and (x_2, y_2) , the Manhattan distance between them is given by $d_{12} = |x_1 - x_2| + |y_1 - y_2|$
- **Rectilinear spanning tree:** a spanning tree that connects its nodes using Manhattan paths (Fig. (b) below)
- Steiner tree: a tree that connects its nodes, and additional points (Steiner points) are permitted to be used for the connections
- The minimum rectilinear spanning tree problem is in P, while the minimum rectilinear Steiner tree (Fig. (c)) problem is NP-complete
 - The spanning tree algorithm can be an approximation for the Steiner tree problem (at most 50% away from the optimum)



Hardness of Problem Solving

- Most optimization problems are intractable
 - Cannot afford to search the exact optimal solution
 - Global optimal (optimum) vs. local optimal (optimal)
- □ Search a reasonable solution within a reasonable bound on computational resources

Coping with NP-hard Problems

Approximation algorithms

- Guarantee to be a fixed percentage away from the optimum
- E.g., MST for the minimum Steiner tree problem

Randomized algorithms

Trade determinism for efficiency

Pseudo-polynomial time algorithms

- Has the form of a polynomial function for the complexity, but is not to the problem size
- E.g., O(nW) for the 0-1 knapsack problem

Restriction

- Work on some subset of the original problem
- E.g., longest path problem restricted to directed acyclic graphs

Exhaustive search/Branch and bound

Is feasible only when the problem size is small

Local search:

- Simulated annealing (hill climbing), genetic algorithms, etc.
- Heuristics: No guarantee of performance

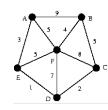
Algorithmic Paradigms

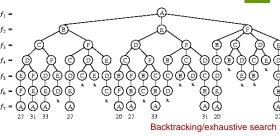
- Exhaustive search: Search the entire solution space
- Branch and bound: A search technique with pruning
- **Greedy method:** Pick a locally optimal solution at each step
- **Dynamic programming:** Partition a problem into a collection of sub-problems, the sub-problems are solved, and then the original problem is solved by combining the solutions (applicable when the sub-problems are **NOT independent**)
- ☐ Hierarchical approach: Divide-and-conquer
- Mathematical programming: A system of solving an objective function under constraints
- □ Simulated annealing: An adaptive, iterative, non-deterministic algorithm that allows "uphill" moves to escape from local optima
- ☐ **Tabu search:** Similar to simulated annealing, but does not decrease the chance of "uphill" moves throughout the search
- Genetic algorithm: A population of solutions is stored and allowed to evolve through successive generations via mutation, crossover, etc.

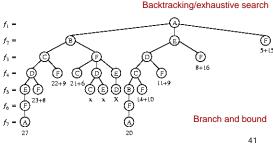
39

Exhaustive Search v.s. Branch and Bound

■ TSP example

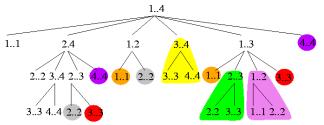






Dynamic Programming (DP) v.s. Divide-and-Conquer

- Both solve problems by combining the solutions to sub-problems
- □ Divide-and-conquer algorithms
 - Partition a problem into independent sub-problems, solve the sub-problems recursively, and then combine their solutions to solve the original problem
 - Inefficient if they solve the same sub-problem more than once
- Dynamic programming (DP)
 - Applicable when the sub-problems are **not independent**
 - DP solves each sub-problem just once



42

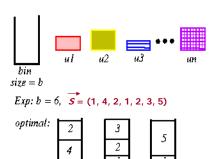
Example: Bin Packing

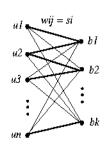
■ The Bin-Packing Problem Π:

Items $U = \{u_1, u_2, ..., u_n\}$, where u_i is of an integer size s_i , set B of bins, each with capacity b

□ Goal:

Pack all items, minimizing # of bins used (NP-hard!)





43

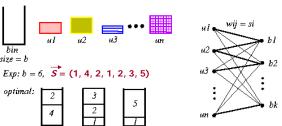
Algorithms for Bin Packing

□ Greedy approximation algorithm:

First-Fit Decreasing (FFD)

- $FFD(\Pi) \le 11OPT(\Pi)/9 + 4$)
- Dynamic Programming? Hierarchical Approach? Genetic Algorithm? ...
- Mathematical Programming:

Use integer linear programming (ILP) to find a solution using |B| bins, then search for the smallest feasible |B|



ILP Formulation for Bin Packing

 \Box 0-1 variable: $x_{ij}=1$ if item u_i is placed in bin b_{ij} 0 otherwise

$$\max \sum_{(i,j) \in E} w_{ij} x_{ij}$$

$$subject to$$

$$\sum_{\forall i \in U} w_{ij} x_{ij} \leq b_j, \forall j \in B \ /* capacity \ constraint */ \ (1)$$

$$\sum_{\forall j \in B} x_{ij} = 1, \forall i \in U \ /* \ assignment \ constraint */ \ (2)$$

$$\sum_{ij} x_{ij} = n \ /* \ completeness \ constraint */ \ (3)$$

$$x_{ij} \in \{0,1\} \ /*0, \ 1 \ constraint */ \ (4)$$

- **Step 1:** Set |B| to the lower bound of the # of bins
- Step 2: Use the ILP to find a feasible solution
- **Step 3**: If the solution exists, the # of bins required is |B|. Then exit.
- **Step 4:** Otherwise, set $|B| \leftarrow |B| + 1$. Goto Step 2.

Mathematical Programming

Many optimization problems can be formulated as

```
minimize (or maximize) f_0(x) objective function subject to f_i(x) \le c_{ii} i = 1, ..., m. constraints
```

- Some special common mathematical programming
 - Linear programming (LP)
 - Integer linear programming (ILP)
 - Nonlinear programming
 - □ Convex optimization
 - Semi-definite programming, geometric programming, ...