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Model of Computation I

Model of Computation

I
O In system design, intended system behavior is translated
into physical implementation
B The physical implementation can be in hardware or software,
in silicon or non-silicon (e.g., living cells)
B How a system behaves or interacts with its environmental
stimuli must be specified formally

O Model of computation (MoC) can be seen as the subject of
devising/selecting effective “data structures” in describing
system behaviors precisely and concisely

O MoC gives a formal way of describing system behaviors

B It is useful in the specification, synthesis and verification of
systems

Model of Computation

O Outline

B State transition systems

OFinite automata / finite state machines
B Real-time systems

OTimed automata
B Hybrid systems

OHybrid automata for hybrid systems, which exhibits both
discrete and continuous dynamic behavior

B Asynchronous systems
OPetri nets for asynchronous handshaking
B Signal processing systems
O Dataflow process network for signal processing applications

(See Wikipedia for more detailed introduction)




Modeling State Transition

O Finite automata A = (Q, q,, F, 2, 8)
B Q: states; q,: initial state; F: accepting states; X.: input
alphabet; §: >xQ—Q transition
B Can be alternatively represented in state diagram

O Finite automata are used as the recognizer of regular
language

B Example 0

O The finite automaton accepts all binary strings ended in a “1”, i.e.,

which form the language: (0*1*)*1 or {0,1}*1

Modeling State Transition (cont’d)

O Finite state machine (FSM) M = (Q, I, 2, Q, §, L)
B Q: states; I: initial states; >: input alphabet; Q : output alphabet; &:
2 xQ—Q transition function; A: >xQ—Q (respectively A: Q—Q) output
function for Mealy (respectively Moore) FSM
B Can be alternatively represented in state transition graph (STG) or
state transition table (STG)

B E.g., vending machine, traffic light controller, elevator controller,
Rubik’s cubel, etc.

Modeling State Transition (cont'd)

COFSMs are often used as controllers in
digital systems

M E.g. data flow controller, ALU (arithmetic logic
unit) controller, etc.

OVariants of FSM
B Hierarchical FSM

B Communicating FSM
m..

0 2 Q|Q a
0 G|G go
8 0 Y |Y yield
8 1 1 0 R|R stop
1 G|Y go
- 0 1 o 1 Y|R vyl
U 1 R|G stop
6
Modeling Real-Time Systems
O Timed automata
B Example
light switch controller gard
push | x=2 | x:=0, y:=0 reset

action \

@ @~

click | y<9 | x:=0 x and y are clock variables




Modeling Hybrid Systems

O Hybrid automata
B Example

temperature control system

T>Thign

T< Tlow

Modeling Asynchronous Systems

O Petri net P = (G, M)

B Petri net graph G is a bipartite weighted directed graph:

OTwo types of nodes: places in circles and transitions in
boxes

OArcs: arrows labeled with weights indicating how many
tokens are consumed or produced

OTokens: black dots in places
B [Initial marking M,
O Initial token positions

ref: EE249 lecture notes, UC Berkeley

Modeling Asynchronous Systems
(cont'd)

O In a Petri net graph G,

B places: represent distributed state by holding tokens

O marking (state) M is an vector (m;, m,, ..., m;), where m; is the non-
negative number of tokens in place p;

O initial marking M, is initial state

B transitions: represent actions/events
O enabled transition: enough tokens in predecessors
O firing transition: modifies marking p2

ref: EE249 lecture notes, UC Berkeley

Modeling Asynchronous Systems
(cont'd)

O A marking is changed according to the following rules:
B A transition is enabled if there are enough tokens in each input place

B An enabled transition fire (i.e. non-deterministic)
B The firing of a transition modifies marking by tokens from
the input places and tokens in the output places
—o 9
2
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ref: EE249 lecture notes, UC Berkeley 12
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Modeling Asynchronous Systems
(cont'd)

Modeling Asynchronous Systems
(cont'd)

I I
O Example O Example
communication protocol communication protocol
Send msg Receive m$g Receive m$g
P1 P2 P1 P2
Receive Ack Receive Ack
source: EE249 lecture notes, UC Berkeley 13 source: EE249 lecture notes, UC Berkeley 14
Modeling Asynchronous Systems Modeling Asynchronous Systems
) ]
(cont’'d) (cont’d)
I I
O Example O Example
communication protocol communication protocol
Send msg Receive m$g Receive m$g
P1 P2 P1 P2
Send Ack Send Ack
Receive Ack Receive Ack
source: EE249 lecture notes, UC Berkeley 15 source: EE249 lecture notes, UC Berkeley 16




Modeling Asynchronous Systems
(cont'd)

O Example
communication protocol

source: EE249 lecture notes, UC Berkeley 17

Modeling Asynchronous Systems
(cont'd)

0 Example

communication protocol

source: EE249 lecture notes, UC Berkeley 18

Modeling Signal Processing

O Data-flow process network
B Nodes represent actors; arcs represent FIFO queues
O Firing rules are specified on arcs

O Actors respect firing rules that specify how many tokens must be
available on every input for an actor to fire. When an actor fires, it
consumes a finite number of tokens and produces also a finite
number of output tokens.

ref: http://www.create.ucsb.edu/~xavier/Thesis/html/node38.html 19

MoC 1n System Construction

[0 There are many other models of computation
tailored for specific applications

B Can you devise a new computation model in some
domain?

O Hierarchical modeling combined with several
different models of computation is often
necessary

0 By using a proper MoC, a system can be specified
formally, and further synthesized and verified

® In the sequel of this course, we will be focusing on FSMs
mainly

20




High Level Synthesis

O Course contents

ngh LGVCI Synthesis ' ® Hardware modeling

N Data flow
B Scheduling/allocation/assignment

CReading

@ B Chapter 5

‘ Logic synthesis ‘

U

‘ Physical design ‘

Slides are by Courtesy of Prof. Y.-W. Chang
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High Level Synthesis HL Synthesis vs. RTL Synthesis

O Hardware-description language (HDL) synthesis [0 RTL synthesis
B Starts from a register-transfer level (RTL) description; implements all

circuit behavior in each clock cycle is fixed

B Uses logic synthesis techniques to optimize the design fl_'mCtlona“ty within a Behavioral and RTL Synthesis
® Generates a netlist single clock cycle S
O High-level synthesis (HLS), also called architectural or o
behavioral synthesis _ o 00 HL synthesis [Eo e = es] .
B Starts from an abstract behavioral description . o
o automatically allocates - Sox
B Generates an RTL description he f . I T g
B It normally has to perform the trade-off between the the unCtlon_a Ity A
number of cycles and the hardware resources to fulfill a across multiple clock

task cycles e e e, . synoesys
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Output of High Level Synthesis

O Behavioral Compiler creates a design that consists of a
datapath, memory 1I/0 and a control FSM

Behavioral Code
S c=ralions ]

Multiple
Architecture
seense 1 Creation

" Control FSM

P B ' i

E% Target Architecture -

L] ;

: tatu= FreRegster . Implementation
5 o = 'q

S -

: B T ': KRR

: Datapath
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Benefits of High Level Synthesis (1)

O Quick specification and verification

B Specify behavioral HDL easily, since it's intuitive and natural to
write

B Save time -- behavioral HDL code is up to 10 times shorter
than equivalent RTL

B Simulate orders of magnitude faster because of the higher
level of abstraction

B Reuse designs more readily by starting with a more abstract
description

O Reduce design time

B Model hardware and software components of system
concurrently

B Easily implement algorithms in behavioral HDL and generate
RTL code with a behavioral compiler

m Verify hardware in system context at various levels of
abstraction
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Benefits of High Level Synthesis (2)

O Explore architectural trade-offs
B Create multiple architectures from a single specification

B Trade-off throughput and latency using high-level
constraints

B Analyze various combinations of technology-specific
datapath and memory resources

B Evaluate cost/performance of various implementations
rapidly
O Automatically infer memory and generate FSM
B Specify memory reads and writes

B Schedule memory 1/0, resolve conflicts by building
control FSM

B Trade-off single-ported (separate registers) vs. multi-
ported memories (register files)

B Generate a new FSM
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Hardware Models for HIL. Synthesis

O All HLS systems need to restrict the target hardware
B Otherwise search space is too large

O All synthesis systems have their own peculiarities, but most
systems generate synchronous hardware and build it with
functional units:

B A functional unit can perform one or more computations,
e.g., addition, multiplication, comparison, ALU

0 = fi,i5)

28




Hardware Models

[0 Registers: they store |
inputs, intermediate
results and outputs; —
sometimes several
registers are taken ]
together to form a
register file

O Multiplexers: from
several inputs, one is
passed to the output

29

Hardware Models (cont'd)

O Buses: a connection

shared between

several hardware i
elements, such that

only one element can @ @
write data at a specific

time

bus

O Tri-state drivers:
control the exclusive
writing on the bus

enable
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Hardware Models (cont'd)

O Parameters defining the hardware model for the
synthesis problem:

B Clocking strategy: e.g. single or multiple
phase clocks

B Interconnect: e.qg. allowing or disallowing
buses

B Clocking of functional units: allowing or
disallowing

Omulticycle operations

Coperation chaining (multiple operations in
one cycle)

Opipelined units

31

Chaining, Multicycle Operation,
Pipelining

multicyele
operation

Cyele

bonndary @
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Example of a HLS Hardware Model

one or more buses

m‘
-4 d

< = multiplexer input
@ = tristate bus driver

registers
and/or <H: $|
register

files

Y

A A

one or
more
FU's

Y
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Hardware Concepts: Data Path +
Control

O Hardware is normally partitioned into two parts:

B Data path: a network of functional units, registers,

multiplexers and buses
OThe actual “computation” takes place in the data path

B Control: the part of the hardware that takes care of
having the data present at the right place at a specific
time, of presenting the right instructions to a
programmable unit, etc.

O High-level synthesis often concentrates on data-path
synthesis

B The control part is then realized as a finite state
machine or in microcode
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Steps of High Level Synthesis

O Preprocess the design with high-level optimization
® Code motion
B Common subexpression elimination
B Loop unrolling
B Constant propagation
B Modifications taking advantage of associativity and distributivity, etc.
O Transform the optimized design into intermediate format
(internal representation) which reveals more structural
characteristics of the design
O Optimize the intermediate format
B Tree height reduction
B Behavior retiming
O Allocate the required resources to implement the design
B Also called module selection
O Schedule each operation to be performed at certain time such
that no precedence constraint is violated
O Assign (bind) each operation to a specific functional unit and
each variable to a register
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HLS Optimization Criteria

O Typically, in terms of speed, area, and power
consumption

O Optimization is often constrained
B Optimize area when the minimum speed is given =
time-constrained synthesis

B Optimize speed when a maximum for each resource type
is given = resource-constrained synthesis
COE.g. power-constrained synthesis

B Minimize power dissipation for a given speed and area
requirement = time- and area- constrained synthesis

36




Input Format

O The algorithm, which is the input to a high-level
synthesis system, is often provided in textual
form either

M in a conventional programming language, such
as C, C++, SystemcC, or

M in a hardware description language (HDL),
which is more suitable to express the
parallelism present in hardware.

O The description has to be parsed and transformed
into an internal representation and thus
conventional compiler techniques can be used.

37

Example of HL. Optimization

O Applying the distributive law to reduce resource
requirement

38

Internal Representation

0 Most systems use
some form of a data-
flow graph (DFG)

B A DFG may or may not a b ¢ d

contain information on
control flow

a * b; y :=c + d;
X + yi:

]

O A data-flow graph is X y
built from
B vertices (nodes):

representing
computation, and

B edges: representing z
precedence relations
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Token Flow in a DFG

0 A node in a DFG fires when all tokens are present
at its inputs

0 The input tokens are consumed and an output
token is produced (like in Petri nets)

a b c d a b c d a b c d a b c d

A toke: =
Y
*/

Firing

y /‘

Generate
a token
after
firing

40




Conditional Data Flow

[0 Conditional data flow by means of two special
nodes:

- .,
Coe G
¢ oy
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Explicit Iterative Data Flow

O Selector and
distributor nodes can
be used to describe
iteration

B Example

while (a > b)

a < a-— b;

0 Loops require careful
placement of initial
tokens on edges

42

Implicit Iterative Data Flow

O Iteration implied by regular input stream of
tokens

O Initial tokens act as buffers
O Delay elements instead of initial tokens

a b a b a b E a b
al0]s allls

43

Iterative DFG Example

a second-order filter section

a4




Optimization of Internal Representation

O Restructuring data

and control flow Xg g
graphs prior to the P X7
actual mapping Xg

onto hardware X

B Examples: X,

OReplacing chain of
adders by a tree

CBehavior retiming X3

O0b0-0-0-5

Behavior Retiming (BRT)

0 By moving registers

a b a b
through logic and Y
hierarchical @
boundaries, BRT d e f
reduces the clock (7o)
period with minimum
area impact £\

C C

X1 c;:'lo:l':::;-i:‘dﬂ]ns I
Tree height reduction Outputs |m;u|s Outputs
HLS Subtasks: Allocation, Scheduling,
Efttectiveness of Behavior Retiming Assignment

Synopsys exp:

Desion TvrE

Contrd | ddns [ 108t3gates | M08ns [ 11303gaes | W% dacter 4% morearea

: Contral (2300 | 3 E0Egates 18,505 1575 gstes | 19%faster, 27% more areq)
Contral | - 28Bns | 3506 gates Whns ) 330 gses | same-goeed, B% lessares
Datafiowd Cartral __1?4_19 : IB.fQDIJ-ga_tes: }Q.S.n_s : 30,1E|Bga_tes : 26%_.1astgr\ﬁ%.mo_re-are§
Dataflowed Cortrol 16ns 7 20-gates 13 8M3gates | 0% faster 8% more-srea
Datafiowy . | oo 22ngoo ] 0 M00.gates . 18508 o 5100gales. . | 16%aster, 2% mora.aren
Datafew CoBBns W ZGgates L2615 J2032 gates | %-fader 2 more area
Datafow W2ns 14,361 gates 236-ng 13,047 gabes | 10%facter, 4% loss.area
Dataflow 2505 16.798-gates 20.8-ns 15550 gales - | 20%facter, 7% Jess.area

L Dataflow s E,?Dﬁ-gataa dns 30.98?{3&!&5 . Ji?%_-{aﬁer,s%-mo're-amﬂ

O RTL designs have a single clock net and were synthesized into gates using
Synopsys Design Compiler

O Design type: dataflow implies significant number of operators; control
implies state machine dominated
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O Subtasks in high-level synthesis

B Allocation (Module selection): specify the hardware
resources that will be necessary

B Scheduling: determine for each operation the time at which it
should be performed such that no precedence constraint is
violated

B Assignment (Binding): map each operation to a specific
functional unit and each variable to a register

O Remarks:

B Though the subproblems are strongly interrelated, they are
often solved separately. However, to attain a better solution,
an iterative process executing these three subtasks must be
performed.

B Most scheduling problems are NP-complete = heuristics are
used

48




Example of High Level Synthesis

Example of Scheduling

O The following couple of slides shows an example of [0 The schedule and operation assignment with an
Zﬁgﬁgﬁgﬂg and binding of a design with given resource allocation of one adder and one multiplier:
O Given the second-order filter which is first made acyclic:
Lo T ol s [ « >
Ll e[ =<1 [ «]
49 50
Binding for Data Path Generation Resource Allocation Problem

O The resulting data path after register assignment
B The specification of a controller would complete the

design

==,

Multiplier

o =4

51

O This problem is relatively simple. It simply decides the
kinds of hardware resources (hardware implementation for
certain functional units such as adder, multiplier, etc.) and
the quantity of these resources.

B For example two adders, one multiplier, 4 32-bit registers, etc.
for a certain application

O The decision made in this step has a profound influence on
the scheduling which under the given resource constraints
decides the time when an operation should be executed by
a functional unit

O This step set an upper bound on the attainable performance.

52




Problem Formulation of Scheduling

O Input consists of a DFG G(V, E) and a library %k of resource
types
O There is a fixed mapping from each v eV to some r e R, ;
tkhe execution delay &(v) for each operation is therefore
nown

O The problem is time-constrained; the available execution
times are in the set
g =1{0,1,...T, — 1}.

O A schedule o:V—>T maps each operation to its starting time;
for each edge (v;, v)) € E, a schedule should respect: o(v)) >
o(v;) + &vy).

O Given the resource type cost a(r) and the requirement
function N,(o), the cost of a schedule ¢ is given by:

Z (F)N(0).

rek
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ASAP Scheduling

OAs soon as possible (ASAP)
scheduling maps an operation to the
earliest possible starting time not violating
the precedence constraints

CProperties:

Mt is easy to compute by finding the
longest paths in a directed acyclic graph

M It does not make any attempt to
optimize the resource cost

54

Graph for ASAP Scheduling

55

Mobility Based Scheduling

O Compute both the ASAP and ALAP (as late
as possible) schedules o5 and o,

OFor each v € V, determine the scheduling
range [o5(V) , 6.(V)]

o (V) - os(Vv) is called the mobility of v

O Mobility-based scheduling tries to find the
best position within its scheduling range
for each operation

56




Simple Mobility Based Scheduling

O A partial schedule o: Vv —[7,9]1 assigns a
scheduling range to each veV,

f}( v) = [(}min( V), f}max( V)]

O Finding a schedule can be seen as the aeneration
of a sequence of partial schedules ;" 5"

)

“determine & (© by computing o5 and o7,”;
k<« 0
while (“there are unscheduled operations™) {
v « “one of the nodes with lowest mobility”;
“schedule v at some time that optimizes the current resource utilization”;
“determine &% 1) by updating the scheduling ranges
of the unscheduled nodes™;
k—k+1
)
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List Scheduling

0 A resource-constrained scheduling method

O Start at time zero and increase time until all
operations have been scheduled
B Consider the precedence constraint

O The ready list L, contains all operations that can
start their execution at time t or later

O If more operations are ready than there are
resources available, use some priority function to

choose, e.g. the longest-path to the output node
= critical-path list scheduling

58

List Scheduling Example

59

Assignment Problem

O Subtasks in assignment:
M operation-to-FU assignment
B value grouping
B value-to-register assignment
B transfer-to-wire assignment
B wire to FU-port assignment

OIn general: task-to-agent assignment
B Compatibility issue

OTwo tasks are compatible if they can be executed on
the same agent

60




Compatibility and Conflict Graphs

CClique partitioning  OGraph coloring
gives an gives an
assignment in a assignment in the
compatibility graph complementary

conflict graph

61

Assignment Problem

O Assumption: assignment
follows scheduling.

O The claim of a task on an
agent is an interval =
minimum resource
utilization can be found by
left-edge algorithm.

O In case of iterative
algorithm, interval graph
becomes circular-arc graph
= optimization is NP-
complete.

Vs
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Tseng and Sieworek’s Algorithm

k<0
GE(VE, Bf) < Ge(Ve, Ee);
while (EX = ) {
“find (v, vj) € Ef with largest set of common neighbors”;
N < “set of common neighbors of v; and v;™;
s < IUj;
k—+1
Vet h e vEU fug)\ (o v
for each (v, v,) € Eﬁ‘
i (ug # vi Avm Fuj Avn # 0 Aty # 1))
k+1 k+1 .
Ee < Ec.T U{(vm, vndks
foreachv, e ¥
B EE U v
k—k+1;

«— @
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Clique-Partitioning Example

v
0,12
V Vo1

1 )
v
) Vy ‘,5 V4 Vs 4
1% V.
7 7
Y2 Va
3 Ve

V

V1.2

Y0,1,2,3 Y0.1,2.3
\’4 ))5 6 [ ] ®
’ Vs Vs 6
° ’ .
1’7
\’7
\’3

Vg

1% 7

V567
®
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Example of Behavior Optimization

(@)
B
0
A
I
arry delay a
inciirred—» n
three times ‘T
0
m
1
i
0
n

Behavior Optimization of Arithmetic Circuit (BOA)

™~
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Effectiveness of BOA

Synopsys example

236 s 202 ns 14% faster,
Wotion estimation 12793 gates 12,215 gates 5% loss area
o ’ 19.2 ns 17.5ns 9% faster,
Graphics intempaolation 3,507 gates 2 452 gates 16% less area
16 ns
ot space onwrson |32 48 e W, AL
g ¢rmarual CEA implmentation =80
TN 53 ns 31 % faster,
Sum atd operands 1,418 gates 1,307 gates 8% less area
arh et 116 ns 33ns 20% faster,
2 577 pates 2524 gates 2% less area
a* 4104 4.4ns ns 30% faster,
©100000100000100) 758 gates 449 gates 40% less arsa
3 3EIE 5.7 ns 46 ns 19% faster,
00111110001 111103 97 gates 709 gates 23% less area
. 1.0 ns 9% faster,
atbh+oe 2,707 gates 2 689 gates same area
R R R 142 ns 12.8 ns 10% fastar,
a*brcrd+e*t 7,435 gates 7,110 gates 4% less area
8.1 ns 6.7 ns 17 % fastar,
Sum o716 operands 2,836 gates 2,123 gates 25% less area
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