Introduction to Electronic
Design Automation

Jie-Hong Roland Jiang
LR

/\
Department of Electrical Engineering k o
National Taiwan University

Spring 2013

Testing

Slides are by Courtesy of Prof. S.-Y. Huang and C.-M. Li

Testing

0 Recap
B Design verification
O1Is what | specified really what | wanted?
= Property checking

B Implementation verification
O1s what | implemented really what | specified?
= Equivalence checking

B Manufacture verification
O1Is what | manufactured really what | implemented?
= Testing; post manufacture verification
= Quality control
= Distinguish between good and bad chips

Design Flow

=

] Block
| diagram
=

=

A
A\

IC Fabrication

Wafer
(hundreds of dies)

Sawing & Packaging

Final Testing
7\
b

\\
A
N7

I

| Bad chips | | Good chips |

4

Manufacturing Defects

[Processing faults
B missing contact windows
B parasitic transistors
B oxide breakdown

O Material defects
B bulk defects (cracks, crystal imperfections)
m surface impurities

O Time-dependent failures
B dielectric breakdown
B electro-migration

O Packaging failures
B contact degradation
B seal leaks

Faults, Errors and Failures

O Faults
B A physical defect within a circuit or a system
B May or may not cause a system failure

O Errors

B Manifestation of a fault that results in incorrect circuit (system)
outputs or states

B Caused by faults
O Failures
B Deviation of a circuit or system from its specified behavior
B Fail to do what is supposed to do
B Caused by errors
O Faults cause errors; errors cause failures

Testing and Diagnosis

CTesting

M Exercise a system and analyze the response to
ensure whether it behaves correctly after
manufacturing

O Diagnosis
B Locate the causes of misbehavior after the
incorrectness is detected

Scenario of Manufacturing Test

TEST VECTORS

|

Manufactured
Circuits

CIRCUIT RESPONSE

CORRECT
RESPONSES

—_—

Comparator - PASS/FAIL

Test Systems

t ASILNVADY ,

Test head

Purpose of Testing

O Verify manufactured circuits
B Improve system reliability
B Reduce repair costs

O Repair cost goes up by an order of magnitude each step
away from the fab. line

1000
Cost 100 —
Per L
Fault 10
(dollars) 1 _—

IC Test Board System Warranty
Test Test Repair

B. Davis, “The Economics of Automatic Testing” McGraw-Hill 1982
10

Testing and Quality

O Quality of shipped part can be expressed as a function of
the yield Y and test (fault) coverage T.

ASIC Testing Shipped Parts
Fabrication | Yield: Quality:
Fraction of . Defective parts
Good parts Per Million (DPM)

Rejects

11

Fault Coverage

COFault coverage T

B Measure of the ability of a test set to detect a
given set of faults that may occur on the
Design Under Test (DUT)

detected faults

all possible faults

12

Defect Level

A defect level is the fraction of the
shipped parts that are defective

DL=1-Y@T

Y: yield
T: fault coverage

13

Defect Level vs. Fault Coverage

Defect Level

1.0 _
veod Y =0.01
0.8 Y =0.25
06 |
Y =05
04 |
Y =075
0 20 40 60 80 100

(Williams 1BM 1980) Fault Coverage (%)

High fault coverage —— Low defect level

14

DPM vs. Yield and Coverage

Yield Fault Coverage DPM
50% 90% 67,000
75% 90% 28,000
90% 90% 10,000
95% 90% 5,000
99% 90% 1,000
90% 90% 10,000
90% 95% 5,000
90% 99% 1,000

90% 99.9% 100

15

Why Testing Is Ditficult ?

[0 Test time explodes exponentially in exhaustive
testing of VLSI

B For a combinational circuit with 50 inputs, need 250 =
1.126 x 105 test patterns.

B Assume one test per 10-7sec, it takes 1.125x108sec =
3.57years.

B Test generation for sequential circuits are even more
difficult due to the lack of controllability and
observability at flip-flops (latches)

O Functional testing
B may NOT be able to detect the physical faults

16

The Infamous Design/Test Wall

30-years of experience proves that
test after design does not work!

........................ Oops!

=== ‘e What does
‘ this chip do?!

Functionally correct!
We're done!

re

Design Engineer

T

Test Engineer

17

Outline

O Fault Modeling
OFault Simulation
OAutomatic Test Pattern Generation

ODesign for Testability

18

Functional vs. Structural Testing

C11/0 functional testing is inadequate for
manufacturing
B Need fault models

0 Exhaustive testing is daunting
B Need abstraction and smart algorithms
M Structural testing is more effective

19

Why Fault Model ?

O Fault model identifies target faults
B Model faults that are most likely to occur

O Fault model limits the scope of test generation
B Create tests only for the modeled faults

O Fault model makes testing effective

B Fault coverage can be computed for specific test
patterns to measure its effectiveness

O Fault model makes analysis possible
B Associate specific defects with specific test patterns

20

Fault Modeling vs. Physical Defects
O Fault modeling o

B Model the effects of physical defects on the
logic function and timing

COPhysical defects
M Silicon defects
B Photolithographic defects
B Mask contamination
M Process variation
M Defective oxides

21

Fault Modeling vs. Physical Defects
(cont'd)

[Electrical effects
B Shorts (bridging faults)
H Opens
B Transistor stuck-on/open
B Resistive shorts/opens
B Change in threshold voltages

O Logical effects
B Logical stuck-at-0/1
B Slower transition (delay faults)
B AND-bridging, OR-bridging

22

Typical Fault Types

O Stuck-at faults

OBridging faults

O Transistor stuck-on/open faults
ODelay faults

O 1DDQ faults

[0 State transition faults (for FSM)
COMemory faults

COOPLA faults

23

Single Stuck-At Fault

O Assumptions:
B Only one wire is faulty
B Fault can be at an input or output of a gate
B Faulty wire permanently sticks at O or 1

test vector

ideal response

stuck-at-0

24

Multiple Stuck-At Faults

O Several stuck-at faults occur at the same
time
B Common in high density circuits

OFor a circuit with k lines
M There are 2k single stuck-at faults

® There are 3%-1 multiple stuck-at faults
OA line could be stuck-at-0, stuck-at-1, or fault-free
O0One out of 3k resulting circuits is fault-free

25

Why Single Stuck-At Fault Model ?

O Complexity is greatly reduced

B Many different physical defects may be modeled by the
same logical single stuck-at fault

0 Stuck-at fault is technology independent

B Can be applied to TTL, ECL, CMOS, BiCMOS etc.
[Design style independent

B Gate array, standard cell, custom design
[0 Detection capability of un-modeled defects

B Empirically, many un-modeled defects can also be
detected accidentally under the single stuck-at fault
model

0 Cover a large percentage of multiple stuck-at
faults

26

Why Logical Fault Modeling ?

O Fault analysis on logic rather than physical problem
B Complexity is reduced

O Technology independent
B Same fault model is applicable to many technologies

B Testing and diagnosis methods remain valid despite changes in
technology

O Wide applications

B The derived tests may be used for physical faults whose effect
on circuit behavior is not completely understood or too
complex to be analyzed

O Popularity
B Stuck-at fault is the most popular logical fault model

27

Definition of Fault Detection

0 A test (vector) t detects a fault f iff t detects f
(i.e. z(t) # z«(t))

O Example
X
1l e) Z 1
Z1=X1Xo Zo=XoX3
X
2
215=X1 Zof =XoX3
) z
X4 2

Test (x1,x2,x3) = (100) detects f because z,(100)=0 and z,;(100)=1

28

Fault Detection Requirement Fault Sensitization
0 A test t that detects a fault f Gy
B activates f (or generate a fault effect) by creating X1 1
different v and v; values at the site of the fault X2 0 1 G3 z(1011)=0
B propagates the error to a primary output z by making all z{(1011) =1
the wires along at least one path between the fault site Xg L
and z have different v and v; values
1 T
0/1
[Sensitized wire G G D
B A wire whose value in response to the test changes in 2 4 on
the presence of the fault f is said to be sensitized by the 1 >° \
test in the faulty circuit X4 J
- S.ensmzed path - . . Input vector 1011 detects the fault f (G, stuck-at-1)
A path composed of sensitized wires is called a R - > =
sensitized path v/vi: v = signal value in the fault free circuit
V; = signal value in the faulty circuit
29 30
Detectability Undetectable Fault
OA fault f is said to be detectable O The stuck-at-0
. . a
® if there exists a test t that detects f fault at G, output)
= otherwi f is an undetectable fault is undetectable [L/
otherwise, T 1S an undetectable 1al B Undetectable faults
do not change the
function of the z
CFor an undete_ctable fault f | circuit A 3)
M no test can simultaneously activate f and ¥ The related circuit
create a sensitized path to some primary can be deleted to
output simplify the circuit
D
31 32

Test Set

O Complete detection test set

B A set of tests that detects any detectable fault in a
designated set of faults

O Quality of a test set
B is measured by fault coverage

[Fault coverage
B Fraction of the faults detected by a test set
B can be determined by fault simulation

B >959% is typically required under the single stuck-at
fault model

B >99.9% required in the ICs manufactured by IBM

33

Typical Test Generation Flow

———-I Select next target fault |

Generate a test
for the target fault

| Fault simulation |

| Discard detected faults |

(to be discussed)

(to be discussed)

yes no
More faults ? @

34

Fault Equivalence

O Distinguishing test
B A test t distinguishes faults o and § if z (t)
#2z4(t) for some PO function z

C0Equivalent faults
B Two faults a and B are said to be equivalent in
a circuit iff the function under a is equal to the
function under B for every input assignment
(sequence) of the circuit.
M That is, no test can distinguish o and B, i.e.,
test-set(a) = test-set(p)

35

Fault Equivalence

O AND gate:

B all s-a-0 faults are equivalent

O OR gate:

B all s-a-1 faults are equivalent

O NAND gate:

® all the input s-a-0 faults and the output s-
a-1 faults are equivalent

O NOR gate:

® all input s-a-1 faults and the output s-a-0

faults are equivalent

O Inverter:

B input s-a-1 and output s-a-0 are equivalent
B input s-a-0 and output s-a-1 are equivalent

\

same effect

36

Equivalence Fault Collapsing

Equivalent Fault Group

On+2, instead of 2(n+1), single stuck-at O In a combinational circuit
faults need to be considered for n-input = Many faults may form an equivalence group
B These equivalent faults can be found in a reversed
AND (OI’ OR) gates topological order from POs to Pls
s-a-1 cal s-a-0 s-a-0 s-a-1
= —
s-a-1 s-a-0 s-a-0
s-a-1
s-a-1 DQ s-a-0 sl %
s-a-1 s-a-0 s-a-0 i: Three faults shown are equivalent !
37 38
Fault Dominance Fault Dominance

O Dominance relation

B A fault B is said to dominate another fault o in an
irredundant circuit iff every test (sequence) for a is also
a test (sequence) for B, i.e., test-set(a) c test-set(p)

B No need to consider fault g for fault detection

Test(B) — | a is dominated by |

39

O AND gate
B Qutput s-a-1 dominates any input s-a-1

easier to test

|

O NAND gate
B Output s-a-0 dominates any input s-a-1

O OR gate
B Qutput s-a-0 dominates any input s-a-0

O NOR gate
B Output s-a-1 dominates any input s-a-0

O Dominance fault collapsing

B Reducing the set of faults to be analyzed based on the
dominance relation

40

Stem vs. Branch Faults

Analysis of a Single Gate

O Detect A s-a-1: O Fault Equivalence Class A
z(t)®z,(t) = (CD®CE)®(D®CE) —a- —a- —a-
:D@C{D:(C=O,D=1) u (AsaO_,BsaO,Cs_a 0) C
O Fault Dominance Relations B—
O Detect C s-a-1: m (Cs-a-1 > As-a-1) and
2(D)@z(t) = (CD®CE)®(DDE) D ID_ (C s-a-1 > B s-a-1) BIcTATecTa sl c
= (C=0,D=1,E=0) or O Faults that can be ignored:
(C=0,D=0,E=1) A 9) sal|sal |sal|sa0 |sa0 |sa0
C — jD; B A s-a-0, B s-a-0, and C s-
O Hence, C s-a-1 does not B a-1 00f0
dominate A s-a-1 £ +D_ 01|10 | 1
O In general, there might be no 10]0 1
equivalence or dominance C: stem of a multiple fanout 11 | 1 00| O
relations between stem and A, B: branches
branch faults
a1 42
Fault Collapsing Dominance Graph

O Collapse faults by fault equivalence and
dominance

B For an n-input gate, we only need to consider n+1 faults
in test generation

s-a-1 *
I

s-a-1|

pUNEIE (8

43

O Rule

B When fault o dominates fault , then an arrow is
pointing from a to B

O Application
B Find out the transitive dominance relations among faults

a—|
b d

e s-a-0
c e s-a-1

a4

Fault Collapsing Flow
_, Sweeping the netlist from PO to PI

to find the equivalent fault groups

Sweeping the netlist
to construct the dominance graph

Discard the dominating faults

Select a representative fault from
each remaining equivalence group

Equivalence
analysis

Dominance
analysis

Generate collapsed fault list

45

Prime Fault

Oa is a prime fault if every fault that is
dominated by a is also equivalent to a

CORepresentative Set of Prime Fault (RSPF)

B A set that consists of exactly one prime fault
from each equivalence class of prime faults

B True minimal RSPF is difficult to find

46

Why Fault Collapsing ?

O Save memory and CPU time

[0 Ease testing generation and fault simulation

O Exercise

_[
_[

* 30 total faults > 12 prime faults

47

Checkpoint Theorem

O Checkpoints for test generation

B A test set detects every fault on the primary inputs and
fanout branches is complete

Ol.e., this test set detects all other faults, too

B Therefore, primary inputs and fanout branches form a
sufficient set of checkpoints in test generation

OIn fanout-free combinational circuits (i.e., every gate has
only one fanout), primary inputs are the checkpoints

D

48

Why Inputs + Branches Are Enough ?

O Example
B Checkpoints are marked in blue
B Sweeping the circuit from Pl to PO to examine every
gate, e.g., based on an order of (A->B->C->D->E)
B For each gate, output faults are detected if every input
fault is detected

49

Fault Collapsing + Checkpoint

O Example:
B 10 checkpoint faults
B as-a-0 <=>ds-a-0, cs-a-0 <=> e s-a-0
bs-a-0 > ds-a-0 , bs-a-1 > ds-a-1
B 6 faults are enough

R
B

f

=P

50

Outline

OFault Modeling
OFault Simulation
O Automatic Test Pattern Generation

ODesign for Testability

51

Why Fault Simulation ?

OTo evaluate the quality of a test set
M |l.e., to compute its fault coverage

OPart of an ATPG program
B A vector usually detects multiple faults

B Fault simulation is used to compute the faults
that are accidentally detected by a particular
vector

OTo construct fault-dictionary
B For post-testing diagnosis

52

Conceptual Fault Simulation

Some Basics for Logic Simulation

PSatterns gespons_e O In fault simulation, our main concern is functional faults;
(Sequences) . omparison gate delays are assumed to be zero unless delay faults are
(Vectors) Faulty Circuit #n (D/0) considered
// \
< : O Logic values can be either {0, 1} (for two-value simulation)
Faulty Circuit #2 (B/1) . or {0, 1, X} (for three-value simulation)
1 Detected?
. . 1 . . .
Faulty Circuit #1 (A/0) i I O Two simulation mechanisms:
— ! B Compiled-code valuation:
Fault-free Circuit O A circuit is translated into a program and all gates are executed for
Primary | A B [each pattern (may have redundant computation)
Inputs D B Event-driven valuation:
(Pls) C O Simulating a vector is viewed as a sequence of value-change
Primary Outputs events propagating from Pls to POs
(POs) O Only those logic gates affected by the events are re-evaluated
Logic simulation on both good (fault-free) and faulty circuits
53 54
Event-Driven Simulation Complexity of Fault Simulation
I

@ Initialize the events at Pls
in the event-queue
]

Pick an event
Evaluate its effect

!

Schedule the newly born events
in the event-queue, if any

More eventin Q ?

1 1 A— «—0
«—0 B—J] 1 E
«—0 C—]

0o«—o0D

55

#Gate (G)

#Fault (F)

#Pattern V

O Complexity — F -P -G — O(G?3)

O The complexity is higher than logic simulation by a factor of
F, while it is usually much lower than ATPG

O The complexity can be greatly reduced using
B fault collapsing and other advanced techniques

56

Characteristics of Fault Simulation

O Fault activity with respect to fault-free circuit
B is often sparse both in time and space.
O For example

B F1 is not activated by the given pattern, while F2 affects
only the lower part of this circuit.

0 F1(s-a-0)
1

F2(s-a-0)
1

57

Fault Simulation Techniques

OParallel Fault Simulation
O Deductive Fault Simulation

58

Parallel Fault Simulation

O Simulate multiple circuits simultaneously

B The inherent parallel operation of computer words to
simulate faulty circuits in parallel with fault-free circuit

B The number of faulty circuits or faults can be processed
simultaneously is limited by the word length, e.g., 32
circuits for a 32-bit computer

0 Complication

B An event or a value change of a single faulty or fault-
free circuit leads to the computation of an entire word

B The fault-free logic simulation is repeated for each pass

59

Parallel Fault Simulation

O Example
B Consider three faults:
(J s-a-0, B s-a-1, and F s-a-0) | J/o | B/1 | F/O | |
B Bit-space: (FF denotes fault-free)
B/1 A J/o
0101019 [e5TiTo[g e 0]1]0]0

1

—) REEE
D

F
[fafa]q [afz]of4

F/O

60

Deductive Fault Simulation

O Simulate all faulty circuits in one pass
B For each pattern, sweep the circuit from Pls to POs.

B During the process, a list of faults is associated with
each wire

B The list contains faults that would produce a fault effect
on this wire

B The union fault list at every PO contains the detected
faults by the simulated input vector

0 Main operation is fault list propagation
B Depending on gate types and values

B The size of the list may grow dynamically, leading to the
potential memory explosion problem

61

Iustration of Fault List Propagation

LA A

Consider a two-input AND-gate: LB C LC
B

Non-controlling case: Case 1: A=1, B=1, C=1 at fault-free,
Lc=LAuLBU{C/0}

Controlling cases: Case 2: A=1, B=0, C=0 at fault-free,

Lc = (LA ~ LB) u {C/1}
Case 3: A=0, B=0, C=0 at fault-free,
Lc=(LA~LB)u{C/1}

LA is the set of all faults not in LA
62

Rule of Fault List Propagation

Output fault list
{L.nL}uz
{L.-Li}vzy
{L,-L}uz
{L,ulL}uz,
{L,ul}uz,
{L,-Llvuz,
{L.-Li}vz,
{L.,nL}vz,

Louz,
L,uz,

AND

OR

_ O - O-m o = ol

NOT

= Q= a0 O= a0 O
O == = = O = O O ON

63

Deductive Fault Simulation

O Example (1/4)
B Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (1,0,1)

Fault list at Pls:
LB ={B/1}, LF ={F/0}, LA=g, Lc=LD ={B/1}

64

Deductive Fault Simulation

O Example (2/4)
B Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (1,0,1)

LB ={B/1}, LF={F/0}, LA=d, Lc=LD ={B/1}
Fault lists at G and E:

L = (LAnLc)u G/1={B/1, G/1}

LE=(LD) U E/0={B/1, E/0}

65

Deductive Fault Simulation

O Example (3/4)
B Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (1,0,1)

LB ={B/1}, LF={F/0}, LA=C, Lc=LD={B/1},
LG ={B/1, G/1}, LE ={B/1, E/0}
Fault list at H:

LH = (LE u LF) U LH = {B/1, E/0, F/0, H/0}

Deductive Fault Simulation

O Example (4/4)
B Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (1,0,1)

Le ={B/1}, LF={F/0}, LA=O, Lc=LD={B/1},LG=
{B/1, G/1}, LE = {B/1, E/0}, LH = {B/1, E/O, F/0, H/0}
Final fault list at PO J:

L1 = (LH - L&) U LI = {E/0, F/0, J/0}

67

Deductive Fault Simulation

O Example (cont'd)
B Consider 3 faults: B/1, F/0, and J/0 under (A,B,F) = (0,0,1)

Event driven updates:
LB ={B/1}, LF={F/0}, LA=, Lc=LD=LE={B/1},
LG ={G/1}, LH = {B/1, F/0}, L1 ={B/1, F/0, J/0}

68

Outline

Typical ATPG Flow

O Fault Modeling O 1st phase: random test pattern generation
O Fault Simulation Lo
‘ Fault list generation |
O Automatic Test Pattern Generation (ATPG) —
.
B Functional approach I
O Boolean difference Random test pattern gen. ‘
B Structural approach l
O D-algorithm Fault Simulation
1PODEM & fault dropping
I
| . G mprover
O Design for Testability TTho
[Next page |
69 70
. ’ .
Typical ATPG Flow (cont'd) Test Pattern Generation

O 2nd phase: deterministic test pattern generation

|

Deterministic test
pattern gen.
|
Fault Simulation
& fault dropping

/"/7_71"“—-1
< FCgood? —=
- e

no N
T ves

‘ Test Compaction ‘

done W

71

O The test set T of a fault o with respect to some PO z can be
computed by

T(X) = z(X) ® z,(x)
O A test pattern can be fully specified or partially specified
depending on whether the values of Pls are all assigned
B Example

abc
000
001
010
011
100
101

N

Q

Input vectors (1,1,0) and (1,1,-) are fully
and partially specified test patterns of
fault o, respectively.

P OOOOO|N
ROOOOO

72

Structural Test Generation
D-Algorithm

O Test generation from circuit structure
O Two basic goals
B (1) Fault activation (FA)
B (2) Fault propagation (FP)
® Both of which requires Line Justification (LJ), i.e., finding input combinations that
force certain signals to their desired values
O Notations:
B 1/0 is denoted as D, meaning that good-value is 1 while faulty value is O
® Similarly, 0/1 is denoted D’
® Both D and D’ are called fault effects (FE)

a — 1/0 +— fault activation
b —
=
L -)
0 ¢ 0 fault propagation

73

Structural Test Generation

D-Algorithm

O Fault activation

B Setting the faulty signal to either O or 1 is a Line Justification
problem

O Fault propagation
1. select a path to a PO - decisions

2. once the path is selected - a set of line justification (LJ)
problems are to be solved

O Line justification
B Involves decisions or implications
B Incorrect decisions: need backtracking

To justify c=1 > a=1 and b=1 (implication) a
To justify c=0 - a=0 or b=0 (decision) b c

74

Structural Test Generation
D-Algorithm: Fault Propagation

f2 G5 G6

| fail | | success |

decision tree

O Fault activation

B G1=0-> {a=1,b=1,c=1}>{G3=0}
O Fault propagation: through G5 or G6
O Decision through G5:

B G2=1-> {d=0, } = inconsistency at a > backtrack !!
O Decision through G6:

B > G4=1 > e=0 - done !! The resulting test is (111x0)

D-frontiers: are the gates whose output value is X, while one or more
Inputs are D or D’. For example, initially, the D-frontier is { G5, G6 }.

75

Structural Test Generation
D-Algorithm: Line Justification

I
corresponding decision tree
a k
b
c |
d
m
n S . 0=1
0] I_/ nzl\
e success
f p
h J-frontier: is the set of gates
whose output value is known
(i.e., 0 or 1), but is not implied
O FA->sethtoO by its input values.
O FP > e=1, f=1 (20=0) ; FP > g=1, Ex: initially, J-frontier is {g=1, r=1}
O To justify g=1 2> |=1 or k=1
O Decision: | =1 - ¢=1, d=1 - m=0, n=0 > - inconsistency at r > backtrack !
O Decision: k=1 2 a=1, b=1
O To justify r=1 - m=1 or n=1 (->¢=0 or d=0) - Done !

76

Test Generation

O A branch-and-bound search

O Every decision point is a branching point

O If a set of decisions lead to a conflict, a backtrack is taken
to explore other decisions

O A test is found when
1. fault effect is propagated to a PO, and
2. all internal lines are justified

O No test is found after all possible decisions are tried >

Then, target fault is undetectable

O Since the search is exhaustive, it will find a test if one
exists

For a combinational circuit, an undetectable fault is also a redundant fault
-> Can be used to simplify circuit.

77

Implication

O Implication

B Compute the values that can be uniquely determined

OLocal implication: propagation of values from one line to its
immediate successors or predecessors

OGlobal implication: the propagation involving a larger area
of the circuit and re-convergent fanout

O Maximum implication principle
B Perform as many implications as possible

B It helps to either reduce the number of problems that
need decisions or to reach an inconsistency sooner

78

Forward Implication

Before After o
O D
) x e
lij—g J-frontier={ ...,a } (—__é_j—g J-frontier={ ... }
B;D—g D-frontier={ ...,a } DI___D%_) D-frontier={ ... }

79

Backward Implication

Before After
X L <1,
X, < 0
L =? D
X\ <« X _
_LD? 0 J-frontier={ ... } _&D? 0 J-frontier={ ...,a }
_D_XEX é] 1>

80

D-Algorithm (1/4)

O Example

® Five logic values {0, 1, x, D, D}

Try to propagate
fault effect thru G1
> Setdtol

Try to propagate
fault effect thru G2
- Setj,kI,mto 1

Conflict at k
- Backtrack !

81

D-Algorithm (2/4)

O Example

B Five logic values {0, 1, x, D, D'}

Try to propagate
fault effect thru G2
- Setjlmtol

D’ (ngxt D-frontier chosen)

Conflict at m
- Backtrack !

82

D-Algorithm (3/4)

O Example

® Five logic values {0, 1, x, D, D'}

1

Try to propagate
fault effect thru G2
- Setjltol

D-Algorithm (4/4)

Fault propagation
and line justification
are both complete
- Atestis found !

This is a case of

multiple path sensitization !

f
m_‘
D’ (next D-frontier chosen) 83

Decision | Implication | Comments
. e=1 Propagate via k
a=0 Active the fault k=D'
h=1 _ _ e'=0
b=1 Unique D-drive i=1
c=1 I=1 Propagate via n
9=D 1 |m=1
d=1 o Propagate via i n=D
N =0
d'=0 f=1
=1 Propagate via n m=D’ Contradiction
k_:1 f=1 Propagate via m
I—} m=D’
m=1 B f=0
n’—_D =1
e=0 n=D
e=1
k=D’ Contradiction a4

Decision Tree on D-Frontier

PODEM Algorithm

I I
[0 The decision tree O PODEM: Path-Oriented DEcision Making
® Node > D-frontier O Fault Activation (FA) and Propagation (FP)
L. B |ead to sets of Line Justification (LJ) problems. The LJ problems can be solved via
B Branch = decision taken value assignments.
B A Depth-First-Search (DFS) strategy is often used O In D-algorithm
. B TG is done through indirect signal assignment for FA, FP, and LJ, that eventually
] maps into assignments at PI's
1
ecision point B The decision points are at internal lines
B The worst-case number of backtracks is exponential in terms of the number of
Choice 4 decision points (e.g., at least 2% for k decision nodes)
O In PODEM
B The test generation is done through a sequence of direct assignments at PI's
Choice 2 . B Decision points are at Pls, thus the number of backtracking might be fewer
Choice 3 !
1
Justification Fail Justification Fail
85 86
PODEM Algorithm PODEM Algorithm
Search Space of PODEM Objective and Backtrace
I I

O Complete search space
B A binary tree with 2" leaf nodes, where n is the number of Pls

O Fast test generation

B Need to find a path leading to a SUCCESS terminal quickly

87

O PODEM

B Also aims at establishing a sensitization path based on fault
activation and propagation like D-algorithm

B Instead of justifying the signal values required for sensitizing
the selected path, objectives are setup to guide the decision
process at Pls

O Objective
B is a signal-value pair (w, v,,)
O Backtrace

B Backtrace maps a desired objective into a Pl assignment that
is likely to contribute to the achievement of the objective

B |s a process that traverses the circuit back from the objective
signal to Pls

B The result is a Pl signal-value pair (X, v,)

[| N(; signal value is actually assigned during backtrace (toward
PI) !

88

PODEM Algorithm

PODEM Algorithm

Objective Backtrace
[0 Objective routine involves [0 Backtrace routine involves
B selection of a D-frontier, G B finding an all-x path from objective site to a PI, i.e.,
B selection of an unspecified input gate of G every signal in this path has value x
Objective() { Backtrace(w, v,,) {
/* The target fault is w s-a-v */ [* Maps objective into a Pl assignment */
/* Let variable obj be a signal-value pair */ G=w, i* objective node :/
if (the value of w is x) obj = (w, V'); fault activation V=V, / _objectlve value */
else { while (G is a gate output) { /* not reached Pl yet */
select a gate (G) from the D-frontier; fault propagation inv = inversion of G;
select an input (j) of G with value x; select an input (j) of G with value x;
c = controlling value of G; G=j /* new objective node */
obj = (j, ¢); v =v@inv; /* new objective value */
}
return (obj); *GisaPl* return (G, v);
} }
89 90
PODEM Algorithm
PI Assignment PODEM Algorithm
PODEM ()
Pis:{a, b, c,d} @ begin
Current Assignments: { a=0 } 0 If(error at PO) return(SUCCESS);
Decision: b=0 - objective fails If(test not possible) return(FAILURE);

Reverse decision: b=1
Decision: c=0 - objective fails 0
Reverse decision: c=1

Decision: d=0
failure @
V4

Failure means fault effect cannot be ~ failure @
propagated to any PO under current
Pl assignments 10

1

[N

91

(k, v,) = Objective();
3, v)) = Backtrace(k, v,);

Imply G, v;
If (==SUCCESS) return (SUCCESS);
Imply G, v{);
If (==SUCCESS) return(SUCCESS);
Imply @, X);

Return (FAILURE);

end

92

PODEM Algorithm (1/4)

O Example

Select D-frontier G2 and

set objective to (k,1)

- e = 0 by backtrace

- break the sensitization
across G2 (j=0)

- Backtrack !

PODEM Algorithm (2/4)

O Example

Select D-frontier G3
set objective to (e,1)

- Success at G3

and

- No backtrace is needed

€ ‘ G2 ‘ G2
a 0 a 0
b D)g ° }_1,7 b D)g D G3
c c
f f
Doﬂ_ e oM __|
93 94
PODEM Algorithm (3/4) PODEM Algorithm (4/4)
Objective | Pl assignment| Implications | D-frontier | Comments
COExample : a=0 a=0 h=1 g
h 1 Select D-frontier G4 and b=1 b=1 9
d o }— set objective to (f,1) >y) 5 ”
d - No backtrace is needed = c= g’— LKM
1 i D - Succeed at G4 and G2 d=1 d=1 =0
Gl - D appears at one PO i=D’ k,m,
_ - Atestis found !! k=1 e=0 g Assignments need to be
o)3 |1 =0 reversed during backtracking
k=1
B >° 5 n
e | \— G2 n=1 m no solutions! - backtrack
g D}g D G3 l; e=1 e'=0 flip Pl assignment
c T— 1 =1
: |1 k=D’ m,n
% fq =1 f=1 f=0
f ~+ =1
cs o | m=D’
D 95 n=D 96

PODEM Algorithm
Decision Tree

O Decision node:

Pl selected through backtrace for value assignment
O Branch:

value assignment to the selected PI

success 97

Termination Conditions

O D-algorithm
B Success:
(1) Fault effect at an output (D-frontier may not be empty)
(2) J-frontier is empty
B Failure:
(1) D-frontier is empty (all possible paths are false)
(2) J-frontier is not empty

0 PODEM
B Success:
O Fault effect seen at an output
B Failure:

OEvery Pl assignment leads to failure, in which D-frontier is
empty while fault has been activated

98

PODEM Overview

O PODEM

B examines all possible input patterns implicitly but exhaustively
(branch-and-bound) for finding a test

B complete like D-algorithm (i.e., will find a test if exists)

O Other key features
B No J-frontier, since there are no values that require
justification
B No consistency check, as conflicts can never occur

B No backward implication, because values are propagated only
forward

B Backtracking is implicitly done by simulation rather than by an
explicit and time-consuming save/restore process

B Experiments show that PODEM is generally faster than D-
algorithm

99

Outline

OFault Modeling
OFault Simulation
OAutomatic Test Pattern Generation

O Design for Testability

100

Why DFT ?

O Direct testing is way too difficult !
M Large number of FFs
B Embedded memory blocks
B Embedded analog blocks

101

Design for Testability

O Definition

B Design for testability (DFT) refers to those design
techniques that make test generation and testing cost-
effective

O DFT methods

B Ad-hoc methods, full and partial scan, built-in self-test
(BIST), boundary scan

O Cost of DFT

B Pin count, area, performance, design-time, test-time,
etc.

102

Important Factors

O Controllability
B Measure the ease of controlling a line

C0Observability
B Measure the ease of observing a line at PO

CODFT deals with ways of improving
B Controllability and observability

103

Test Point Insertion

0 Employ test points to enhance controllability
and observability
B CP: Control Points
OPrimary inputs used to enhance controllability
B OP: Observability Points
OPrimary outputs used to enhance observability
0

Add 0-CP PO

0.
Add OP
—
1 H:)_
Add 1-CP \g}
—_—

104

Control Point Insertion

c1 MUX c2

l... s

CP

CP_enable
Inserted circuit for controlling line w

O Normal operation:
When CP_enable =0
O Inject O:
Set CP_enable =1 and CP =0
O Inject 1:
Set CP_enable=1and CP =1
105

Control Point Selection

O Goal

B Controllability of the fanout-cone of the added
point is improved

O Common selections
B Control, address, and data buses
B Enable/hold inputs
B Enable and read/write inputs to memory
B Clock and preset/clear signals of flip-flops

M Data select inputs to multiplexers and
demultiplexers

106

Observation Point Selection

O Goal

B Observability of the transitive fanins of the added point
is improved

0 Common choice
B Stem lines with more fanouts
B Global feedback paths
B Redundant signal lines

B Qutput of logic devices having many inputs
OMUX, XOR trees

B QOutput from state devices
B Address, control and data buses

107

Problems with Test Point Insertion

0 Large number of 1/0 pins

B Can be resolved by adding MUXs to reduce the number
of 1/0 pins, or by adding shift-registers to impose CP

values
X — y Z
Shift-register R1 X’ 2z Shift-register R2

control Observe

108

What Is Scan ?

Scan Concept

[0 Objective — —
B To provide controllability and observability at internal Combinational
state variables for testing e Logic e
Mode Switch]]
0 Method (normal or test) |_
B Add test mode control signal(s) to circuit | |
B Connect flip-flops to form shift registers in test mode |
B Make inputs/outputs of the flip-flops in the shift register A
controllable and observable
O Types i
® Internal scan -
OFull scan, partial scan, random access
B Boundary scan
FF
109 110
Logic Design before Scan Insertion Logic Design after Scan Insertion

Combinational Logic

i
L] [
s ly

input
pins

output
pins

clock r

Sequential ATPG is extremely difficult:
due to the lack of controllability and observability at flip-flops.

111

)] Combinational Logic —
i = =D | S
) \.) q2A G —
scan-input __@' B : Q D ° D e scan-output

scan-enable Ii F
clock

Scan Chain provides an easy access to flip-flops
—— Pattern generation is much easier !!

112

Scan Insertion Overhead of Scan Design

b Example [OCase study
B 3-stage counter
m #CMOS gates = 2000
] Combinational Logic - B Fraction of flip-flops = 0.478
input — a — output B Fraction of normal routing = 0.471
pins — g; 2 stuck-at-0 — pins
— : " — Scan Predicted | Actual area Normalized
] q a B implementation | overhead | overhead operating
% frequency
" " % None 0 0 1.0
r r I— Hierarchical 14.05% 16.93% 0.87
clock Optimized 14.05% 11.9% 0.91
It takes 8 clock cycles to set the flip-flops to be (1, 1, 1), for detecting
the target fault g stuck-at-0 fault (22° cycles for a 20-stage counter !) 113 114

Full Scan Problems Scan-Chain Reordering

O Scan-chain order is often decided at gate-level without knowing
O Problems the cell placement
B Area overhead O Scan-chain consumes a lot of routing resources, and could be
. . minimized by re-ordering the flip-flops in the chain after layout is
B Possible performance degradation done
m High test application time .

B Power dissipation L

O Features of commercial tools
B Scan-rule violation check (e.g., DFT rule check)
B Scan insertion (convert a FF to its scan version)

B ATPG (both combinational and sequential) i -] - _:

B Scan chain reordering after layout i Scan cell

s Layout of a cell-based design A better scan-chain order 116

L
"
hi

Partial Scan

Full Scan vs. Partial Scan

O Basic idea scan design
B Select a for scan
B Lower overhead (area and speed) [
B Relaxed design rules full tial
[Cycle-breaking technique U7 sean AL B
u , IEEE Trans. On Computers, April 1990 every flip-flop is a scan-FF NOT every flip-flop is a scan-FF
B Select scan flip-flops to
B Overhead is about than full scan
O Timing-driven partial scan scan time longer shorter
- 210, ICCAD, Nov. 1991 3 hardware overhead more less
m Allow optimization of area, timing, and testability :
simultaneously fault coverage ~100% unpredictable
ease-of-use easier harder
117 118
Area Overhead vs. Test Effort Conclusions

test

effort test .
generation area overhead
complexity

no scan partial scan full scan

area overhead

119

O Testing
B Conducted after manufacturing
B Must be considered during the design process

O Major fault models
B Stuck-at, bridging, stuck-open, delay fault, ...

O Major tools needed
B Design-for-Testability
O By scan chain insertion or built-in self-test
B Fault simulation
B ATPG

O Other Applications in CAD

B ATPG is a way of Boolean reasoning and is applicable to may
logic-domain CAD problems

120

