Biochemical Reactions and Logic Computation

Jie-Hong Roland Jiang

(Introduction to EDA, 2013)

National Taiwan University

Biochemical Reactions and Biology

- □ Complex behaviors of a living organism originate from systems of biochemical reactions
- ■Engineering biochemical reactions may sharpen our understanding on how nature design living organisms (in contrast to how human design electronic systems)

Outline

- Compiling program control flows into biochemical reactions
- Beyond logic computation

3

Outline

- Compiling program control flows into biochemical reactions
 - Joint work with Chi-Yun Cheng, De-An Huang, Ruei-Yang Huang [ICCAD 2012]
- Beyond logic computation

Computational Biochemistry

- □ In living organisms, biochemical reactions carry out some form of "computations" which result in complex behaviors
- Biochemical reactions may be exploited for computation by combining a proper set of biochemical reactions
- Computation with biochemical reactions has potential applications in synthetic biology
 - In synthetic biology, known biochemical parts (DNA, mRNA, proteins, etc.) are assembled either naturally or artificially to realize desired functions

5

Previous Work

- Synthesizing molecular reactions has been pursued, e.g.,
 - Arithmetic operations
 - □Fett et al. (2007, 2008)
 - Digital signal processing
 - □Jiang *et al.* (2010)
 - Writing and compiling code into biochemistry
 - □Shea et al. (2010), Senum et al. (2011)

Previous Work

- ■Still lack systematic methodology to construct complex program control flows
- Heavily rely on modularized reactions
- ■Assume reactions are of small quantities
 - Work under stochastic simulation but not ODE simulation

7

Our Focus

- Robustness
 - Improved reaction regulation
 - Enhanced fault tolerance
 - Valid under both stochastic and ODE simulations
- Optimality
 - Reduced number of reactions
 - Not limited to modularized reactions
- Systematic compilation methodology

Model of Computation

- Computation with biochemical reactions
 - Computation in terms of molecular quantities
 - Quantity changing rules are defined by reactions

■Example

$$A + B \to C$$
$$[C] = \min\{[A], [B]\}$$

9

Reaction Model

- Classical chemical kinetic (CCK) model
 - ODE based simulation
 - □ (Empirical study shows our construction works for discrete stochastic simulation as well)
- ■Example:

$$\alpha A + \beta B \xrightarrow{k} \gamma C$$

$$-\frac{1}{\alpha} \frac{d[A]}{dt} = -\frac{1}{\beta} \frac{d[B]}{dt} = \frac{1}{\gamma} \frac{d[C]}{dt} = k[A]^{\alpha} [B]^{\beta}$$

Boolean & Quantitative Abstraction

- Data represented by molecular concentrations
- Control signals in terms of Boolean abstraction

$$A_{ heta} = f_{ heta}(A) = \left\{ egin{array}{ll} 1, & ext{if } [A] \geq heta \ 0, & ext{otherwise} \end{array}
ight.$$

11

Reaction Execution Precedence

- ■In information processing, computation must be performed in a proper order
- □ Data dependencies must be maintained to ensure operational correctness

Precondition

- \square For reaction $X + Z \rightarrow Y + Z$
- $\square Z_{\theta}$ is the *precondition* \Longrightarrow $X \stackrel{Z_{\theta}}{\Longrightarrow} Y$

13

Precondition

- \square For $X + Z \rightarrow Y + Z$,
 - At the end of the reaction, X exhausts and Y has the same amount as X before the reaction
 - \blacksquare We use $(\neg X_{\theta}) Y_{\theta}$ to denote the postcondition of the reaction
 - \square To represent the absence of X, let there be presence of some molecule, called **absence indicator**.

Absence Indicator

□ Prior method [Senum and Riedel 2011]

$$\emptyset \xrightarrow{r_s} A'$$

$$A + A' \xrightarrow{r_f} A$$

Reaction rate $r_f >> r_s$

At equilibrium (when A is present),

$$[A'] = \frac{r_s}{r_f} [A]$$

- The amount of A' is sensitive to the amount of A
 - ■This "leakage" degrades the robustness
 - □Can only be applied to stochastic model

15

Absence Indicator

□ Dimerized absence indicator

$$\emptyset \xrightarrow{r_s} A'$$

$$A + A' \xrightarrow{r_f} A$$

$$2A' \xrightarrow{r_s} A^*$$

At equilibrium (when A is present),

$$[A^*] = \frac{r_s}{r_f} [A']^2$$

- $\blacksquare A^*$ is further suppressed by the presence of A'
- A* remains little even if there is a leakage of A

Absence Indicator

17

Reaction Buffer

□ Reaction series:

$$(1) \qquad A \to B$$
$$B \xrightarrow{\neg A_{\theta}} A$$

After execution for some time, A exceeds reaction threshold; precondition is violated.

(2)
$$A \to B$$

$$B \xrightarrow{\neg A_{\theta}} C$$

$$C \xrightarrow{\neg B_{\theta}} A$$

The "buffer" reaction avoids the leakage problem

Compilation Strategy

- 1. Identify <u>Linear</u>, <u>Looping</u>, <u>Branching</u> statements and create corresponding control flow reactions.
- 2. Resolve violation of *preconditions* or *postconditions*, and introduce buffer if necessary.
- 3. Decompose reactions for practical realization
- 4. Optimize

19

Linear Flow

■Without regulation, reactions are concurrent

Main Reactions

$$01 A \rightarrow B$$

$$02 C \rightarrow D$$

$$03 E \rightarrow F$$

$$\stackrel{\mathsf{E}}{\bigcirc} \stackrel{\mathsf{F}}{\bigcirc} \stackrel{\mathsf{F}}{\bigcirc}$$

Linear Flow

■When reactions are intended to be in a sequential manner, precondition can be imposed as follows:

21

Branching Statements

```
Main Reactions
                                      Preconditions
01
         Q \to R
         if P_1(A, B)
02

eg Q_{	heta}
03
            S_1 \rightarrow T_1
                                      Post(P_1)
            S_i \to T_i
04
                                      \neg S_{i\theta}
05
            H 	o I
         else if P_2(A, B)
06
                                      \neg Q_{\theta}
                                      Post(P_2)
07
            U_1 \rightarrow V_1
            U_j \to V_j
80
09
            H \rightarrow I
                                      \neg U_{j\theta}
                                      \neg Q_{\theta}
10
         else
                                      Post(\neg P_1 \land \neg P_2)
11
            W_1 \to X_1
12
            W_k \to X_k
13
            H \rightarrow I
                                      \neg W_{k\theta}
         Y \to Z
14
                                      \neg H_{	heta}
```

Branching Statements

23

Branching Statements

Branching Statements

25

Branching Statements

Branching Statements

Petri net visualization of branching statements: Using $A+B\rightarrow C$ to judge (A>B)?

27

Looping Statement

Main Reactions		Preconditions
01	$Q \to R$	
02	while $P(A, B)$	$\neg Q_\theta \cdot \neg F_\theta$
03	ightarrow F	Post(P)
04	F ightarrow	
05	$X \to Y$	$Post(\neg P)$

Looping Statement

Main Reactions		Preconditions
01	$Q \to R$	
02	while $P(A, B)$	$ eg Q_{ heta} \cdot eg F_{ heta}$
03	$\dots \to F$	Post(P)
04	$F \rightarrow \dots$	
05	$X \to Y$	$Post(\neg P)$

Judgment is made when (1)Previous reaction finished (2)End of every single loop

29

Looping Statement

Looping Statement

31

Case Study: Division

```
\begin{array}{ccc} \textbf{Division}(A,\,B) \\ \textbf{begin} \\ 01 & \textbf{while} \ A \geq B \\ 02 & A := A - B \\ 03 & Q := Q + 1 \\ 04 & R := A \\ \textbf{end} \end{array}
```

Case Study: Division

Main Reactions		Preconditions
01	while $[A] \geq [B]$	
02	$(A+B \rightarrow D)$	$\neg G_{ heta}$
03	$C \to Q + E$	$A_{\theta} \wedge \neg B_{\theta}$
04	$D \to F$	$ eg C_{ heta}$
05	$E \to G$	$\neg D_{\theta}$
06	$F \to B$	$\neg E_{\theta}$
07	$G \to C$	$\neg F_{\theta}$
08	$D \to R$	$\neg A_{\theta}$

C of unit amount initially

33

Case Study: Division

Case Study: Division

If A > B, B will exhaust and AAwill have amount [A] - [B] remains.

35

Case Study: Division

Case Study: Division

B must regain value before next judgment

37

Case Study: Division

□ Division 20÷3

(ODE simulation with SBW)

Case Study: GCD

begin $01 \quad \text{while } A \neq B$ $02 \quad \text{if } A > B$ $03 \quad A := A - B$ $04 \quad \text{else if } B > A$ $05 \quad \text{swap}(A, B)$ $06 \quad GCD := A$ end

may cause a serious problem because [A] almost never exactly equal [B] 1000 != 1001

39

Case Study: GCD

□ GCD(30,12)

(ODE simulation with SBW)

Failure due to imperfect condition $A \neq B$

Case Study: GCD

$GreatestCommonDivisor_err_toler(A, B, Z)$

```
begin
     while |A - B| > Z
01
       if A > B + Z
02
          A := A - B
03
       else if B > A + Z
04
          swap(A, B)
05
06
     GCD := A
```

end

is a necessarily šmall constant, indicating the error tolerant range

41

Case Study: GCD

Preconditions Main Reactions while |[A] - [B]| > [Z]02 $(A+B\to C)$ $\neg H_{\theta} \wedge \neg F_{\theta}$ $(A + Z \rightarrow X)$ $\neg H_{\theta} \wedge \neg F_{\theta} \wedge \neg B_{\theta}$ 03 $(B+Z\to Y)$ $\neg H_{\theta} \wedge \neg F_{\theta} \wedge \neg A_{\theta}$ 04**if** [A] > [B] + [Z]0506 $C \to D$ $A_{\theta} \wedge \neg B_{\theta} \wedge \neg Z_{\theta}$ A = A - B $X \to A + Z$ $\neg C_{\theta} \wedge \neg B_{\theta}$ 07 $D \rightarrow H$ 80 $\neg C_{\theta}$ $H \rightarrow B$ 09 $\neg D_{\theta}$ **else if** [B] > [A] + [Z]10 $C \to E$ $\neg A_{\theta} \wedge B_{\theta} \wedge \neg Z_{\theta}$ 11 12 $B \to G$ $\neg C_{\theta} \wedge \neg A_{\theta}$ swap(A, B) $Y \rightarrow B + Z$ $\neg C_{\theta} \wedge \neg A_{\theta}$ 13 $\neg B_{\theta}$ $E \to F$ 14 $G \rightarrow A$ $\neg E_{\theta}$ 15 $F \rightarrow A + B$ $\neg G_{\theta}$ 16 $C \rightarrow GCD$ 17 $\neg A_{\theta} \wedge \neg B_{\theta}$

Case Study: GCD

□ GCD(30,12)

Correct answer obtained by enhanced error tolerance

43

Future work

- ■Biological realization of the compilation approach
- Minimization of molecular species
- □ From discrete/static to continuous/dynamic computation?
 - Feedbacks
 - Robustness issues

Outline

- □ Compiling program control flows into biochemical reactions
- Beyond logic computation

45

Beyond Logic Computation

- A signal processing perspective
 - Modulators, filters, and signal processing
- ■A control perspective
 - Sensors, actuators (motors), and decision making

Signal Processing Perspective

■Transcription factor translocation example

Nuclear translocation of *S. cerevisiae* stress response TF Msn2

Hao and O'Shea. Nature Structural & Molecular Biology, 2012

47

Signal Processing Perspective

■TF translocation example (cont'd)

Signal Processing Perspective

■TF translocation example (cont'd)

49

Signal Processing Perspective

■TF translocation example (cont'd)

Control Perspective

Quorum sensing example

Symbiotic association between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri

51

Control Perspective

■ Chemotaxis example

http://chemotaxis.biology.utah.edu/Parkinson_Lab/projects/ecolichemotaxis/ecolichemotaxis.html

Control Perspective

http://chemotaxis.biology.utah.edu/Parkinson_Lab/projects/ecolichemotaxis/ecolichemotaxis.html

53

Control Perspective

□ Chemotaxis example (cont'd)

Beyond Systems Biology

- ■Systems biology share strong similarities with systems neuroscience, although fundamental mechanisms are quite different
 - In biology, biochemical reactions are the fundamental mechanism
 - In neuroscience, electrical communications are the fundamental mechanism

55

Connection to Neuroscience

Connection to Neuroscience

□ Connectome of C. elegans (302) neurons

57

Connection to Neuroscience

■C. elegans neuron circuitry

FIGURE 21. (c) Circuitry associated with the motoneurons in the nerve ring.

Summary

- Program control flows can be systematically compiled into biochemical reactions
- □ Discrete computation, though convenient abstraction for genetic circuits, is not a universal approach to systems and synthetic biology
- New computation models needed to decipher various open questions in systems biology and systems neuroscience

59