
Flolac 2009 1

Hardware Equivalence &
Property Verification

Jie-Hong Roland Jiang

National Taiwan University

Flolac 2009 2

Outline
Introduction

Motivations
Systems to be verified

Hardware vs. software
Verification methodologies

Formal vs. informal verification
Verification formalisms

Temporal logics vs. model checking
Properties to be verified

Safety vs. liveness
Computation basics

Data structures and Boolean reasoning engines
Equivalence checking

Combinational and sequential EC
Structure-based verification
Function-based verification

Safety property checking
Bounded and unbounded model checking

k-step induction
Interpolation

Flolac 2009 3

Introduction

Flolac 2009 4

Motivations

Costs of system failures
Computational hardness

Flolac 2009 5

(1995/1) Intel announces a pre-tax charge of 475 million dollars against
earnings, ostensibly the total cost associated with replacement of the
flawed processors.

Flolac 2009 6

(1996/6) The European Ariane5 rocket
explodes 40 s into its maiden flight due to
a software bug.

Flolac 2009 7

(2003/8) A programming error has been identified as the cause of the Northeast
power blackout, which affected an estimated 10 million people in Canada and 45
million people in the U.S.

Flolac 2009 8

Costs

(2008/9) A major computer failure onboard the Hubble Space Telescope is
preventing data from being sent to Earth, forcing a scheduled shuttle mission to
do repairs on the observatory to be delayed.

Flolac 2009 9

Hardness

Verification may take 70% of
the entire design cycle of a
system

State explosion problem
#states is exponential in
#registers (state-holding
elements)

10 atoms80

10 transistors7

100,000 registers

10 states
30,000

Flolac 2009 10

Systems to Be Verified

Hardware vs. software
Finite state vs. infinite state

Hardware systems can be modeled as finite-state
transition systems
Software systems are often modeled as infinite-state
transition systems

Flolac 2009 11

Verification Methodologies

Informal vs. formal
Informal

Incomplete
E.g., by software simulation or hardware emulation

Useful in finding bugs, but not in showing the
absence of bugs

Formal
Complete

E.g., theorem proving, property checking, equivalence
checking

Useful in both debugging and proving correctness

Flolac 2009 12

Verification Formalisms
Temporal logics vs. model checking

Temporal logics are useful specifying temporal properties
E.g., may (branching time) vs. must (linear time)
Not the only way of specifying properties

Model checking is an automatic procedure checking whether a
model of a system satisfies a given specification

M |= ϕ
“implementation”
(system model)

“specification”
(system property)

“satisfies”, “implements”, “refines”
(satisfaction relation)

more detailed more abstract

Flolac 2009 13

Properties to Be Verified

Safety vs. liveness
Safety property

Something bad will never happen
couterexample of finite length

Liveness property
Something good will happen eventually or infinitely often
counterexample of infinite length

90% of the verification problems are checking safety
properties
Liveness property checking can be converted to safety
property checking for finite state systems

Flolac 2009 14

IC Design Flow and Verification

HDL spec.

logic
synthesis

netlist

netlist

layout /
mask

chip

RTL
synthesisdesign verif.design verif.

implement verif.implement verif.

physical
design

manufacture verif.manufacture verif.

fab.

Flolac 2009 15

Hardware Verification

Design verification
Does a design specification satisfy some properties?
Property checking / assertion-based verification

Implementation verification
Does an implementation conform to the original
specification?
Equivalence checking / (design rule checking)

Manufacture verification
Does a manufactured design have no defects?
Testing

Flolac 2009 16

Computation Basics

Flolac 2009 17

Boolean Space
B = {0,1}
B2 = {0,1}×{0,1} = {00, 01, 10, 11}

Karnaugh Maps: Boolean Lattices:

B0

B1

B2

B3

B4

Flolac 2009 18

Boolean Functions
A Boolean function f: Bn → B over variables x1, x2, …, xn
maps each Boolean valuation (truth assignment) in Bn to
either 0 or 1

E.g. f(x1, x2)

The output value of f partitions Bn into two sets
onset (f =1):

E.g. {00, 10} (i.e., with characteristic function F1 = ¬x2)
offset (f = 0):

E.g. {01, 11} (i.e., with characteristic function F0 = x2)

A literal is a Boolean variable x or its negation ¬x in a
Boolean formula

x1x2 f
0 0 0
0 1 1
1 0 1
1 1 0

1x

2x

0
0
1

1 x1

x2

Flolac 2009 19

Boolean Functions

The onset of f, denoted as F1, is F1= {v ∈ Bn |
f(v)=1}

If F1 = Bn, f is a tautology

The offset of f, denoted as F0, is F0= {v ∈ Bn |
f(v)=0}

If F0 = Bn, f is unsatisfiable. Otherwise, f is satisfiable.

Two Boolean functions f and g are equivalent if
∀v∈ Bn. f(v) ≡ g(v)

Flolac 2009 20

Boolean Functions

There are 2n vertices in Boolean space Bn

There are 22
n

distinct n-variable Boolean
functions

Each F1 ⊆ Bn corresponds to a distinct Boolean function

x1x2x3
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 ⇒ 1
1 0 1 0
1 1 0 1
1 1 1 0

x1

x2

x3

Flolac 2009 21

Boolean Operations

Given two Boolean functions:
f: Bn → B
g: Bn → B

h = f ∧ g from conjunction is defined as
H1 = F1 ∩ G1; H0 = Bn \ H1

h = f ∨ g from disjunction is defined as
H1 = F1 ∪ G1; H0 = Bn \ H1

h = ¬f from complement is defined as
H1 = F0; H0 = F1

Flolac 2009 22

Cofactor & Quantification
Given a Boolean function:

f : Bn → B, with input variables (x1,…,xi,…,xn)

Positive cofactor, h = fxi , is defined as
h = f(x1,…,1,…,xn)

Negative cofactor, h = f¬xi , is defined as
h = f(x1,…,0,…,xn)

Existential quantification over variable xi , h = ∃xi. f , is defined as
h = f(x1,…,0,…,xn) ∨ f(x1,…,1,…,xn)

Universal quantification over variable xi , h = ∀xi. f , is defined as
h = f(x1,…,0,…,xn) ∧ f(x1,…,1,…,xn)

Boolean difference over variable xi , h = ∂f/∂xi , is defined as
h = f(x1,…,0,…,xn) ⊕ f(x1,…,1,…,xn)

Flolac 2009 23

Data Structures

Basic data structures for Boolean function
representation

Truth tables
Binary Decision Diagrams (BDDs)
AND-INV graphs (AIGs)
Conjunctive Normal Forms (CNFs)
…

Why bother having different data
structures?

Flolac 2009 24

Data Structures

Data-structure revolution in verification
State graph (late 70s-80s)

Problem size ~104 states

BDD (late 80s-90s)
Problem size ~1020 states
Critical resource: memory

SAT (late 90s-)
GRASP, SATO, chaff, berkmin
Problem size ~10100 (?) states
Critical resource: CPU time

Flolac 2009 25

Data Structures – BDDs

BDDs are graph representations of
Boolean functions

A non-terminal node is a decision node
(multiplexer) controlled by some variable v

It represents some Boolean function f
Its two children represent two functions fv and fv’

They together represent a Shannon cofactor tree
f = v fv + v′ fv′ (Shannon expansion)

A terminal node is either constant “0” or “1”

Flolac 2009 26

Data Structures – BDDs

Reduced Ordered BDDs (ROBDDs)
Ordered:

Variables follow the same order along all paths
xi1

< xi2
< xi3

< … < xin

Reduced:
Any node with two identical children is removed
Two nodes with isomorphic BDD’s are merged

These two rules make any node of an ROBDD
represent a distinct function and make
ROBDDs canonical representation of Boolean
functions

Flolac 2009 27

Data Structures – BDDs

0 0 0 1 0 1 1 1

x1

x2 x2

x3 x3 x3x3

0 1

x1

x2 x2

x3 x3 x3x3

0 1

x1

x2 x2

x3

(a) (b) (c)

Ordered BDDs of f = x1x2+ x1x2’x3+x1’x2x3

Flolac 2009 28

Data Structures – AIGs

AND-INV graphs (AIGs)
vertices:

2-input AND gates

edges:
interconnects with (optional) dots representing INVs

{AND, INV} is a functionally complete set of
Boolean operators
Structurally isomorphic nodes can be merged

Flolac 2009 29

Data Structures – AIGs

f

g
g

f

circuit AIG

Flolac 2009 30

Data Structures – SAT

Conjunctive Normal Form (CNF)
Product of sums
e.g., ϕ = (a+b′+c)(a′+b+c)(a+b′+c′)(a+b+c)
CNF is useful for satisfiability (SAT) checking

Flolac 2009 31

Data Structures – SAT

Circuit-to-CNF conversion

b

a
c (¬a + ¬b + c)(a + ¬c)(b + ¬c)

1

6

2 5
8

7

3

4

9 0

(¬1 + 2 + 4)(1 + ¬4)(¬2 + ¬4)
(¬2 + ¬3 + 5)(2 + ¬5)(3 + ¬5)
(2 + ¬3 + 6)(¬2 + ¬6)(3 + ¬6)
(¬4 + ¬5 + 7)(4 + ¬7)(5 + ¬7)
(5 + 6 + 8)(¬5 + ¬8)(¬6 + ¬8)
(7 + 8 + 9)(¬7 + ¬9)(¬8 + ¬9)
(9)

Justify to “1”

AND

Is output always 0 ?

Conversion can be done in time linear to the circuit size!

Flolac 2009 32

Boolean Reasoning

A Boolean function can be represented in
different forms

E.g., BDD, AIG, CNF, …

Boolean reasoning studies the intrinsic
characteristics of a Boolean function

We may be interested in characteristics such as
satisfiability, validity, decomposability, etc., of a function

There are different Boolean reasoning engines
based on different data structures

E.g. BDD packages, AIG packages, SAT solvers

Flolac 2009 33

Boolean Function Manipulation
Characteristic functions

Functional representations of “sets”
Predicates indicating whether an element is in a set

Operations over sets (union, intersection, complement)
become Boolean operations (OR, AND, INV) over characteristic
functions

E.g.,
Let X={000,001,110,111} and Y={001,101,110}
(assume B3 is our universal set)

Their characteristic functions are
fX = x1’x2’+x1x2, fY = x1’x2+x1x2 x3’

The set X ∪ Y has characteristic function fX ∨ fY
The set X ∩ Y has characteristic function fX ∧ fY

Flolac 2009 34

Equivalence Checking

Flolac 2009 35

Digital Circuits

Combinational circuits
Implement Boolean functions
Have no state-holding elements (registers)

Sequential circuits
Implement finite state machines
Have state-holding elements

Combinational circuits can be considered
as single-state sequential circuits

Flolac 2009 36

Equivalence Checking

Combinational EC
Check if two combinational circuits are
equivalent, i.e., if they have the same input-
output behavior under all input assignments

Sequential EC
Check if two sequential circuits are equivalent,
i.e., if they have the same input-output
behavior under all input sequences

Flolac 2009 37

Hardness

Hardness of verification
Combinational EC is coNP-complete

Sequential EC and safety property checking
are PSPACE-complete

Flolac 2009 38

Combinational EC

x ≡ 0

f1(x)

f2(x)

?

To check if the two circuits implementing f1 and f2 are equivalent,
we build their miter

They are equivalent iff the miter circuit is equivalent to a constant-
0 function (can be formulated as SAT solving!)

Flolac 2009 39

Combinational EC

BDD-based computation
1. Construct the ROBDDs of f1 and f2

Variable orderings of f1 and f2 should be the same

2. Let g = f1♁f2 equals constant 0 iff the two
circuits are equivalent

Flolac 2009 40

Combinational EC

SAT-based computation
1. Convert the miter structure into a CNF

2. Perform SAT solving to verify if the output
variable cannot be valuated to true under all
input assignments (i.e., unsatisfiable)

Flolac 2009 41

Combinational EC

Pure BDD and plain SAT solving cannot
handle large CEC problems

To be scalable, contemporary methods
highly exploit structural similarities
between two circuits to be compared

Identify and merge cutpoints (identical internal
signals)

Flolac 2009 42

Combinational EC

0?

f1

f2

f3

v1

v2

0?

0?

f1

f2

f3

v2

v1

x

Successively merge equivalent signals from inputs to outputs
to simplify the EC problem

Cutpoints are used to
partition the miter

Flolac 2009 43

Combinational EC

Solved in most industrial circuits (w/ multi-million
gates)

Computational efforts scale almost linearly with the
design size
Existence of structural similarities

Logic transformations preserve similarities to some extent
Hybrid engine of BDD, SAT, AIG, simulation, etc.

Cutpoint identification

Unsolved for arithmetic circuits
Absence of structural similarities

Commutativity ruins internal similarities
Word- vs. bit-level verification

Flolac 2009 44

Finite State Machines

X=(x1,x2,…,xn) Y=(y1,y2,…,yk)
λ

δS=(s1,s2,…,sm) S’=(s’1,s’2,…,s’m)

D

M([[X]],[[Y]],[[S]],I,δ,λ):

[[X]]: Input alphabet
[[Y]]: Output alphabet
[[S]]: State set

I : Initial state(s)
δ : [[X]] × [[S]] → [[S]]

(next-state function or transition function)
λ : [[X]] × [[S]] → [[Y]]

(output function)

Flolac 2009 45

State Transition Systems
Transition function vs. transition relation

Transition function:
Transition must be deterministic (there is a unique next state for any
current state and input)
Transition relation:
Transition may be nondeterministic (there can be a several next
states for any current state and input)

Conversion from transition functions (δ1,…,δn) to a transition
relation T

When we are interested in reachability only, we may further
quantify the inputs

1
(, , ') (' (,))

n

i i
i

T x s s s x sδ
=

= ≡∧JKK JK K K

1
(, ') [(' (,))]

n

i i
i

T s s x s x sδ∃
=

= ∃ ≡∧K JK K K K

Flolac 2009 46

Sequential EC
Combinational checking for sequential equivalence is
sound, but not complete (may yield false-negative)

Equivalent FSMs may have different state transitions and
encodings

M1
i o

M2
i o

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1

Flolac 2009 47

Sequential EC

0=
?

y1

D
x

1λ
1δM1

y2

D

2λ
2δM2

Two FSMs M1 and M2 are equivalent if and only if the output
of their product machine always produces constant 0

Flolac 2009 48

Product Machine

The product FSM M1×2 of FSMs
M1 = ([[X]], [[Y1]], [[S1]], I1, δ1, λ1) and
M2 = ([[X]], [[Y2]], [[S2]], I2, δ2, λ2) has

State space [[S1]] × [[S2]]
Initial state set I1 × I2

Input alphabet [[X]]
Output alphabet {0,1}
Transition function δ1×2 = (δ1, δ2)
Output function λ1×2 = (λ1 ⊕ λ2)

Flolac 2009 49

Sequential EC

When the reachable states of the product
machine is known, SEC reduces to CEC!

Let R be the characteristic function of the
reachable state set and , T1 and T2 be the
transition relations of M1 and M2

M1 and M2 are equivalent iff (λ1×2 ∧ R) is
unsatisfiable

There is no state that is both bad and reachable

So the main computation of SEC is
reachability analysis

Flolac 2009 50

Reachability Analysis

Given an FSM, which states are reachable
from the initial state?

Unreachable statesReachable states

Flolac 2009 51

Reachability “Onion Rings”

0

1

1

2
2

2

2

3 3

3

3

3

33

Flolac 2009 52

Symbolic Reachability Analysis

Reachability analysis can be performed
either explicitly (over state transition
graphs) or implicitly (over transition
functions or relations)

Implicit reachability analysis is also called
symbolic reachability analysis (often using
BDDs and more recently SAT)

Image computation is the core
computation in symbolic reachability
analysis

Flolac 2009 53

Image Computation

Given a mapping of one
Boolean space (input
space) into another
Boolean space (output
space)

For a set of minterms
(care set) in the input
space

The image is the set of
related minterms from the
output space

For a set of minterms in
the output space

The pre-image is the set
of related minterms in the
input space

Input space

Output space

Care set

Im
age

Courtesy of A. Mishchenko

Flolac 2009 54

Image Computation

a b c

yx
Output space

Image

Care set000

001

010

011

100

101

110

111

00

01

10

11

abc

xy

Input space

Courtesy of A. Mishchenko

Flolac 2009 55

Symbolic Image Computation

Img(C(x),T(x,y)) = ∃x [C(x) ∧ T(x,y)]
Image of C under T

Implicit methods by far outperform explicit ones
Successfully compute images with more than 2100

minterms in the input/output spaces

Operations ∧ and ∃ are basic Boolean
manipulations are implemented using BDDs

To avoid large intermediate results (during and after the
product computation), operation AND-EXIST is used,
which performs product and quantification in one pass
over the BDD

Flolac 2009 56

Next-State Computation

What is the set P of next-states from Q?

(') ((), (, '))

.(() (, '))

P s Img Q s T s s

s Q s T s s
∃

∃

=

= ∃ ∧

JK JKK K
JKK K K

Flolac 2009 57

Previous-State Computation

What is the set P of previous-states of Q?

() (('), (, '))

'.((') (, '))

P s PreImg Q s T s s

s Q s T s s
∃

∃

=

= ∃ ∧

JK JKK K
JK JK JKK

Flolac 2009 58

Reachability Analysis
ForwardReachability(Transition Relation T, Initial State I)
{

i := 0
Ri := I
repeat

Rnew = Img(Ri, T);
i := i + 1
Ri := Ri-1∨ Rnew

until Ri = Ri-1

return Ri

}

Backward reachability analysis can be done in a similar manner with pre-
image computation and starting from final states to see if they can be
reached from initial states.

The procedures can be realized using BDD package.

Flolac 2009 59

Reachability Analysis

Example
i o

i o

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1

FSMs to be equivalence checked

Flolac 2009 60

Reachability Analysis

Example (cont’d) i o

s0

t0
s1

t2

0/0

1/0

0/0 1/0

s1

t1

s0

t30/0

1/0

0/01/0

s1

t0

0/1

1/1

0/1

1/1

s0

t1

s0

t2
0/1 1/1

s1

t3

1/10/1

Product FSM and its state transition graph

Flolac 2009 61

Forward Reachability Analysis

Example (cont’d)

s1
t2

s0
t3

s1
t1

s0
t0

R0

R1

R2
R3

s0

t0
s1

t2

0/0

1/0

0/0 1/0

s1

t1

s0

t30/0

1/0

0/01/0

s1

t0

0/1

1/1

0/1

1/1

s0

t1

s0

t2
0/1 1/1

s1

t3

1/10/1

Flolac 2009 62

Backward Reachability Analysis

Example (cont’d)

s0
t1

s1
t0

s1
t3

R0
R1

s0
t2 s0

t0
s1

t2

0/0

1/0

0/0 1/0

s1

t1

s0

t30/0

1/0

0/01/0

s1

t0

0/1

1/1

0/1

1/1

s0

t1

s0

t2
0/1 1/1

s1

t3

1/10/1

Flolac 2009 63

Sequential EC

Reachability analysis (product state space)
Explicit traversal on product STG
Implicit image computation on product FSM

State equivalence (disjoint union state space)
Explicit equivalence state identification on disjoint union
STG
Implicit state partitioning on multiplexed FSM

Flolac 2009 64

State Partitioning

Example

aux

0

1

0

1

0

1

i o

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1

Multiplexed FSM and the disjoint union STG

Flolac 2009 65

State Partitioning

BDD-based functional decomposition
Bound set variables (top): state variables
Free set variables (bottom): others
Cutset: free-set nodes with incoming edges
from bound-set nodes

Paths leading to a node in the cutset form
an equivalence class of states (for an
iteration)
Iterate functional decomposition over
composed functions

Flolac 2009 66

State Partitioning

BDD-based functional decomposition can be
applied for state partitioning of a multiplexed
FSM

0 1

v2

v4

0

0 1

1

1 2

v2

0 1

v1 v2

v3 v4

0 0 0 1 1 0 1 1

0 0

0 1

1 0

1 1

0

0

0

0

0

0

0

0

0 0

00

1

11

1

Flolac 2009 67

State Partitioning

Multiple functions can be stacked using extra variables

Flolac 2009 68

State Partitioning

s0

s1t0

t2t1

t3

Π0

Π1

Π2

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1

Example (cont’d)

Flolac 2009 69

Sequential EC

Reachability analysis vs. state partitioning
Backward RA can be considered as state
partitioning in the product state space

Flolac 2009 70

Exploiting Similarities for SEC

Generic SEC
Works for checking designs with completely
different circuit structures
Too hard due to state explosion
Designs under checking often possess
similarities to some extent

Desirable to reduce SEC to CEC as much
as possible

Take advantage of structural similaritiesfor
SEC

Flolac 2009 71

Register Correspondence

Inductive register correspondence

Identify equivalence among registers, not states
Computation scalable to large designs

EC based on register correspondence is complete
for circuits transformed by combinational
synthesis

(,)

Base case: () (), and

Inductive case: () ((,)),

where ()
i j

rc

rc rc

rc i j
s s rc

I s R s

R s R x s

R s s s

δ

∈

⇒

⇒

= ≡∧

K K
KK K K

K

Flolac 2009 72

Register Correspondence

Example

Result: {s1}, {s2,s3}

x
s1

1 11

s2 s3

s1= x ⊕ v1

v1

s2= ¬(v1v2)
s3= ¬(v1v2)

v2

s1=1
s2=1
s3=1

v

s1= x ⊕ v
v1

s2= ¬v
s3= ¬v

v2

Flolac 2009 73

Signal Correspondence

Inductive signal correspondence

Complete for retiming transformation

'

(,)

'

(,)

Base case: () (,), and

Inductive case: (,) (,),

where (,) (,) (,), and

(,) '. (', (,)) (', (,))
i j

i j

sc

sc sc

sc i j
f f sc

sc i j
f f sc

I s R x s

R x s R x s

R x s f x s f x s

R x s x f x x s f x x sδ δ

∈

∈

⇒

⇒

= ≡

= ∀ ≡

∧

∧

K K K

K K K K

K K K K K K

JK JK JKK K K K K K

Flolac 2009 74

Safety Property Checking

Flolac 2009 75

Safety Property Checking

Safety properties are the majority
For finite-state transition systems, liveness
property checking can be converted to safety
property checking

Safety property checking can be
formulated as reachability analysis

Flolac 2009 76

Model Checking

Check if a state transition system M
satisfies a temporal property ϕ

E.g. M l= ϕ ≡ AG(p → AX q)
Equivalence checking is a special case

M : product machine
ϕ : every state reachable from the initial state has

output label 0 under any transitions
(a concise formula?)

Flolac 2009 77

Model Checking

BDD-based model checking
So-called symbolic model checking

SAT-based model checking
Bounded model checking (BMC)

Checking under a pre-specified length bound

Unbounded model checking (UMC)
Checking without length bound

Flolac 2009 78

Symbolic Model Checking

Safety property checking is formulated as
reachability analysis

Reachability analysis is done by BDD-
based fixed-point computation

Flolac 2009 79

Bounded Model Checking

Is any bad state reachable from the initial
state in k steps?

Sound but not complete
k is bounded from above by the number of
states (trivial bound; not useful in practice)

Time-frame expansion
Similar to automatic test pattern generation
(ATPG) technique in testing

Flolac 2009 80

Bounded Model Checking

I

X0 X1 X2Y0 Y1 Y2

λ

δ

λ

δ

λ

δ

E.g., in the context of SEC, check if the product machine can
produce output 1 in k time-frames, for k = 1, 2, …

Flolac 2009 81

Unbounded Model Checking

Two approaches
By temporal induction

k-step induction

By Craig interpolation
Image approximation with interpolation

Flolac 2009 82

UMC with Temporal Induction

Induction

Incomplete whenever there is a P-state
transition to a ¬P-state in the unreachable
state space

Base case: () (), and
Inductive case: () (, ') (')

I s P s
P s T s s P s

⇒
∧ ⇒

K K
K K K K

Flolac 2009 83

UMC with Temporal Induction

k-step induction

Still incomplete

0 0 0

0 1 0 1 1

Base case: () (, ,) (, ,), and
Inductive case: (, ,) (, ,) ()

k k k k

k k k k k

I s T s s P s s
P s s T s s P s+ + +

∧ ⇒

∧ ⇒

K K K K K… …
K K K K K… …

Flolac 2009 84

UMC with Temporal Induction

Simple-path criterion

w/ simple-path criterion k-induction is
complete
k is up-bounded by the length of the longest
simple path

Temporal induction can be implemented
with incremental SAT solving

1

i

j k
s

≤ ≤
∧ ≡K jsK

Flolac 2009 85

UMC with Craig Interpolation

Over-approximated image computation
using SAT

BMC + Craig interpolation allow us to compute
image over-approximation relative to property.

Avoid computing exact image.
Take advantage of SAT solvers’ strength of filtering
out irrelevant facts.

Flolac 2009 86

UMC with Craig Interpolation

Craig interpolation
Craig interpolation theorem [Cra57]:
If A ∧ B = false, there exists an interpolant A' for (A,B)
such that
1. A ⇒ A'
2. A' ∧ B = false
3. A' refers only to common variables of A,B

E.g. A = p ∧ q, B = ¬q ∧ r, A' = q

Recent result
Given a resolution refutation of A ∧B, A' can be derived
in linear time.

Flolac 2009 87

UMC with Craig Interpolation

Reachability analysis
Is there a state trajectory from I to F satisfying
transition relation T ?
Reachability fixed point:

R0 = I
Ri+1 = Ri ∨ Img(Ri, T)
R = ∪ Ri

F is reachable from I iff R ∧ F ≠ false

Flolac 2009 88

UMC with Craig Interpolation

Over-approximated reachability analysis
R'0 = I
R'i+1 = R'i ∨ Img' (R'i, T)
R' = ∪ R'i

Img' is an over-approximate image operation s.t.
∀P. Img(P, T) ⇒ Img' (P, T)

Img' is adequate w.r.t. F, when
if P cannot reach F, Img' (P, T) cannot reach F

If Img' is adequate, then
F is reachable from I iff R' ∧ F ≠ false

Flolac 2009 89

UMC with Craig Interpolation

P F

Img(P,T)

Reached from P Can reach F

Img’(P,T)

But how do you get an adequate Img'?
Source: McMillan’s slides

Adequate image

Flolac 2009 90

UMC with Craig Interpolation

k-adequacy (relaxed)
Img' is k-adequate w.r.t. F, when
if P cannot reach F, Img'(P, T) cannot reach F
within k steps
For k > (backward) diameter, k-adequate is
equivalent to adequate.

Flolac 2009 91

UMC with Craig Interpolation

Idea: use unfolding to enforce k-adequacy
A = P-1 ∧ T-1

B = T0 ∧ T1 ∧ ... ∧ Tk-1 ∧ Fk

P FT T T T T T T

A B

t=0 t=k

Let Img'(P)0= A',
where A' is an interpolant for (A,B)...

Img' is k-adequate!
Source: McMillan’s slides

Flolac 2009 92

UMC with Craig Interpolation

A ⇒ A'
Img(P, T) ⇒ Img'(P, T)

A' ∧ B = false
Img'(P, T) cannot reach F in k steps

Hence Img' is k-adequate over-approximation.
(Img' is undefined if A∧B is satisfiable.)

P FT T T T T T T

A B

t=0 t=k

A' Interpolant!

Source: McMillan’s slides

Flolac 2009 93

UMC with Craig Interpolation

Intuition
A' tells everything the SAT solver deduced
about the image of P in proving it can't reach F
in k steps.
Hence, A' is in some sense an abstraction of
the image relative to the property.

P FT T T T T T T

A B

t=0 t=k

A'

Flolac 2009 94

UMC with Craig Interpolation

Overall algorithm
let k = 0
repeat

if I can reach F within k steps, answer
reachable
R = I
while Img'(T, R) ∧ F = false

R' = Img'(T, R) ∨ R
if R' = R answer unreachable
R = R'

increase k

Flolac 2009 95

UMC with Craig Interpolation

Since k increases at every iteration, eventually k
> d, the diameter, in which case Img' is adequate,
and hence we terminate.

Notes:
don't need to know when k > d in order to terminate (i.e.
unbounded model checking)
often termination occurs with k << d
depth bound for temporal induction is the length of the
longest simple path, which can be exponentially longer
than diameter

Flolac 2009 96

Summary

Computation basics
Characteristic functions and their
manipulations
Data structures for Boolean reasoning

Equivalence checking
Combinational and sequential EC

Safety property checking
Bounded and unbounded model checking

