Hardware Equivalence &
Property Verification

Jie-Hong Roland Jiang

National Taiwan University

)

0000000000

—

Outline

O Introduction
= Motivations
= Systems to be verified
Hardware vs. software
= Verification methodologies
Formal vs. informal verification
= Verification formalisms
Temporal logics vs. model checking
= Properties to be verified
Safety vs. liveness
O Computation basics
= Data structures and Boolean reasoning engines

O Equivalence checking

= Combinational and sequential EC
Structure-based verification
Function-based verification

O Safety property checking
= Bounded and unbounded model checking
k-step induction

Interpolation
Flolac 2009

Introduction
I e

Flolac 2009 3

Motivations

O Costs of system failures
0o Computational hardness

Flolac 2009

(1995/1) Intel announces a pre-tax charge of 475 million dollars against
earnings, ostensibly the total cost associated with replacement of the
flawed processors.

(1996/6) The European Ariane5 rocket
explodes 40 s into its maiden flight due to
a software bug.

y g .
(2008/9) A major computer failure onboard the Hubble Space Telescope is
preventing data from:being sent to Earth, forcing a scheduled shuttle mission to
do repairsion the observatory to be delayed

ol

Hardness

O Verification may take 70% of
the entire design cycle of a
system

O State explosion problem

= #states is exponential in
#registers (state-holding
elements)

Flolac 2009

10 80 dtoms

Systems to Be Veritied

0 Hardware vs. software

m Finite state vs. Iinfinite state

Hardware systems can be modeled as finite-state
transition systems

Software systems are often modeled as infinite-state
transition systems

Flolac 2009 10

Veritication Methodologies

o Informal vs. formal

= Informal
Incomplete
= E.g., by software simulation or hardware emulation
Useful in finding bugs, but not in showing the
absence of bugs
= Formal

Complete

= E.g., theorem proving, property checking, equivalence
checking

Useful in both debugging and proving correctness

Flolac 2009

11

Verification Formalisms

O Temporal logics vs. model checking

m Temporal logics are useful specifying temporal properties
E.g., may (branching time) vs. must (linear time)
Not the only way of specifying properties

= Model checking is an automatic procedure checking whether a
model of a system satisfies a given specification

M [= ¢

“implementation” /‘

\ “specification”
(system model) pecification

(system property)
more detailed more abstract

“satisfies”, “implements”, “refines”
(satisfaction relation)

Flolac 2009 12

Properties to Be Verified

O Safety vs. liveness

= Safety property
Something bad will never happen
couterexample of finite length
= Liveness property
Something good will happen eventually or infinitely often
counterexample of infinite length

= 90% of the verification problems are checking safety
properties

= Liveness property checking can be converted to safety
property checking for finite state systems

Flolac 2009

13

IC Design Flow and Verification
enenve)

_ _ — netlist
design verif. ' synthesis logic

HDL spec.

netlist

manufacture verif. '

chip w

layo
ask

Flolac 2009 14

Hardware Verification

O Design verification
= Does a design specification satisfy some properties?
= Property checking / assertion-based verification

o Implementation verification

= Does an implementation conform to the original
specification?

= Equivalence checking / (design rule checking)

0 Manufacture verification

= Does a manufactured design have no defects?
= Testing

Flolac 2009

15

Computation Basics
I e

Flolac 2009 16

Boolean Space

B = {0,1}
B = {0,1}x{0,1} = {00, 01, 10, 11}
Karnaugh Maps: Boolean Lattices:

BO [

- = o—©0

33

s [T o

B4

I? /

Boolean Functions

O A Boolean function f: B" —» B over variables x,, X,, ..., X,
maps each Boolean valuation (truth assignment) in B" to
either Oor 1 X%, f X,

= E.g. f(Xq, X5) 00 O X —
01 1 0[1 l
10 1 x, || 1[0 X1
11 O

O The output value of f partitions B" into two sets

onset (f=1):

= E.g. {00, 10} (i.e., with characteristic function Ft = —Xx,)

offset (f= 0):

= E.g. {01, 11} (i.e., with characteristic function F° = x,)

= A literal is a Boolean variable x or its negation —x in a

Boolean formula

Flolac 2009

18

Boolean Functions

0 The onset of f, denoted as F%, is F1={v € B" |

f(v)=1}

= If Ft = B", f is a tautology

O The offset of f, denoted as F°, is F'={v < B" |
f(v)=0}
= If FO = B", f is unsatisfiable. Otherwise, f is satisfiable.
O Two Boolean functions f and g are equivalent if

vve B". f(v) = g(v)

Flolac 2009 19

Boolean Functions

O There are 2" vertices in Boolean space B"

o There are 22" distinct n-variable Boolean
functions

= Each F1 <= B" corresponds to a distinct Boolean function

X{X,X4
000
001
010
011

/ 100
X, 101
Xy 110

111

U
oOrORLrOpRrOotr

Flolac 2009

Boolean Operations

Given two Boolean functions:
f: B" > B
g:- B" > B

O h=fAgfromconjunction is defined as
HI =F1n G!; HO =B"\ H1

0o h=fvgfromdisjunction is defined as
HI=Flu G!; HO =B"\ H!

O h = —f from complement is defined as
Hl —_ FO HO —_ Fl

Flolac 2009

21

Cofactor & Quantification

Given a Boolean function:
f : B" » B, with input variables (X4,...,Xi,...,X;,)

O Positive cofactor, h = f,, is defined as
h = f(X{,...,1,...,%X,)

O Negative cofactor, h =f__,, is defined as
h = f(Xq,...,0,...,X,))

O Existential quantification over variable x;, h = 3Jx;. T, is defined as
h = f(Xq,...,0,....,%X,) v f(Xq,...,1,...,X,)

O Universal quantification over variable x;, h = Vx;. f, is defined as
h = f(X{,...,0,....%,) Af(Xq,...,1,...,X,)

0 Boolean difference over variable x;, h = o6f/0x;, is defined as
h = f(xq,...,0,...,X,) @ f(Xq,...,1,...,X,)

Flolac 2009

22

Data Structures

O Basic data structures for Boolean function
representation
= Truth tables
= Binary Decision Diagrams (BDDs)
= AND-INV graphs (AIGS)
= Conjunctive Normal Forms (CNFs)

0o Why bother having different data
structures?

Flolac 2009 23

Data Structures

Data-structure revolution In verification

= State graph (late 70s-80s)
Problem size —10* states

= BDD (late 80s-90s)

Problem size —102° states
Critical resource: memory

= SAT (late 90s-)
GRASP, SATO, chaff, berkmin
Problem size —1019° (?) states
Critical resource: CPU time

Flolac 2009

24

Data Structures — BDDs

0 BDDs are graph representations of
Boolean functions

= A non-terminal node is a decision node
(multiplexer) controlled by some variable v
It represents some Boolean function f
Its two children represent two functions f, and f,,
They together represent a Shannon cofactor tree
f=vf, + Vv f, (Shannon expansion)

m A terminal node Is either constant “O” or “1”

Flolac 2009

25

Data Structures — BDDs

0 Reduced Ordered BDDs (ROBDDs)
= Ordered:

Variables follow the same order along all paths
Xi, < X, < Xy < . <X
= Reduced:
Any node with two identical children is removed
Two nodes with isomorphic BDD’s are merged

= These two rules make any node of an ROBDD
represent a distinct function and make
ROBDDs canonical representation of Boolean
functions

Flolac 2009

26

Data Structures — BDDs

(::i) | E , E : i: /
- - .
- - -
- - .
- - .
. .
- -
. -
- -
- -
- - -
- . -
; /
’ ’ ’ i}
’ ’ ’ 1
’ ’ / 1
’ 4 / 1
’ ’
’ / [
’ ’ !
/ / 1
1
1
|
|
1
\
N 7 7 \
\ 4 -7 \
4 4
\ , . \
\ y s N
~ - N
~ \ ’ - N
RS \ 4 .7 N
~ - N
- ~
- ~
-
-
-
-
A

0|0 11101211

©) (b) (€)

.
-,
.
-
-,
1
1
1
1
1
1
1
!
1
!

S N
\\ 4

0

Ordered BDDs of f = X X,+ X X, X53+X,"X,X5

Flolac 2009 27

Data Structures — AIGs

0 AND-INV graphs (AIGS)

= vertices:
2-input AND gates
= edges:
iInterconnects with (optional) dots representing INVs

= {AND, INV} is a functionally complete set of
Boolean operators

= Structurally isomorphic nodes can be merged

Flolac 2009

28

Data Structures — AIGs

0000000000

Data Structures — SAT

O Conjunctive Normal Form (CNF)
= Product of sums
e.g., o= (a+b'+c) (a'+b+c) (a+b'+c’) (a+b+c)
= CNF is useful for satisfiability (SAT) checking

Flolac 2009

30

Data Structures — SAT

O Circuit-to-CNF conversion

a AND

c

b

O—®

2
©

@<<Z‘(@ —)

®

Is output always 0 ?

(ma + b + ¢)(a + —c) (b + —c)

(=1 + 2 + 4) (1 + —4) (—
(—m2 + =3 + 5) (2 + —=5) (
(2 + =3 + 6) (=2 + —6) (
(—m4 + =5 + 7) (4 + —=7) (
Justify to “1” (5 + 6+ 8) (=5 + =8) (=
\(7 + 8 + 9) (=7 + —49) (—
(9)

Conversion can be done in time linear to the circuit size!

Flolac 2009

2
3
3

5
6
8

31

Boolean Reasoning

O A Boolean function can be represented in
different forms

= E.g., BDD, AIG, CNF, ...

O Boolean reasoning studies the intrinsic
characteristics of a Boolean function

= We may be interested in characteristics such as
satisfiability, validity, decomposability, etc., of a function

O There are different Boolean reasoning engines
based on different data structures

= E.g. BDD packages, AIG packages, SAT solvers

Flolac 2009 32

Boolean Function Manipulation

0 Characteristic functions

= Functional representations of “sets”
Predicates indicating whether an element is in a set

= Operations over sets (union, intersection, complement)
become Boolean operations (OR, AND, INV) over characteristic

functions

E.g.,
Let Xx={000,001,110,111} and Y={001,101,110}

(assume B3 is our universal set)

Their characteristic functions are
fy = XX XX, Ty = X 'X+X X, X3

The set X U Y has characteristic function f, v f,
The set X n Y has characteristic function f, A f,

Flolac 2009 33

Equivalence Checking

Flolac 2009 34

Digital Circuits

0 Combinational circuits
= Implement Boolean functions
= Have no state-holding elements (registers)

O Sequential circuits
= Implement finite state machines
= Have state-holding elements

0 Combinational circuits can be considered
as single-state sequential circuits

Flolac 2009

35

Equivalence Checking

0 Combinational EC

= Check if two combinational circuits are
equivalent, i.e., if they have the same input-
output behavior under all input assignments

O Sequential EC

= Check if two sequential circuits are equivalent,
I.e., If they have the same Input-output
behavior under all input sequences

Flolac 2009

36

Hardness

0 Hardness of verification
= Combinational EC is coNP-complete

= Sequential EC and safety property checking
are PSPACE-complete

Flolac 2009

37

Combinational EC

1=~

D

To check if the two circuits implementing f, and f, are equivalent,
we build their miter

They are equivalent iff the miter circuit is equivalent to a constant-
O function (can be formulated as SAT solving!)

Flolac 2009 38

Combinational EC

0o BDD-based computation

1. Construct the ROBDDs of f; and f,
Variable orderings of f; and f, should be the same

2. Let g = f,®f, equals constant O iff the two
circuits are equivalent

Flolac 2009

39

Combinational EC

O SAT-based computation
1. Convert the miter structure into a CNF

2. Perform SAT solving to verify if the output
variable cannot be valuated to true under all
Input assignments (i.e., unsatisfiable)

Flolac 2009

40

Combinational EC

O Pure BDD and plain SAT solving cannot
handle large CEC problems

O To be scalable, contemporary methods
highly exploit structural similarities
between two circuits to be compared

= ldentify and merge cutpoints (identical internal
signals)

Flolac 2009 41

Combinational EC

Cutpoints are used to
partition the miter

Successively merge equivalent signals from inputs to outputs
to simplify the EC problem

Flolac 2009 42

Combinational EC

O Solved in most industrial circuits (w/ multi-million
gates)

= Computational efforts scale almost linearly with the
design size

= Existence of structural similarities
Logic transformations preserve similarities to some extent

= Hybrid engine of BDD, SAT, AIG, simulation, etc.
Cutpoint identification

O Unsolved for arithmetic circuits

m Absence of structural similarities
Commutativity ruins internal similarities
m Word- vs. bit-level verification

Flolac 2009 43

Finite State Machines

X=(X1, X5, ..+, X0)
—

S=(s4,5,,---,S)

M(IXILICYILISILL8.2):

[[X]]: Input alphabet
[[Y]]: Output alphabet

[[S]]: State set
| : Initial state(s)
61 [[XI] x [[SI] = [[S]]
(next-state function or transition function)

A XD < (S]] = 1Y

\< Y=Y,y i)

7\, —

S'=(s’.,s,,..., ’m

Sw) 5 _(slsz S'm)
. D |a—n—

(output function)
Flolac 2009

State Transition Systems

O Transition function vs. transition relation
m Transition function:

Transition must be deterministic (there is a unique next state for any
current state and input)

m Transition relation:

Transition may be nondeterministic (there can be a several next
states for any current state and input)

O Conversion from transition functions (9,,...,9,)) to a transition
relation T

—_—

T (X’S’ Sl) — /\(S li = 5| (;(’g))

When we are interested in reachability only, we may further
quantify the inputs

T,G5)=KAG, = 5%)]

Flolac 2009 45

Sequential EC

o Combinational checking for sequential equivalence is
sound, but not complete (may yield false-negative)

= Equivalent FSMs may have different state transitions and

encodings
0/1 I 0
0/0 1/0
M1
SO S1
1/1
-
L
| 0
0/0 e 0/1
0/0 1/0 M2

to 1/1 0/1 t2

1/1 1/0
f1 -

Flolac 2009 —

Sequential EC

\ 4
I\)N

Y1

Yo

Two FSMs M1 and M2 are equivalent if and only if the output
of their product machine always produces constant O

Flolac 2009

47

Product Machine

O The product FSM M, , of FSMs

My = (L[X1], LLY.1.
Mo = (LLXI1], LLY.].

= State space [[S,]

, [[Sa1
, L[S2]

1 x [[S]]
= Initial state set |,

x 1,

= Input alphabet [[X]]

= Output alphabet {0,1}
= Transition function 8,,, = (9, 9,)
= Output function A, = (A, © A,)

Flolac 2009

, 11, 8;, A;) and
, 15, 0,, A,) has

48

Sequential EC

0 When the reachable states of the product
machine I1s known, SEC reduces to CEC!

= Let R be the characteristic function of the
reachable state set and , T, and T, be the
transition relations of M; and M,

= M; and M, are equivalent iff (A, A R) Is
unsatisfiable
There is no state that is both bad and reachable

O So the main computation of SEC is
reachability analysis

Flolac 2009 49

Reachability Analysis

0 Given an FSM, which states are reachable
from the initial state?

... Unreachable states

Flolac 2009

50

Reachability “Onion Rings”

Flolac 2009

51

Symbolic Reachability Analysis

0 Reachability analysis can be performed
either explicitly (over state transition
graphs) or implicitly (over transition
functions or relations)

= Implicit reachability analysis is also called
symbolic reachability analysis (often using
BDDs and more recently SAT)

O Image computation is the core
computation in symbolic reachability
analysis

Flolac 2009 52

Image Computation

o Given a mapping of one
Boolean space (input
space) into another InoUt Sbace
Boolean space (output P ,____F_)_\
space) o

= For a set of minterms
(care set) in the input
space

The image is the set of
related minterms from the
output space

= For a set of minterms in
the output space

The pre-image is the set o |
of related minterms in the o
iInput space o |

Flolac 2009 Courtesy of A. Mishchenko 53

Image Computation

Input space

abc

000
001

010

011 |

100

101 |

110
111

Flolac 2009

are set

Courtesy of A. Mishchenko

Output space

Image
01

10
11

54

Symbolic Image Computation

0 Img(C(x),T(x,y)) = Ix [C(X) A T(X,y)]

= Image of Cunder T

O Implicit methods by far outperform explicit ones

= Successfully compute images with more than 210
minterms in the input/output spaces

O Operations A and 3 are basic Boolean
manipulations are implemented using BDDs

= To avoid large intermediate results (during and after the
product computation), operation AND-EXIST is used,
which performs product and quantification in one pass
over the BDD

Flolac 2009 55

Next-State Computation

O What iIs the set P of next-states from Q?

P(s") = Img(Q(5), T,(5,s"))
=35.(Q(5) AT,(5,5Y))

Previous-State Computation

O What is the set P of previous-states of Q?

P(s) = Prelmg(Q(s"),T,(s,s"))
=35".(Q(s) A T,(5,5Y)

Flolac 2009

Reachability Analysis

ForwardReachability(Transition Relation T, Initial State I)

20
Ri :=
repeat
R = Img(R, T):
=i+
Ri:=R-IvR
until R = Ri-1
return R

Backward reachability analysis can be done in a similar manner with pre-
iImage computation and starting from final states to see if they can be
reached from initial states.

The procedures can be realized using BDD package.

Flolac 2009

58

Reachability Analysis

Example oo

0/0

0/1 i

—

1/0

M1
S0 S1
1/1
-
L
i
0/0 & 0/1
1/0 M2

fo 1/1 0/1 t2

1/1 1/0
{1

FSMs to be equivalence checked

Flolac 2009

59

Reachability Analysis

M1

1

M2

F

Product FSM and its state transition graph

Flolac 2009

60

Forward Reachability Analysis

Example (cont’d)

Backward Reachability Analysis

Example (cont’d)

0000000000

Sequential EC

O Reachability analysis (product state space)
= Explicit traversal on product STG
= Implicit image computation on product FSM

O State equivalence (disjoint union state space)

m EXxplicit equivalence state identification on disjoint union
STG

m Implicit state partitioning on multiplexed FSM

Flolac 2009 63

State Partitioning

Example

0/0

0/0

SO

fo

0/1

1/1

{3
0/0

1/1

1/1
f1

0/1

0/1

1/0

S1

2

1/0

1/0

- 0
M1
7 N I
I
0
1 M2 1
T T
I. e e e e e e —— —— —— —— —— —— —— — —l .I
| aux i |

Multiplexed FSM and the disjoint union STG

Flolac 2009

64

State Partitioning

0 BDD-based functional decomposition
= Bound set variables (top): state variables
= Free set variables (bottom): others
= Cutset: free-set nodes with incoming edges

from bound-set nodes

O Paths leading to a node Iin the cutset form
an equivalence class of states (for an
Iiteration)

O Iterate functional decomposition over
composed functions

Flolac 2009

65

State Partitioning

0 BDD-based functional decomposition can be
applied for state partitioning of a multiplexed
FSM

00 0 0 0 0

01 0 1 0 1
Vv

10 0 0 0 0

11 0 1 0 1

Flolac 2009

State Partitioning

Multiple functions can be stacked using extra variables

Flolac 2009

010 0 0 0

State Partitioning

Example (cont’'d)

Flolac 2009

0/0

0/1

1/0

68

Sequential EC

0 Reachability analysis vs. state partitioning

m Backward RA can be considered as state
partitioning in the product state space

Flolac 2009

69

Exploiting Similarities for SEC

0 Generic SEC

= Works for checking designs with completely
different circuit structures

= Too hard due to state explosion

= Designs under checking often possess
similarities to some extent

0 Desirable to reduce SEC to CEC as much
as possible

= Take advantage of structural similaritiesfor
SEC

Flolac 2009

70

Register Correspondence

O Inductive register correspondence

Base case: 1(S) = R (), and
Inductive case: R, (5) = R, (5(X,3)).

whereR (S)= A S =S5,

(si.Sj)erc

O ldentify equivalence among registers, not states
= Computation scalable to large designs

O EC based on register correspondence is complete
for circuits transformed by combinational

synthesis

Flolac 2009

71

Register Correspondence

Example

..

..

Result: {s1}, {s2,s3}

Flolac 2009

Signal Correspondence

O Inductive signal correspondence
Base case: 1(5) = R.(X,5), and
Inductive case: R_(X,5) = R.(X,53),

where R (X,5)= A fi(X,5)=f.(X,5), and
B (f;, fj)esc
R.(X,8)= A v?.fi(?,a(m))zfj(?',a(x,§))

S

0 Complete for retiming transformation

Flolac 2009 73

Satety Property Checking

0000000000

Satety Property Checking

O Safety properties are the majority

= For finite-state transition systems, liveness
property checking can be converted to safety
property checking

O Safety property checking can be
formulated as reachability analysis

Flolac 2009

75

Model Checking

O Check If a state transition system M
satisfies a temporal property ¢
mE.g. MI=¢=AG(p > AX Q)
= Equivalence checking is a special case

M :
Q -

product machine

every state reachable from the initial state has
output label O under any transitions

(a concise formula?)

Flolac 2009 76

Model Checking

0 BDD-based model checking
= So-called symbolic model checking

0 SAT-based model checking

= Bounded model checking (BMC)
Checking under a pre-specified length bound

= Unbounded model checking (UMC)
Checking without length bound

Flolac 2009

77

Symbolic Model Checking

O Safety property checking is formulated as
reachability analysis

0 Reachability analysis is done by BDD-
based fixed-point computation

Flolac 2009

78

Bounded Model Checking

O Is any bad state reachable from the initial
state In k steps?

= Sound but not complete

= Kk Is bounded from above by the number of
states (trivial bound; not useful in practice)

O Time-frame expansion

= Similar to automatic test pattern generation
(ATPG) technique In testing

Flolac 2009

79

Bounded Model Checking

X0 YO x1 Yyl X2 Y2
L R ﬁj L R ﬁj L R ﬁj . e
| —~— A /> A /> N WA

E.g., in the context of SEC, check if the product machine can
produce output 1 in k time-frames, fork =1, 2, ...

Flolac 2009 80

Unbounded Model Checking

O Two approaches

= By temporal induction
o k-step induction

= By Craig interpolation
o Image approximation with interpolation

Flolac 2009

81

UMC with Temporal Induction

O Induction
Base case: |1 (5) = P(5), and
Inductive case: P(S5)AT(5,5") = P(5)

= Incomplete whenever there is a P-state
transition to a —P-state in the unreachable

state space

Flolac 2009

82

UMC with Temporal Induction

O k-step induction

Base case: 1(S°)ATH(5°,...,5) = P*(5°,...,5%), and
Inductive case: P*(3°,...,S)AT**(5°,...,5) = P(s*™)

(O— A)—)

= Still incomplete

Flolac 2009 83

UMC with Temporal Induction

O Simple-path criterion

A 5 £5]
1< j<k

= w/ simple-path criterion k-induction is
complete

= kK Is up-bounded by the length of the longest
simple path

0 Temporal induction can be implemented
with incremental SAT solving

Flolac 2009

84

UMC with Craig Interpolation

O Over-approximated image computation
using SAT

= BMC + Craig interpolation allow us to compute
Image over-approximation relative to property.
Avoid computing exact image.

Take advantage of SAT solvers' strength of filtering
out irrelevant facts.

Flolac 2009 85

UMC with Craig Interpolation

O Craig Interpolation
= Craig interpolation theorem [Cra57]:

If AAB = false, there exists an interpolant A' for (A,B)
such that

A=A
A' A B = false
A' refers only to common variables of A,B

E.Q. A=pang, B=—-qgaAr, A =(

0 Recent result

m Given a resolution refutation of A AB, A' can be derived
In linear time.

Flolac 2009 86

UMC with Craig Interpolation

O Reachability analysis

= Is there a state trajectory from | to F satisfying
transition relation T ?

= Reachability fixed point:

Ry = |
Ri.. = R v Img(R;, T)
R=UR,

m F is reachable from | iff R A F # false

Flolac 2009 87

UMC with Craig Interpolation

O Over-approximated reachability analysis

R\, = I
R',, =R, vImg (R, T)
R'= UR,

= Img' is an over-approximate image operation s.t.
vP. Img(P, T) = Img' (P, T)

O Img' Is adequate w.r.t. F, when
If P cannot reach F, Img' (P, T) cannot reach F

o If Img' is adequate, then
F Is reachable from | iff R' A F # false

Flolac 2009

88

UMC with Craig Interpolation

Adequate image

Reached from P Can reach F

But how do you get an adequate Img'?

Source: McMillan’s slides
Flolac 2009 89

UMC with Craig Interpolation

O k-adequacy (relaxed)
= Img' Is k-adequate w.r.t. F, when

If P cannot reach F, Img'(P, T) cannot reach F
within k steps

= For k > (backward) diameter, k-adequate is
equivalent to adequate.

Flolac 2009

90

UMC with Craig Interpolation

O ldea: use unfolding to enforce k-adeguacy

A=P, AT,
B=ToATiAoAT g AR
A B
P T T T T T T T F
t=0 t=k

Let Img'(P)= A",
where A" is an interpolant for (A,B)...

Img' is k-adequatel!

Source: McMillan’s slides Flolac 2009 91

UMC with Craig Interpolation

A A' Interpolant!

OoA= A
= Img(P, T) = Img'(P, T)
O A' A B = false
= Img'(P, T) cannot reach F in k steps

O Hence Img' is k-adequate over-approximation.

(Img' is undefined if AAB Is satisfiable.)

Flolac 2009
Source: McMillan’s slides

92

UMC with Craig Interpolation

]
A A B
P T YLT T T T T T F
t=0 t=k
O Intuition

= A' tells everything the SAT solver deduced
about the image of P in proving it can't reach F
INn k steps.

= Hence, A' is In some sense an abstraction of
the image relative to the property.

Flolac 2009 93

UMC with Craig Interpolation

o Overall algorithm
let k =0
repeat

If | can reach F within k steps, answer
reachable

R =1

while Img'(T, R) A F = false
R'=1Img'(T, R) vR
If R" = R answer unreachable
R=R

INncrease k

Flolac 2009

94

UMC with Craig Interpolation

O Since k increases at every iteration, eventually k
> d, the diameter, in which case Img’' is adequate,
and hence we terminate.

Notes:

= don't need to know when k > d in order to terminate (i.e.
unbounded model checking)

m often termination occurs with k << d

= depth bound for temporal induction is the length of the
longest simple path, which can be exponentially longer
than diameter

Flolac 2009 95

Summary

0o Computation basics

m Characteristic functions and their
manipulations

= Data structures for Boolean reasoning

O Equivalence checking
= Combinational and sequential EC

O Safety property checking
= Bounded and unbounded model checking

Flolac 2009 96

