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Introduction
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Motivations

Costs of system failures
Computational hardness
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(1995/1) Intel announces a pre-tax charge of 475 million dollars against 
earnings, ostensibly the total cost associated with replacement of the 
flawed processors. 
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(1996/6) The European Ariane5 rocket 
explodes 40 s into its maiden flight due to 
a software bug. 
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(2003/8) A programming error has been identified as the cause of the Northeast 
power blackout, which affected an estimated 10 million people in Canada and 45 
million people in the U.S. 
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Costs

(2008/9) A major computer failure onboard the Hubble Space Telescope is 
preventing data from being sent to Earth, forcing a scheduled shuttle mission to 
do repairs on the observatory to be delayed.
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Hardness

Verification may take 70% of 
the entire design cycle of a 
system

State explosion problem
#states is exponential in 
#registers (state-holding 
elements)

10     atoms80

10   transistors7

100,000 registers

10           states
30,000
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Systems to Be Verified

Hardware vs. software
Finite state vs. infinite state

Hardware systems can be modeled as finite-state 
transition systems
Software systems are often modeled as infinite-state 
transition systems
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Verification Methodologies

Informal vs. formal
Informal

Incomplete
E.g., by software simulation or hardware emulation

Useful in finding bugs, but not in showing the 
absence of bugs

Formal
Complete

E.g., theorem proving, property checking, equivalence 
checking

Useful in both debugging and proving correctness
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Verification Formalisms
Temporal logics vs. model checking

Temporal logics are useful specifying temporal properties
E.g., may (branching time) vs. must (linear time)
Not the only way of specifying properties

Model checking is an automatic procedure checking whether a 
model of a system satisfies a given specification

M |= ϕ
“implementation”
(system model)

“specification”
(system property)

“satisfies”, “implements”, “refines”
(satisfaction relation)

more detailed more abstract
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Properties to Be Verified

Safety vs. liveness
Safety property

Something bad will never happen 
couterexample of finite length

Liveness property
Something good will happen eventually or infinitely often
counterexample of infinite length

90% of the verification problems are checking safety 
properties
Liveness property checking can be converted to safety 
property checking for finite state systems
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IC Design Flow and Verification

HDL spec.

logic 
synthesis

netlist

netlist

layout /
mask

chip

RTL 
synthesisdesign verif.design verif.

implement verif.implement verif.

physical 
design

manufacture verif.manufacture verif.

fab.
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Hardware Verification

Design verification
Does a design specification satisfy some properties?
Property checking / assertion-based verification

Implementation verification
Does an implementation conform to the original 
specification?
Equivalence checking / (design rule checking)

Manufacture verification
Does a manufactured design have no defects?
Testing
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Computation Basics
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Boolean Space
B = {0,1}
B2 = {0,1}×{0,1} = {00, 01, 10, 11} 

Karnaugh Maps: Boolean Lattices:

B0

B1

B2

B3

B4
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Boolean Functions
A Boolean function f: Bn → B over variables x1, x2, …, xn
maps each Boolean valuation (truth assignment) in Bn to 
either 0 or 1

E.g. f(x1, x2)

The output value of f partitions Bn into two sets
onset (f =1): 

E.g. {00, 10}  (i.e., with characteristic function F1 = ¬x2 )
offset (f = 0): 

E.g. {01, 11} (i.e., with characteristic function F0 = x2 )

A literal is a Boolean variable x or its negation ¬x in a 
Boolean formula

x1x2 f
0  0    0
0  1    1
1  0    1
1  1    0

1x

2x

0
0
1

1 x1

x2
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Boolean Functions

The onset of f, denoted as F1, is F1= {v ∈ Bn | 
f(v)=1}

If F1 = Bn, f is a tautology

The offset of f, denoted as F0, is F0= {v ∈ Bn | 
f(v)=0}

If F0 = Bn, f is unsatisfiable. Otherwise, f is satisfiable.

Two Boolean functions f and g are equivalent if 
∀v∈ Bn. f(v) ≡ g(v) 
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Boolean Functions

There are 2n vertices in Boolean space Bn

There are 22
n

distinct n-variable Boolean 
functions

Each F1 ⊆ Bn corresponds to a distinct Boolean function

x1x2x3
0 0 0    1
0 0 1    0
0 1 0    1
0 1 1    0
1 0 0  ⇒ 1
1 0 1    0
1 1 0    1
1 1 1    0

x1

x2

x3
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Boolean Operations

Given two Boolean functions:
f:  Bn → B
g: Bn → B 

h = f ∧ g from conjunction is defined as
H1 = F1 ∩ G1; H0 = Bn \ H1

h = f ∨ g from disjunction is defined as
H1 = F1 ∪ G1; H0 = Bn \ H1

h = ¬f from complement is defined as
H1 = F0; H0 = F1
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Cofactor & Quantification
Given a Boolean function:

f :  Bn → B, with input variables (x1,…,xi,…,xn)

Positive cofactor, h = fxi , is defined as
h = f(x1,…,1,…,xn)

Negative cofactor, h = f¬xi , is defined as
h = f(x1,…,0,…,xn)

Existential quantification over variable xi , h = ∃xi. f , is defined as
h = f(x1,…,0,…,xn) ∨ f(x1,…,1,…,xn)

Universal quantification over variable xi , h = ∀xi. f , is defined as
h = f(x1,…,0,…,xn) ∧ f(x1,…,1,…,xn)

Boolean difference over variable xi , h = ∂f/∂xi , is defined as
h = f(x1,…,0,…,xn) ⊕ f(x1,…,1,…,xn)
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Data Structures

Basic data structures for Boolean function 
representation

Truth tables
Binary Decision Diagrams (BDDs)
AND-INV graphs (AIGs)
Conjunctive Normal Forms (CNFs)
…

Why bother having different data 
structures?



Flolac 2009 24

Data Structures

Data-structure revolution in verification
State graph (late 70s-80s)

Problem size ~104 states

BDD (late 80s-90s)
Problem size ~1020 states
Critical resource: memory

SAT (late 90s-)
GRASP, SATO, chaff, berkmin
Problem size ~10100 (?) states
Critical resource: CPU time
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Data Structures – BDDs

BDDs are graph representations of 
Boolean functions

A non-terminal node is a decision node 
(multiplexer) controlled by some variable v

It represents some Boolean function f
Its two children represent two functions fv and fv’

They together represent a Shannon cofactor tree
f = v fv + v′ fv′ (Shannon expansion)

A terminal node is either constant “0” or “1”
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Data Structures – BDDs

Reduced Ordered BDDs (ROBDDs)
Ordered:  

Variables follow the same order along all paths
xi1

< xi2
< xi3

< … < xin

Reduced:
Any node with two identical children is removed
Two nodes with isomorphic BDD’s are merged

These two rules make any node of an ROBDD 
represent a distinct function and make 
ROBDDs canonical representation of Boolean 
functions
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Data Structures – BDDs

0 0 0 1 0 1 1 1

x1

x2 x2

x3 x3 x3x3

0 1

x1

x2 x2

x3 x3 x3x3

0 1

x1

x2 x2

x3

(a) (b) (c)

Ordered BDDs of f = x1x2+ x1x2’x3+x1’x2x3
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Data Structures – AIGs

AND-INV graphs (AIGs)
vertices: 

2-input AND gates 

edges: 
interconnects with (optional) dots representing INVs

{AND, INV} is a functionally complete set of 
Boolean operators
Structurally isomorphic nodes can be merged
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Data Structures – AIGs

f

g
g

f

circuit AIG
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Data Structures – SAT

Conjunctive Normal Form (CNF)
Product of sums
e.g., ϕ = (a+b′+c)(a′+b+c)(a+b′+c′)(a+b+c)
CNF is useful for satisfiability (SAT) checking
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Data Structures – SAT

Circuit-to-CNF conversion

b

a
c (¬a + ¬b + c)(a + ¬c)(b + ¬c)

1

6

2 5
8

7

3

4

9 0

(¬1 + 2 + 4)(1 + ¬4)(¬2 + ¬4)
(¬2 + ¬3 + 5)(2 + ¬5)(3 + ¬5)
(2 + ¬3 + 6)(¬2 + ¬6)(3 + ¬6)
(¬4 + ¬5 + 7)(4 + ¬7)(5 + ¬7)
(5 + 6 + 8)(¬5 + ¬8)(¬6 + ¬8)
(7 + 8 + 9)(¬7 + ¬9)(¬8 + ¬9)
(9)

Justify to “1”

AND

Is output always 0 ?

Conversion can be done in time linear to the circuit size!
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Boolean Reasoning

A Boolean function can be represented in 
different forms 

E.g., BDD, AIG, CNF, …

Boolean reasoning studies the intrinsic 
characteristics of a Boolean function

We may be interested in characteristics such as 
satisfiability, validity, decomposability, etc., of a function

There are different Boolean reasoning engines 
based on different data structures

E.g. BDD packages, AIG packages, SAT solvers
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Boolean Function Manipulation
Characteristic functions

Functional representations of “sets”
Predicates indicating whether an element is in a set

Operations over sets (union, intersection, complement) 
become Boolean operations (OR, AND, INV) over characteristic 
functions

E.g.,
Let X={000,001,110,111} and Y={001,101,110} 
(assume B3 is our universal set)

Their characteristic functions are 
fX = x1’x2’+x1x2, fY = x1’x2+x1x2 x3’

The set X ∪ Y has characteristic function fX ∨ fY
The set X ∩ Y has characteristic function fX ∧ fY
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Equivalence Checking
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Digital Circuits

Combinational circuits
Implement Boolean functions
Have no state-holding elements (registers)

Sequential circuits
Implement finite state machines
Have state-holding elements

Combinational circuits can be considered 
as single-state sequential circuits



Flolac 2009 36

Equivalence Checking

Combinational EC
Check if two combinational circuits are 
equivalent, i.e., if they have the same input-
output behavior under all input assignments

Sequential EC
Check if two sequential circuits are equivalent, 
i.e., if they have the same input-output 
behavior under all input sequences
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Hardness

Hardness of verification
Combinational EC is coNP-complete

Sequential EC and safety property checking 
are PSPACE-complete
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Combinational EC 

x ≡ 0

f1(x)

f2(x)

?

To check if the two circuits implementing f1 and f2 are equivalent, 
we build their miter

They are equivalent iff the miter circuit is equivalent to a constant-
0 function (can be formulated as SAT solving!)
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Combinational EC

BDD-based computation
1. Construct the ROBDDs of f1 and f2

Variable orderings of f1 and f2 should be the same

2. Let g = f1♁f2 equals constant 0 iff the two 
circuits are equivalent
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Combinational EC

SAT-based computation
1. Convert the miter structure into a CNF

2. Perform SAT solving to verify if the output 
variable cannot be valuated to true under all 
input assignments (i.e., unsatisfiable)
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Combinational EC

Pure BDD and plain SAT solving cannot 
handle large CEC problems

To be scalable, contemporary methods 
highly exploit structural similarities
between two circuits to be compared

Identify and merge cutpoints (identical internal 
signals)
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Combinational EC

0?

f1

f2

f3

v1

v2

0?

0?

f1

f2

f3

v2

v1

x

Successively merge equivalent signals from inputs to outputs 
to simplify the EC problem

Cutpoints are used to 
partition the miter
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Combinational EC

Solved in most industrial circuits (w/ multi-million 
gates)

Computational efforts scale almost linearly with the 
design size
Existence of structural similarities

Logic transformations preserve similarities to some extent
Hybrid engine of BDD, SAT, AIG, simulation, etc.

Cutpoint identification

Unsolved for arithmetic circuits 
Absence of structural similarities

Commutativity ruins internal similarities
Word- vs. bit-level verification
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Finite State Machines

X=(x1,x2,…,xn) Y=(y1,y2,…,yk)
λ

δS=(s1,s2,…,sm) S’=(s’1,s’2,…,s’m)

D

M([[X]],[[Y]],[[S]],I,δ,λ):

[[X]]: Input alphabet
[[Y]]: Output alphabet
[[S]]: State set

I  : Initial state(s)
δ :  [[X]] × [[S]] → [[S]] 

(next-state function or transition function)
λ :  [[X]] × [[S]] → [[Y]] 

(output function)
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State Transition Systems
Transition function vs. transition relation

Transition function: 
Transition must be deterministic (there is a unique next state for any 
current state and input)
Transition relation:
Transition may be nondeterministic (there can be a several next 
states for any current state and input)

Conversion from transition functions (δ1,…,δn) to a transition 
relation T

When we are interested in reachability only, we may further 
quantify the inputs 

1
( , , ') ( ' ( , ))

n

i i
i

T x s s s x sδ
=

= ≡∧JKK JK K K

1
( , ') [ ( ' ( , ))]

n

i i
i

T s s x s x sδ∃
=

= ∃ ≡∧K JK K K K
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Sequential EC 
Combinational checking for sequential equivalence is 
sound, but not complete (may yield false-negative)

Equivalent FSMs may have different state transitions and 
encodings

M1
i o

M2
i o

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1
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Sequential EC

0=
?

y1

D
x

1λ
1δM1

y2

D

2λ
2δM2

Two FSMs M1 and M2 are equivalent if and only if the output 
of their product machine always produces constant 0
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Product Machine

The product FSM M1×2 of FSMs
M1 = ([[X]], [[Y1]], [[S1]], I1, δ1, λ1) and 
M2 = ([[X]], [[Y2]], [[S2]], I2, δ2, λ2) has

State space [[S1]] × [[S2]]
Initial state set I1 × I2

Input alphabet [[X]]
Output alphabet {0,1}
Transition function δ1×2 = (δ1, δ2)
Output function λ1×2 = (λ1 ⊕ λ2)
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Sequential EC

When the reachable states of the product 
machine is known, SEC reduces to CEC!

Let R be the characteristic function of the 
reachable state set and , T1 and T2 be the 
transition relations of M1 and M2

M1 and M2 are equivalent iff (λ1×2 ∧ R) is 
unsatisfiable

There is no state that is both bad and reachable

So the main computation of SEC is 
reachability analysis
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Reachability Analysis

Given an FSM, which states are reachable 
from the initial state?

Unreachable statesReachable states
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Reachability “Onion Rings”

0

1

1

2
2

2

2

3 3

3

3

3

33
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Symbolic Reachability Analysis

Reachability analysis can be performed 
either explicitly (over state transition 
graphs) or implicitly (over transition 
functions or relations)

Implicit reachability analysis is also called 
symbolic reachability analysis (often using 
BDDs and more recently SAT)

Image computation is the core 
computation in symbolic reachability
analysis
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Image Computation

Given a mapping of one 
Boolean space (input 
space) into another 
Boolean space (output 
space)

For a set of minterms
(care set) in the input 
space

The image is the set of 
related minterms from the 
output space

For a set of minterms in 
the output space

The pre-image is the set 
of related minterms in the 
input space

Input space

Output space

Care set

Im
age

Courtesy of A. Mishchenko
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Image Computation

a b c

yx
Output space

Image

Care set000

001

010

011

100

101

110

111

00

01

10

11

abc

xy

Input space

Courtesy of A. Mishchenko
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Symbolic Image Computation

Img(C(x),T(x,y)) = ∃x [C(x) ∧ T(x,y)]
Image of C under T

Implicit methods by far outperform explicit ones
Successfully compute images with more than 2100

minterms in the input/output spaces

Operations ∧ and ∃ are basic Boolean 
manipulations are implemented using BDDs

To avoid large intermediate results (during and after the 
product computation), operation AND-EXIST is used, 
which performs product and quantification in one pass 
over the BDD
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Next-State Computation

What is the set P of next-states from Q?

( ') ( ( ), ( , '))

.( ( ) ( , '))

P s Img Q s T s s

s Q s T s s
∃

∃

=

= ∃ ∧

JK JKK K
JKK K K
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Previous-State Computation

What is the set P of previous-states of Q?

( ) ( ( '), ( , '))

'.( ( ') ( , '))

P s PreImg Q s T s s

s Q s T s s
∃

∃

=

= ∃ ∧

JK JKK K
JK JK JKK
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Reachability Analysis
ForwardReachability(Transition Relation T, Initial State I )
{

i := 0
Ri := I
repeat

Rnew = Img( Ri, T );
i := i + 1
Ri := Ri-1∨ Rnew

until Ri = Ri-1

return Ri

}

Backward reachability analysis can be done in a similar manner with pre-
image computation and starting from final states to see if they can be 
reached from initial states.

The procedures can be realized using BDD package.
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Reachability Analysis

Example
i o

i o

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1

FSMs to be equivalence checked
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Reachability Analysis

Example (cont’d) i o

s0

t0
s1

t2

0/0

1/0

0/0 1/0

s1

t1

s0

t30/0

1/0

0/01/0

s1

t0

0/1

1/1

0/1

1/1

s0

t1

s0

t2
0/1 1/1

s1

t3

1/10/1

Product FSM and its state transition graph
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Forward Reachability Analysis

Example (cont’d)

s1
t2

s0
t3

s1
t1

s0
t0

R0

R1

R2
R3

s0

t0
s1

t2

0/0

1/0

0/0 1/0

s1

t1

s0

t30/0

1/0

0/01/0

s1

t0

0/1

1/1

0/1

1/1

s0

t1

s0

t2
0/1 1/1

s1

t3

1/10/1
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Backward Reachability Analysis

Example (cont’d)

s0
t1

s1
t0

s1
t3

R0
R1

s0
t2 s0

t0
s1

t2

0/0

1/0

0/0 1/0

s1

t1

s0

t30/0

1/0

0/01/0

s1

t0

0/1

1/1

0/1

1/1

s0

t1

s0

t2
0/1 1/1

s1

t3

1/10/1
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Sequential EC

Reachability analysis (product state space)
Explicit traversal on product STG
Implicit image computation on product FSM

State equivalence (disjoint union state space)
Explicit equivalence state identification on disjoint union 
STG
Implicit state partitioning on multiplexed FSM
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State Partitioning

Example

aux

0

1

0

1

0

1

i o

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1

Multiplexed FSM and the disjoint union STG
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State Partitioning

BDD-based functional decomposition
Bound set variables (top): state variables
Free set variables (bottom): others
Cutset: free-set nodes with incoming edges 
from bound-set nodes

Paths leading to a node in the cutset form 
an equivalence class of states (for an 
iteration)
Iterate functional decomposition over 
composed functions 
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State Partitioning

BDD-based functional decomposition can be 
applied for state partitioning of a multiplexed 
FSM

0 1

v2

v4

0

0 1

1

1 2

v2

0 1

v1 v2

v3 v4

0 0 0 1 1 0 1 1

0 0

0 1

1 0

1 1

0

0

0

0

0

0

0

0

0 0

00

1

11

1
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State Partitioning

Multiple functions can be stacked using extra variables
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State Partitioning

s0

s1t0

t2t1

t3

Π0

Π1

Π2

s0 s1

0/1

1/1

0/0 1/0

t0 t2

0/1

1/1

0/0 1/0

t1

t3
0/0

1/0

0/11/1

Example (cont’d)
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Sequential EC

Reachability analysis vs. state partitioning
Backward RA can be considered as state 
partitioning in the product state space
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Exploiting Similarities for SEC

Generic SEC
Works for checking designs with completely 
different circuit structures
Too hard due to state explosion
Designs under checking often possess 
similarities to some extent

Desirable to reduce SEC to CEC as much 
as possible

Take advantage of structural similaritiesfor
SEC
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Register Correspondence

Inductive register correspondence

Identify equivalence among registers, not states
Computation scalable to large designs 

EC based on register correspondence is complete 
for circuits transformed by combinational 
synthesis

( , )

Base case:           ( ) ( ),  and

Inductive case:    ( ) ( ( , )),

where ( )
i j

rc

rc rc

rc i j
s s rc

I s R s

R s R x s

R s s s

δ

∈

⇒

⇒

= ≡∧

K K
KK K K

K
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Register Correspondence

Example

Result: {s1}, {s2,s3}

x
s1

1 11

s2 s3

s1= x ⊕ v1

v1

s2= ¬(v1v2)
s3= ¬(v1v2)

v2

s1=1
s2=1
s3=1

v

s1= x ⊕ v
v1

s2= ¬v
s3= ¬v

v2
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Signal Correspondence

Inductive signal correspondence

Complete for retiming transformation

'

( , )

'

( , )

Base case:           ( ) ( , ),  and

Inductive case:    ( , ) ( , ),

where ( , ) ( , ) ( , ), and

( , ) '. ( ', ( , )) ( ', ( , ))
i j

i j

sc

sc sc

sc i j
f f sc

sc i j
f f sc

I s R x s

R x s R x s

R x s f x s f x s

R x s x f x x s f x x sδ δ

∈

∈

⇒

⇒

= ≡

= ∀ ≡

∧

∧

K K K

K K K K

K K K K K K

JK JK JKK K K K K K
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Safety Property Checking
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Safety Property Checking

Safety properties are the majority
For finite-state transition systems, liveness
property checking can be converted to safety 
property checking

Safety property checking can be 
formulated as reachability analysis
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Model Checking

Check if a state transition system M
satisfies a temporal property ϕ

E.g. M l= ϕ ≡ AG(p → AX q)
Equivalence checking is a special case

M : product machine
ϕ : every state reachable from the initial state has 

output label 0 under any transitions 
(a concise formula?)
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Model Checking

BDD-based model checking
So-called symbolic model checking

SAT-based model checking
Bounded model checking (BMC)

Checking under a pre-specified length bound

Unbounded model checking (UMC)
Checking without length bound
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Symbolic Model Checking

Safety property checking is formulated as 
reachability analysis

Reachability analysis is done by BDD-
based fixed-point computation
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Bounded Model Checking

Is any bad state reachable from the initial 
state in k steps?

Sound but not complete
k is bounded from above by the number of 
states (trivial bound; not useful in practice)

Time-frame expansion
Similar to automatic test pattern generation
(ATPG) technique in testing
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Bounded Model Checking
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E.g., in the context of SEC, check if the product machine can 
produce output 1 in k time-frames, for k = 1, 2, …
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Unbounded Model Checking

Two approaches
By temporal induction

k-step induction

By Craig interpolation
Image approximation with interpolation
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UMC with Temporal Induction

Induction

Incomplete whenever there is a P-state 
transition to a ¬P-state in the unreachable 
state space

Base case:         ( ) ( ), and
Inductive case:  ( ) ( , ') ( ')

I s P s
P s T s s P s

⇒
∧ ⇒

K K
K K K K



Flolac 2009 83

UMC with Temporal Induction 

k-step induction

Still incomplete

0 0 0

0 1 0 1 1

Base case:         ( ) ( , , ) ( , , ), and
Inductive case:  ( , , ) ( , , ) ( )

k k k k

k k k k k

I s T s s P s s
P s s T s s P s+ + +

∧ ⇒

∧ ⇒

K K K K K… …
K K K K K… …
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UMC with Temporal Induction

Simple-path criterion

w/ simple-path criterion k-induction is 
complete
k is up-bounded by the length of the longest 
simple path 

Temporal induction can be implemented 
with incremental SAT solving

1

i

j k
s

≤ ≤
∧ ≡K jsK
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UMC with Craig Interpolation

Over-approximated image computation 
using SAT

BMC + Craig interpolation allow us to compute 
image over-approximation relative to property.

Avoid computing exact image.
Take advantage of SAT solvers’ strength of filtering 
out irrelevant facts.
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UMC with Craig Interpolation

Craig interpolation
Craig interpolation theorem [Cra57]:
If A ∧ B = false, there exists an interpolant A' for (A,B) 
such that
1. A ⇒ A' 
2. A' ∧ B = false
3. A' refers only to common variables of A,B

E.g. A = p ∧ q,   B = ¬q ∧ r,    A' = q

Recent result
Given a resolution refutation of A ∧B, A' can be derived 
in linear time.
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UMC with Craig Interpolation

Reachability analysis
Is there a state trajectory from I to F satisfying 
transition relation T ?
Reachability fixed point:

R0 = I
Ri+1 = Ri ∨ Img(Ri, T)
R = ∪ Ri

F is reachable from I iff R ∧ F ≠ false
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UMC with Craig Interpolation

Over-approximated reachability analysis
R'0 = I
R'i+1 = R'i ∨ Img' (R'i, T)
R' = ∪ R'i

Img' is an over-approximate image operation s.t. 
∀P.  Img(P, T) ⇒ Img' (P, T)

Img' is adequate w.r.t. F, when
if P cannot reach F, Img' (P, T) cannot reach F

If Img' is adequate, then
F is reachable from I iff R' ∧ F ≠ false
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UMC with Craig Interpolation

P F

Img(P,T)

Reached from P Can reach F

Img’(P,T)

But how do you get an adequate Img'?
Source: McMillan’s slides

Adequate image
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UMC with Craig Interpolation

k-adequacy (relaxed)
Img' is k-adequate w.r.t. F, when
if P cannot reach F, Img'(P, T) cannot reach F
within k steps
For k > (backward) diameter, k-adequate is 
equivalent to adequate.
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UMC with Craig Interpolation

Idea: use unfolding to enforce k-adequacy
A = P-1 ∧ T-1

B = T0 ∧ T1 ∧ ... ∧ Tk-1 ∧ Fk

P FT T T T T T T

A B

t=0 t=k

Let Img'(P)0= A',
where A' is an interpolant for (A,B)... 

Img' is k-adequate!
Source: McMillan’s slides
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UMC with Craig Interpolation

A ⇒ A'
Img(P, T) ⇒ Img'(P, T)

A' ∧ B = false
Img'(P, T) cannot reach F in k steps

Hence Img' is k-adequate over-approximation.
(Img' is undefined if A∧B is satisfiable.)

P FT T T T T T T

A B

t=0 t=k

A' Interpolant!

Source: McMillan’s slides
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UMC with Craig Interpolation

Intuition
A' tells everything the SAT solver deduced 
about the image of P in proving it can't reach F
in k steps. 
Hence, A' is in some sense an abstraction of 
the image relative to the property.

P FT T T T T T T

A B

t=0 t=k

A'
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UMC with Craig Interpolation

Overall algorithm
let k = 0
repeat

if I can reach F within k steps, answer 
reachable
R = I
while Img'(T, R) ∧ F = false

R' = Img'(T, R) ∨ R
if R' = R answer unreachable
R = R'

increase k
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UMC with Craig Interpolation

Since k increases at every iteration, eventually k 
> d, the diameter, in which case Img' is adequate, 
and hence we terminate.

Notes:
don't need to know when k > d in order to terminate (i.e. 
unbounded model checking)
often termination occurs with k << d
depth bound for temporal induction is the length of the 
longest simple path, which can be exponentially longer 
than diameter
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Summary

Computation basics
Characteristic functions and their 
manipulations
Data structures for Boolean reasoning

Equivalence checking
Combinational and sequential EC

Safety property checking
Bounded and unbounded model checking


