Quantified Boolean Formula: Evaluation, Certification, and Applications

Jie-Hong Roland Jiang
National Taiwan University

TAROT Summer School
Saint Petersburg, Russia, June 2011
Outline

- Satisfiability (SAT)
 - Conjunctive Normal Form (CNF)
 - SAT solving and Craig interpolation
 - Application
 - Functional dependency

- Quantified Satisfiability (QSAT)
 - Quantified Boolean Formula (QBF)
 - QBF evaluation and certification
 - Application
 - Relation determinization, program synthesis
Satisfiability
Normal Forms

- A **literal** is a variable or its negation
- A **clause (cube)** is a disjunction (conjunction) of literals
- A **conjunctive normal form (CNF)** is a conjunction of clauses; a **disjunctive normal form (DNF)** is a disjunction of cubes

E.g.,

- CNF: \((a+b+c)(a+c)(b+d)(\neg a)\)
 - \((\neg a)\) is a unit clause, \(d\) is a pure literal
- DNF: \(a\neg bc + a\neg c + bd + \neg a\)
Satisfiability

- The **satisfiability** (SAT) problem asks whether a given CNF formula can be true under some assignment to the variables.

- In theory, SAT is intractable.
 - The first shown NP-complete problem [Cook, 1971].

- In practice, modern SAT solvers work ‘mysteriously’ well on application CNFs with ~100,000 variables and ~1,000,000 clauses.
 - It enables various applications, and inspires QBF and SMT (Satisfiability Modulo Theories) solver development.
SAT Competition

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

CPU Time (in seconds)

Number of problems solved

http://www.satcompetition.org/PoS11/
SAT Solving

- Ingredients of modern SAT solvers:
 - DPLL-style search
 - [Davis, Putnam, Logemann, Loveland, 1962]
 - Conflict-driven clause learning (CDCL)
 - [Marques-Silva, Sakallah, 1996 (GRASP)]
 - Boolean constraint propagation (BCP) with two-literal watch
 - [Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]
 - Decision heuristics using variable activity
 - [Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]
 - Restart
 - Preprocessing
 - Support for incremental solving
 - [Een, Sorensson, 2003 (MiniSat)]
Algorithm $\text{DPLL}(\Phi)$
{
 while there is a unit clause $\{l\}$ in Φ
 $\Phi = \text{BCP}(\Phi, l)$;
 while there is a pure literal l in Φ
 $\Phi = \text{assign}(\Phi, l)$;
 if all clauses of Φ satisfied return true;
 if Φ has a conflicting clause return false;
 $l := \text{choose_literal}(\Phi)$;
 return $\text{DPLL}(\text{assign}(\Phi, \neg l)) \lor \text{DPLL}(\text{assign}(\Phi, l))$;
}
DPLL Procedure

- Chorological backtrack

- E.g.

```
~a ~b b ~c c d
{~a,e} {a,b,~c} {c,~d} {a,b,d} {d,e} {c,d,~e}
```

![Diagram](image.png)
Modern SAT Procedure

Algorithm $\text{CDCL}(\Phi)$
{
 while (1)
 while there is a unit clause \{l\} in Φ
 $\Phi = \text{BCP}(\Phi, l)$;
 while there is a pure literal l in Φ
 $\Phi = \text{assign}(\Phi, l)$;
 if Φ contains no conflicting clause
 if all clauses of Φ are satisfied return true;
 l := \text{choose_literal}(\Phi);
 assign(\Phi, l);
 else
 if conflict at top decision level return false;
 analyze_conflict();
 undo assignments;
 $\Phi := \text{add_conflict_clause}(\Phi)$;
 }
}
Conflict Analysis & Clause Learning

- There can be many learnt clauses from a conflict
- Clause learning admits non-chronological backtrack

E.g.,
\{-\neg x_{10587}, \neg x_{10588}, \neg x_{10592}\}
...
\{-\neg x_{10374}, \neg x_{10582}, \neg x_{10578}, \neg x_{10373}, \neg x_{10629}\}
...
\{x_{10646}, x_{9444}, \neg x_{10373}, \neg x_{10635}, \neg x_{10637}\}
Clause Learning as Resolution

- **Resolution** of two clauses $C_1 \lor x$ and $C_2 \lor \neg x$:

\[
\begin{array}{c}
C_1 \lor x & C_2 \lor \neg x \\
\hline
C_1 \lor C_2
\end{array}
\]

where x is the **pivot variable** and $C_1 \lor C_2$ is the **resolvant**, i.e., $C_1 \lor C_2 = \exists x.(C_1 \lor x)(C_2 \lor \neg x)$

- A learnt clause can be obtained from a sequence of resolution steps
 - Exercise:
 - Find a resolution sequence leading to the learnt clause
 $\{ \neg x10374, \neg x10582, \neg x10578, \neg x10373, \neg x10629 \}$ in the previous slides
Resolution

Resolution is complete for SAT solving
- A CNF formula is unsatisfiable if and only if there exists a resolution sequence leading to the empty clause

Example

\[(a \lor b \lor c)(\neg a \lor c)(\neg b \lor \neg d)(\neg c)(c \lor d)\]

\[(b \lor c)\]

\[(d)\]

\[(c \lor \neg d)\]

\[\neg d\]

\[()\]
SAT Certification

- True CNF
 - Satisfying assignment (model)
 - Verifiable in linear time

- False CNF
 - Resolution refutation
 - Potentially of exponential size
Craig Interpolation

[Craig Interpolation Thm, 1957]
If $A \land B$ is UNSAT for formulae A and B, there exists an interpolant I of A such that

1. $A \Rightarrow I$
2. $I \land B$ is UNSAT
3. I refers only to the common variables of A and B

I is an abstraction of A
Interpolant and Resolution Proof

- SAT solver may produce the resolution proof of an UNSAT CNF φ
- For $\varphi = \varphi_A \land \varphi_B$ specified, the corresponding interpolant can be obtained in time linear in the resolution proof

\[
\varphi_A = (a \lor b \lor c)(\neg a \lor c)(\neg b \lor \neg d)(\neg c)(c \lor d)
\]
\[
\varphi_B = (b \lor c)(c)(1)(1)(1)
\]

\[
\neg d
\]

\[
\frac{2011/6/29}{TAROT 2011}
\]

[McMillan, 2003]
Circuit to CNF Conversion

- Circuit to CNF conversion can be done in time linear w.r.t. circuit size [Tseitin, 1968]
 - Trick: introduce intermediate variables
 - The resultant formula can blow up if no intermediate variables are allowed to exist
Circuit to CNF Conversion

Example

- Single gate:

\[(\neg a + \neg b + c)(a + \neg c)(b + \neg c) \]

- Circuit of connected gates:

\[(\neg 1 + 2 + 4)(1 + \neg 4)(\neg 2 + \neg 4) \]
\[(\neg 2 + \neg 3 + 5)(2 + \neg 5)(3 + \neg 5) \]
\[(2 + \neg 3 + 6)(\neg 2 + \neg 6)(3 + \neg 6) \]
\[(\neg 4 + \neg 5 + 7)(4 + \neg 7)(5 + \neg 7) \]
\[(5 + 6 + 8)(\neg 5 + \neg 8)(\neg 6 + \neg 8) \]
\[(7 + 8 + 9)(\neg 7 + \neg 9)(\neg 8 + \neg 9) \]
\[(9) \]

Is output always 0?
Justify to "1"
 SAT Application
 Functional Dependency

- $f(x)$ **functionally depends** on $g_1(x), g_2(x), ..., g_m(x)$ if $f(x) = h(g_1(x), g_2(x), ..., g_m(x))$, denoted $h(G(x))$

 - Under what condition can function f be expressed as some function h over a set of given functions $G={g_1,...,g_m}$?
 - h exists $\iff \nexists a,b$ such that $f(a) \neq f(b)$ and $G(a)=G(b)$

 i.e., G is more distinguishing than f
Applications of functional dependency
- Resynthesis/rewiring
- Redundant register removal
- BDD minimization
- Verification reduction
- ...

![Boolean Network Diagram]

- target function
- base functions
SAT Application
Functional Dependency

- Computing \(h \)

 \[
 h^{\text{on}} = \{y \in B^m : y = G(x) \text{ and } f(x) = 1, \ x \in B^n\}
 \]

 \[
 h^{\text{off}} = \{y \in B^m : y = G(x) \text{ and } f(x) = 0, \ x \in B^n\}
 \]
SAT Application
Functional Dependency

- h exists \iff
 $\not\exists a, b$ such that $f(a) \neq f(b)$ and $G(a) = G(b)$,
 i.e., $(f(x) \neq f(x^*)) \land (G(x) \equiv G(x^*))$ is UNSAT

- How to derive h? How to select G?
(f(x) \neq f(x^*)) \land (G(x) \equiv G(x^*)) \text{ is UNSAT}
SAT Application
Functional Dependency

- Clause set A: $C_{DFN_{on}}$, y_0
- Clause set B: $C_{DFN_{off}}$, $\neg y_0^*$, ($y_i = y_i^*$) for $i = 1, \ldots, m$
- I is an overapproximation of $Img(f_{on})$ and is disjoint from $Img(f_{off})$
- I only refers to y_1, \ldots, y_m
- Therefore, I corresponds to a feasible implementation of h

[Lee, J, Huang, Mishchenko, 2007]
Quantified Satisfiability
Quantified Boolean Formula

A quantified Boolean formula (QBF) is often written in **prenex form** (with quantifiers placed on the left) as

\[Q_1 x_1, \ldots, Q_n x_n. \varphi \]

for \(Q_i \in \{ \forall, \exists \} \) and \(\varphi \) a quantifier-free formula

- If \(\varphi \) is further in CNF, the corresponding QBF is in the so-called **prenex CNF** (PCNF), the most popular QBF representation
- Any QBF can be converted to PCNF
Quantified Boolean Formula

- Quantification order matters in a QBF
- A variable x_i in $(Q_1 x_1,\ldots, Q_i x_i,\ldots, Q_n x_n. \varphi)$ is of level k if there are k quantifier alternations (i.e., changing from \forall to \exists or from \exists to \forall) from Q_1 to Q_i.

Example

$$\forall a \ \exists b \ \forall c \ \forall d \ \exists e. \varphi$$

$\text{level}(a)=0$, $\text{level}(b)=1$, $\text{level}(c)=2$, $\text{level}(d)=2$, $\text{level}(e)=3$
Quantified Boolean Formula

- Many decision problems can be compactly encoded in QBFs

- In theory, QBF solving (QSAT) is PSPACE complete
 - The more the quantifier alternations, the higher the complexity in the Polynomial Hierarchy

- In practice, solvable QBFs are typically of size ~1,000 variables
QBF Solver

- QBF solver choices
 - Data structures for formula representation
 - Prenex vs. non-prenex
 - Normal form vs. non-normal form
 - CNF, NNF, BDD, AIG, etc.
 - Solving mechanisms
 - Search, Q-resolution, Skolemization, quantifier elimination, etc.
 - Preprocessing techniques

- Standard approach
 - Search-based PCNF formula solving (similar to SAT)
 - Both clause learning (from a conflicting assignment) and cube learning (from a satisfying assignment) are performed
QBF Solving

Example

\[\exists a \forall x \exists b \forall y \exists c \quad (a + b + y + c)(a + x + b + y + c)(x + b)(y + c)(c + a + x + b)(x + b)(a + b + y) \]

\[\begin{align*}
&\ll a, L \gg \\
&= (b + y + c)(x + b + y + c)(x + b)(y + c)(x + b)(b + y) \\
&\ll x, L \gg \\
&= (b + y + c)(b + y + c)(y + c)(b + y) \\
&\ll b, U \gg \\
&= (y + c)(y + c)(y + c) \\
&\ll y, L \gg \\
&= (c)(c) \\
&\{false\} \\
&\ll c, R \gg \\
&= (c) \\
&\{true\} \\
&\ll x, R \gg \\
&= (x + b)(y + c)(c + x + b)(x + b) \\
&\ll y, P \gg \\
&= (x + b)(c + x + b)(x + b) \\
&\ll c, U \gg \\
&= (x + b)(x + b)(x + b) \\
&\ll x, L \gg \\
&= (b) \\
&\{true\} \\
&\ll x, R \gg \\
&= (b)(b) \\
&\{false\} \\
\end{align*} \]
Q-Resolution

- **Q-resolution** on PCNF is similar to resolution on CNF, except that the pivots are restricted to existentially quantified variables and the additional rule of \(\forall\text{-reduction}
\)

\[
\begin{array}{c}
C_1 \lor x \\
\hline
C_2 \lor \neg x
\end{array}
\]

\(\forall\text{-RED}(C_1 \lor C_2) \)

where operator \(\forall\text{-RED} \) removes from \(C_1 \lor C_2 \) the universally (\(\forall \)) quantified variables whose quantification levels are greater than any of the existentially (\(\exists \)) quantified variables in \(C_1 \lor C_2 \)

- E.g.,
 - prefix: \(\forall a \exists b \forall c \forall d \exists e \)
 - \(\forall\text{-RED}(a+b+c+d) = (a+b) \)

- Q-resolution is complete for QBF solving
 - A PCNF formula is unsatisfiable if and only if there exists a Q-resolution sequence leading to the empty clause
Q-Resolution

Example (cont’d)

\[\exists a \forall x \exists b \forall y \exists c \quad (a + b + y + c)(a + x + b + y + c)(x + b)(y + c)(c + a + x + b)(x + b)(a + b + y) \]

![Diagram of Q-Resolution process]
Skolemization

- Skolemization and Skolem normal form
 - Existentially quantified variables are replaced with function symbols
 - QBF prefix contains only two quantification levels
 - \exists function symbols, \forall variables

- Example

$$\forall a \exists b \forall c \exists d. \ (\neg a + \neg b)(\neg b + \neg c + \neg d)(\neg b + c + d)(a + b + c)$$

Skolem functions

$$\exists F_b(a) \ \exists F_d(a, c) \ \forall a \ \forall c. \ (\neg a + \neg F_b)(\neg F_b + \neg c + \neg F_d)(\neg F_b + c + F_d)(a + F_b + c)$$
QBF Certification

- QBF certification
 - Ensure correctness and, more importantly, provide useful information
 - Certificates
 - True QBF: term-resolution proof / Skolem-function (SF) model
 - SF model is more useful in practical applications
 - False QBF: clause-resolution proof / Herbrand-function (HF) countermodel
 - HF countermodel is more useful in practical applications

- Solvers and certificates
 - To date, only Skolemization-based solvers (e.g., sKizzo, squolem, Ebddres) can provide SFs
 - Search-based solvers (e.g., QuBE) are the most popular and can be instrumented to provide resolution proofs
QBF Certification

- Solvers and certificates

<table>
<thead>
<tr>
<th>Solver</th>
<th>Algorithm</th>
<th>Certificate</th>
<th>True QBF</th>
<th>False QBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>QuBE-cert</td>
<td>search</td>
<td>Cube resolution</td>
<td>Clause resolution</td>
<td></td>
</tr>
<tr>
<td>yQuaffle</td>
<td>search</td>
<td>Cube resolution</td>
<td>Clause resolution</td>
<td></td>
</tr>
<tr>
<td>Ebddres</td>
<td>Skolemization</td>
<td>Skolem function</td>
<td>Clause resolution</td>
<td></td>
</tr>
<tr>
<td>sKizzo</td>
<td>Skolemization</td>
<td>Skolem function</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>squolem</td>
<td>Skolemization</td>
<td>Skolem function</td>
<td>Clause resolution</td>
<td></td>
</tr>
</tbody>
</table>
QBF Certification

- Incomplete picture of QBF certification

<table>
<thead>
<tr>
<th></th>
<th>Syntactic Certificate</th>
<th>Semantic Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>True QBF</td>
<td>Cube-resolution proof</td>
<td>Skolem-function model</td>
</tr>
<tr>
<td>False QBF</td>
<td>Clause-resolution proof</td>
<td>?</td>
</tr>
</tbody>
</table>

- Recent progress
 - Herbrand-function countermodel
 - [Balabanov, J, 2011 (ResQu)]
 - Syntactic to semantic certificate conversion
 - Linear time [Balabanov, J, 2011 (ResQu)]
QBF Certification

- Unified QBF certification

- True QBF
 - Cube resolution proof
 - Skolem function (model)
 - ResQu

- False QBF
 - Clause resolution proof
 - Herbrand function (countermodel)
 - ResQu

formula negation
A Skolem-function model (Herbrand-function countermodel) for a true (false) QBF can be derived from its cube (clause) resolution proof.

A **Right-First-And-Or (RFAO) formula** is recursively defined as follows.

\[\varphi ::= \text{clause} \mid \text{cube} \mid \text{clause} \land \varphi \mid \text{cube} \lor \varphi \]

E.g.,

\[(a'+b) \land ac \lor (b'+c') \land bc \]

\[= ((a'+b) \land (ac \lor ((b'+c') \land bc))) \]

ResQu
ResQu

countermodel_construct
input: a false QBF Φ and its clause-resolution DAG $G_H(V_H, E_H)$
output: a countermodel in RFAO formulas
begin
01 foreach universal variable x of Φ
02 RFAO_node_array[x] := \emptyset;
03 foreach vertex v of G_H in topological order
04 if v.clause resulted from \forall-reduction on u.clause, i.e., $(u, v) \in E_H$
05 v.cube := $\neg(v$.clause$)$;
06 foreach universal variable x reduced from u.clause to get v.clause
07 if x appears as positive literal in u.clause
08 push v.clause to RFAO_node_array[x];
09 else if x appears as negative literal in u.clause
10 push v.cube to RFAO_node_array[x];
11 if v.clause is the empty clause
12 foreach universal variable x of Φ
13 simplify RFAO_node_array[x];
14 return RFAO_node_array's;
end
ResQu

Example

\[\exists a \forall x \exists b \forall y \exists c \]

\[(a + b + y + c)_1 (a + x + b + y + \bar{c})_2 (x + \bar{b})_3 (y + c)_4 (\bar{a} + \bar{x} + b + \bar{c})_5 (x + \bar{b})_6 (a + \bar{b} + \bar{y})_7 \]

\[(a + x + b + y)_8 \]

(2) \[(a + x + b + y)_{8+} \]

(3) \[(a + x)_{9} \]

(4) \[(\bar{a} + x + b + y)_{10} \]

(5) \[(\bar{a} + x + b)_{10+} \]

(6) \[(a + x)_{11} \]

(1) \[(a + \bar{b})_{7+} \]

\[(empty) \]

0. \[x: [] \quad y: [] \]

1. \[x: [] \quad y: [\text{cube}(\bar{a}b)] \]

2. \[x: [] \quad y: [\text{cube}(\bar{a}b), \text{clause}(a + x + b)] \]

3. \[x: [\text{clause}(a)] \quad y: [\text{cube}(\bar{a}b), \text{clause}(a + x + b)] \]

4. \[x: [\text{clause}(a)] \quad y: [\text{cube}(\bar{a}b), \text{clause}(a + x + b), \text{cube}(a\bar{x}b)] \]

5. \[x: [\text{clause}(a), \text{cube}(a)] \quad y: [\text{cube}(\bar{a}b), \text{clause}(a + x + b), \text{cube}(a\bar{x}b)] \]
QBF Certification

- Applications of Skolem/Herbrand functions
 - Program synthesis
 - Winning strategy synthesis in two player games
 - Plan derivation in AI
 - Logic synthesis
 - ...

2011/6/29
QBF Application
Relation Determinization

- **Relation** $R(X, Y)$
 - Allow one-to-many mappings
 - Can describe non-deterministic behavior
 - More generic than functions

- **Function** $F(X)$
 - Disallow one-to-many mappings
 - Can only describe deterministic behavior
 - A special case of relation

<table>
<thead>
<tr>
<th>x_1x_2</th>
<th>y_1y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x_1x_2</th>
<th>y_1y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

$f_1 = x_1x_2$
$f_2 = \neg x_1 \neg x_2$
QBF Application
Relation Determinization

- **Total relation**
 - Every input element is mapped to at least one output element

- **Partial relation**
 - Some input element is not mapped to any output element

\[x_1 x_2 \]
\[\begin{array}{c}
 00 \\
 01 \\
 10 \\
 11 \\
\end{array} \rightarrow \begin{array}{c}
 0 \\
 1 \\
\end{array} \]

\[x_1 x_2 \]
\[\begin{array}{c}
 00 \\
 01 \\
 10 \\
 11 \\
\end{array} \rightarrow \begin{array}{c}
 0 \\
 1 \\
\end{array} \]
A partial relation can be **totalized**

Assume that the input element not mapped to any output element is a don’t care

\[T(X, y) = R(X, y) \lor \forall y. \neg R(X, y) \]
Applications of Boolean relation

- In high-level design, Boolean relations can be used to describe (nondeterministic) specifications.
- In gate-level design, Boolean relations can be used to characterize the flexibility of sub-circuits.

- Boolean relations are more powerful than traditional don’t-care representations.
QBF Application
Relation Determinization

- Relation determinization
 - For hardware implementation of a system, we need functions rather than relations
 - Hardware systems are intrinsically deterministic
 - One input stimulus results in one output response
 - To simplify implementation, we can explore the flexibilities described by a relation for optimization
QBF Application
Relation Determinization

Example

\[f_1 = x_1 x_2 \]
\[f_2 = \neg x_1 \neg x_2 \]
QBF Application
Relation Determinization

Given a *nondeterministic* Boolean relation $R(X, Y)$, how to determinize and extract functions from it?

Solve QBF

$$\forall x_1, \ldots, \forall x_m, \exists y_1, \ldots, \exists y_n. R(x_1, \ldots, x_m, y_1, \ldots, y_n)$$

The Skolem functions of variables y_1, \ldots, y_n correspond to the output-functions we want.
Program synthesis by sketching

[Solar-Lezama et al., 2006]

Example

Spec:
```c
int foo (int x){
    return x+x;
}
```

Sketch:
```c
int bar (int x) implements foo{
    return x << ??;
}
```

Result:
```c
int bar (int x) implements foo{
    return x << 1;
}
```
QBF Application
Program Synthesis

Sketch synthesis can be solved by searching for control values satisfying

\[\exists c \forall x. \ Spec(x) = Sk(x,c) \]

We are interested to derive the Skolem function (in this case, constant) of c
Conclusions

- Modern SAT/QSAT solvers are powerful tools for solving large-scale synthesis, verification, and other computer science problems.

- Certificates of SAT/QSAT solving may be utilized to extract essential information for applications in synthesis and verification.

- Understanding how solvers work helps practitioners formulate and solve real-world problems.
Suggested Further Exploration

- SMT solvers and their applications in program analysis and verification
Contributors

- Valeriy Balabanov, NTU
- Wei-Lun Hung, NTU
- Chih-Chun Lee, NTU
- Hsuan-Po Lin, NTU
- Alan Mishchenko, UC Berkeley
Thank You!

Questions?