Design and Analysis of a 20-GHz Clock Multiplication Unit in 0.18-µm CMOS Technology

Jri Lee and Shanghann Wu National Taiwan University, Taipei, Taiwan

Abstract

A 20-GHz clock multiplication unit for SONET OC-768 systems employs dual loops and third-order loop filter to suppress the jitter. Realized in 0.18- μ m CMOS technology, this circuit achieves an output jitter of 0.2 ps,rms and 4.5 ps,pp while consuming 40 mW from a 1.8-V supply.

I. INTRODUCTION

The continuous growth of broadband data communications has been driving optical systems to 40 Gb/s. Recently, multiplexer/clock multiplication unit (MUX/CMU) circuits for OC-768 systems have been realized in SiGe technology [1][2], but they usually require high supply voltages and a few Watts of power.

This paper presents the design, analysis, and experimental verification of a 20-GHz PLL-based CMU capable of providing clocks for a 40-Gb/s MUX. Fabricated in 0.18- μ m CMOS technology, this circuit achieves an output jitter of 0.2 ps,rms and 4.5 ps,pp, and a power dissipation of 40 mW from a 1.8-V supply.

The next section describes the architecture and building blocks of the CMU circuit. Section III examines design considerations and Section IV summarizes the experimental results.

II. ARCHITECTURE AND BUILDING BLOCKS

A. Architecture

Figure 1 depicts the proposed CMU architecture. In contrast to a type IV phase/frequency detector (PFD), the phase and frequency detection loops are decomposed to minimize jitter while maintaining a wide acquisition range. Here, the phase detector (PD) merges with its V-to-I converter. The frequency detector drives the VCO frequency toward the desired value, and disables itself when the loop is locked. A thirdorder loop filter is employed to suppress the ripple on the control line. The VCO is followed by a chain of frequency dividers (\div 32), and the 625-MHz quadrature clocks are generated for phase and frequency comparison. The bandwidth is chosen such that the total jitter caused by the reference and VCO noise reaches a minimum [2].

Fig. 1. CMU architecture.

B. Phase Detector/V-to-I Converter

As shown in Fig. 2(a), the phase detector and V-to-I converter are merged to save power and reduce jitter. The quadrature clocks CK_i and CK_q create quarter-period reference pulses, while CK_q and the input reference CK_{ref} provide pulses whose widths are proportional to the phase error [Fig. 2(b)]. As a result, a characteristic of Fig. 2(c) is obtained, and CK_{ref} eventually aligns with CK_i upon lock.

It can be shown that skews between I_{up} and I_{down} paths $(M_5-M_6 \text{ and } M_1-M_4, \text{ respectively})$ disturbs the VCO control line periodically, and the channel-length modulation of M_1-M_6 causes control-line ripple as well. In this design, the dimension of M_1-M_6 is chosen as a compromise between these two effects so that the deterministic output jitter is minimized.

C. Frequency Detector

As shown in Fig. 3, the frequency detector (FD) produces the polarity of beat frequency by comparing the phase relationship between Q_1 and Q_2 [3]. Here, the V-to-I converter $[(V/I)_{FD}]$ bears 4 times larger pump current than that of PD to ensure the FD loop dominates during frequency acquisition. Similar to [4], the FD automatically disables $(V/I)_{FD}$ when the loop is locked, injecting no current into the loop filter.

D. VCO and Divider

As illustrated in Fig. 4(a), the 20-GHz VCO is realized as an LC oscillator with a differentially-stacked inductor that achieves higher self-resonance frequency (f_{SR}) and quality factor (Q) simultaneously [5]. To reduce the capacitive cou-

Fig. 2. (a) Phase detector and V-to-I converter, (b) timing diagram, and (c) its characteristic.

Fig. 3. Frequency detector.

pling to the substrate, a ground shield made of polysilicon sticks with minimum gap width is placed underneath the spirals in the direction perpendicular to the current flow.

The first divide-by-2 circuit is implemented as a Miller divider with inductive loads [6], as depicted in Fig. 4(b). Simulation shows that this topology achieves an operation range of 7 GHz, well exceeding the VCO tuning range.

III. CONSIDERATIONS

A. Reference Feedthrough

The sources that generates control line ripple include current mismatch and pulse skew of the V-to-I converter. Synchronized with the input reference clock, the ripple on the control line modulates the VCO frequency, resulting in clock jitter directly.

Consider a periodic ripple, $V_m \cos \omega_{ref} t$, imposed on a control voltage of a locked loop [Fig. 5(a)]. The excessive phase caused by the ripple is given by

$$\Delta\phi(t) = \int_0^t K_{VCO} V_m \cos\omega_{ref} \tau \, d\tau = \frac{K_{VCO} V_m}{\omega_{ref}} \sin\omega_{ref} t \tag{1}$$

Noting that (absolute) jitter is defined as the deviation of the zero-crossing point of the output clock, we arrive at

$$\Delta T(t) = \frac{\Delta \phi(t)}{M\omega_{ref}} = \frac{K_{VCO}V_m}{M\omega_{ref}^2} \sin \omega_{ref} t, \qquad (2)$$

Fig. 5. Jitter due to control-line ripple.

where M denotes the divide ratio. As illustrated in Fig. 5(b), the zero-crossing point "waggles" around the *average* point with a frequency of $\omega_{ref}/2\pi$. For large divide ratio M, the rms jitter can be obtained as

$$(\Delta T)_{rms}^2 = \frac{\omega_{ref}}{2\pi} \int_0^{2\pi/\omega_{ref}} \frac{K_{VCO}^2 V_m^2}{M^2 \omega_{ref}^4} \sin^2 \omega_{ref} t \, dt.$$
(3)

It follows that

$$(\Delta T)_{rms} = \frac{K_{VCO}V_m}{\sqrt{2}M\omega_{ref}^2}.$$
(4)

Since the excessive phase reaches a maximum at $t = (2k + 1)\pi/(2\omega_{ref})$ where $k = 0, 1, 2, \ldots$, the peak-to-peak jitter can be calculated as

$$(\Delta T)_{pp} = \frac{2K_{VCO}V_m}{M\omega_{ref}^2}.$$
(5)

Equation (4) and (5) reveal that the jitter caused by the reference feedthrough is proportional to the ripple amplitude V_m ,

implying the advantage of higher-order loop filters that attenuate the control line disturbance without degrading the stability.

B. Acquisition Range

The acquisition or capture range is defined as the maximum frequency deviation that a PLL can tolerate and relock the loop after a period of settling. As shown in Section II, the proposed phase detector exhibits a periodic characteristic [Fig. 2(c)], implying a finite capture range. It is because during the loop settling, a large frequency deviation may lead to a phase error greater than π . The V-to-I converter thus produces a current with opposite polarity, further exacerbating the deviation. As a result, the loop becomes out of lock and a frequency acquisition loop must be activated to relock the frequency.

To further investigate the acquisition behavior, we simplify the PLL as a second-order model with linear PD characteristic, as shown in Fig. 6(a). The transfer function is thus given by

$$\frac{\phi_{out}}{\phi_{in}}(s) = \frac{M(2\zeta\omega_n s + \omega_n^2)}{s^2 + 2\zeta\omega_n s + \omega_n^2},\tag{6}$$

where $\omega_n = (K_{VCO}I_P/2\pi CM)^{1/2}$ and $\zeta = R/2(K_{VCO}I_PC/2\pi M)^{1/2}$. Suppose the loop is locked properly for t < 0, and the reference frequency ω_{ref} jumps abruptly to $\omega_{ref} + \Delta \omega$ at t = 0. The output phase would

Fig. 6. Acquisition range calculation.

"track" the curve of $M(\omega_{ref} + \Delta \omega)t$ to minimize the phase error [Fig. 6(b)]. However, for the loop to relock, the maximum phase deviation, $\Delta \phi_{max}$ must not exceed $M\pi$. With $\phi_{in}(t) = (\omega_{ref} + \Delta \omega)t, \phi_{out}(t)$ can be derived as

$$\phi_{out}(t) = \frac{M\Delta\omega}{2\omega_n\sqrt{\zeta^2 - 1}}(e^{k_1t} - e^{k_2t}) + M(\omega_{ref} + \Delta\omega)t, \quad (7)$$

where $k_1 = -\omega_n(\zeta + \sqrt{\zeta^2 - 1})$ and $k_2 = -\omega_n(\zeta - \sqrt{\zeta^2 - 1})$. It can be proven that $\Delta \phi_{max}$ occurs at $t = t_1$, where $\phi'_{out}(t_1) = M(\omega_{ref} + \Delta \omega)$. It follows that

$$t_1 = \frac{1}{2\omega_n \sqrt{\zeta^2 - 1}} \ln \frac{\zeta + \sqrt{\zeta^2 - 1}}{\zeta - \sqrt{\zeta^2 - 1}}.$$
 (8)

To ensure relocking, we must have

$$M(\omega_{ref} + \Delta\omega)t_1 - \phi_{out}(t_1) < M\pi, \qquad (9)$$

and the capture range is obtained as

$$|\Delta\omega| < \pi\omega_n (\zeta - \sqrt{\zeta^2 - 1}) \left(\frac{\zeta - \sqrt{\zeta^2 - 1}}{\zeta + \sqrt{\zeta^2 - 1}}\right)^{-\frac{\zeta + \sqrt{\zeta^2 - 1}}{2\sqrt{\zeta^2 - 1}}}.$$
 (10)

For a heavily overdamped system, $\zeta \gg 1$ and Eq. (10) becomes

$$|\Delta\omega| < 2\pi\zeta\omega_n. \tag{11}$$

As expected, this value is commensurate with the loop bandwidth. In practice, the proposed PD achieves a smaller capture range simply due to the nonlinear region from $\pi/2$ to π of the I_{av} - $\Delta\phi$ characteristic.

IV. EXPERIMENTAL RESULTS

The CMU circuit has been fabricated in 0.18- μ m CMOS technology. Figure 7(a) shows the die photograph, which measures $0.8 \times 0.8 \text{ mm}^2$ including pads. Loop filter is built on chip to avoid possible sources of noise due to wirebonding. The chip is tested on a high-speed probe station. The on-chip

Fig. 7. Chip micrograph.

output lines are designed as $50-\Omega$ transmission lines to absorb the routing capacitance, and skews and jitters are minimized through symmetric layout and balanced routing. The circuit consumes 40 mW (excluding buffers) from a 1.8-V supply. Shown in Fig. 8 is the 20-GHz VCO tuning characteristic, indicating a tuning range of 1.6 GHz.¹ The output clock is plotted in Fig. 9, suggesting an rms and peak-to-peak jitter of 0.87 and 4.5 ps, respectively. These values must de-embed the jitter contributed by the oscilloscope (as shown in the inset), resulting in an rms jitter of 0.2 ps and a peak-to-peak jitter less than 4.5 ps. A 50% duty cycle is observed on the output clock. The output spectrum under locked condition is depicted in Fig. 10. Integration of the spectrum verifies the jitter measurement. Table I summarizes the performance of this circuit.

Fig. 9. Clock jitter measurement (horizontal scale: 2 ps/div, vertical scale: 10 mV/div).

REFERENCES

- Mounir Meghelli et al., "A 0.18-μm SiGe BiCMOS Receiver and Transmitter Chipset for SONET OC-768 Transmission Systems," *IEEE J. Solid-State Circuits*, vol. 38, pp. 2147-2154, Dec. 2003.
- [2] Hai Tao et al, "40–43-Gb/s OC-768 16:1 MUX/CMU Chipset with SFI-5 Compliance," *IEEE J. Solid-State Circuits*, vol. 38, pp. 2169-2180, Dec. 2003.
- [3] A. Pottbacker et al., "A Si Bipolar Phase and Frequency Detector IC for Clock Extraction up to 8 Gb/s," *IEEE J. Solid-State Circuits*, vol. 27, pp. 1747-1751, Dec. 1992.

 $^1 \mathrm{In}$ a redesign, the VCO frequency should be raised by 5%.

Fig. 10. Output spectrum under locked condition.

Output Freq.	20 GHz
Multiply Ratio	32
Clock Jitter	0.2 ps,rms
	< 4.5 ps,pp
Power Diss.	40 mW
Supply	1.8 V
Chip Area	0.8 mm x 0.8 mm
Technology	0.18-um CMOS

Table 1. Performance summary.

- [4] Remco C. H. van de Beek et al., "A 2.5–10-GHz Clock Multiplier Unit with 0.22-ps RMS Jitter in Standard 0.18-μm CMOS," *IEEE J. Solid-State Circuits*, vol. 39, pp. 1862-1872, Nov. 2004.
- [5] Jri Lee et al., "A 20-Gb/s 2-to-1 MUX and a 40-GHz VCO in 0.18-μm CMOS Technology," submitted to *the 2005 Symposium on VLSI Circuits*.
- [6] Jri Lee and Behzad Razavi, "A 40-GHz Frequency Divider in 0.18-μm CMOS Technology," *IEEE J. Solid-State Circuits*, vol. 39, pp. 594-601, April 2004.