CHAPTER 3 DIODES

Chapter Outline
3.1 The Ideal Diode
3.2 Terminal Characteristics of Junction Diodes
3.3 Modeling the Diode Forward Characteristics
3.4 Operation in the Reverse Breakdown Region – Zener Diodes
3.5 Rectifier Circuits
3.6 Limiting and Clamping Circuits
3.1 Ideal Diode

Ideal diode characteristics
- An diode is a two-terminal device:
 - **Anode**: the positive terminal
 - **Cathode**: the negative terminal
- Forward biased → turned on → short
- Reverse biased → turned off → open

Circuit applications

\[
Y = A + B + C \\
Y = A \cdot B \cdot C
\]
3.2 Terminal Characteristics of Junction Diodes

I-V characteristics of junction diodes

- Diode current: \(i = I_s (e^{v/nV_T} - 1) \)
 - \(I_s \) (saturation current): proportional to diode area
 - \(n \) (ideality factor): between 1 and 2
 - \(V_T \) (thermal voltage) \(\approx 25 \text{ mV} \) at room temperature

- The forward-bias region, determined by \(v > 0 \)
- The reverse-bias region, determined by \(v < 0 \)
- The breakdown region, determined by \(v < -V_{ZK} \)

Forward-bias region

- The simplified forward-bias I-V relationship:
 - For a given forward voltage: \(i \approx I_s e^{v/nV_T} \)
 - For a given forward current: \(v \approx nV_T \ln(I/I_s) \)

- Due to the exponential I-V relationship
 - \(i \approx 0 \) for \(v < 0.5\text{V} \) (cut-in voltage)
 - Fully conduction for \(0.6\text{V} < v < 0.8\text{V} \) \(\rightarrow V_{on} = 0.7\text{V} \)

Temperature dependence

- \(I_s \) doubles for every \(5^{\circ}\text{C} \) rise in temperature
- Voltage decreases \(2\text{mV/}^{\circ}\text{C} \) for a given current
- Current increases with temperature for a given voltage
Reverse-bias region

- Reverse current: \(i \approx -I_s \)
- Ideally, the reverse current is independent of reverse bias
- In reality, reverse current is larger than \(I_s \) and also increases somewhat with the reverse bias
- Temperature dependence: reverse current doubles for every 10°C rise in temperature

Breakdown region

- The knee of the I-V curve is specified as breakdown voltage \(V_{ZK} \) for Zener breakdown mechanism
- In breakdown region, the reverse current increases rapidly with a small increase in the reverse bias
- Normally, the reverse current is specified by external circuitry to assure the power dissipation within a safe range (non-destructive operation)
3.3 Modeling the Diode Forward Characteristics

Circuit analysis

- Determine the diode current I_D and voltage V_D for circuit analysis
- The equation required for the analysis:
 - $I_D = I_S \exp(V_D/nV_T) \to$ diode I-V characteristics
 - $I_D = (V_{DD} - V_D)/R \to$ Kirchhoff loop equation
- Need to solve non-linear equations

Graphical analysis

- Plot the two equations in the same I-V coordination
- The straight line is known as load line
- The intersect is the solution for I_D and V_D

Iterative analysis

- Set initial value $V_D = V_o$
- Use $I_D = (V_{DD} - V_D)/R$ to obtain I_I
- Use $V_D = nV_T \ln (I_D/I_S)$ to obtain V_2
- Repeat until it converges ($I_3, V_4, I_5, V_6...$)
- Iterations are needed to solve the nonlinear circuit
The need for rapid analysis

- Rapid analysis using simplified models for initial design
- Accurate analysis (iterative analysis or computer program) for final design
- Rapid analysis (I): ideal-diode model
 - The most simplified model used when supply voltage is much higher than the diode voltage
 - Diode on: $v_D = 0$ V and $i > 0$
 - Diode off: $i = 0$ and $v_D < 0$ V
 - Equivalent circuit model as an ideal diode
- Rapid analysis (II): constant-voltage-drop model
 - The most widely used model in initial design and analysis phases
 - Diode on: $v_D = 0.7$ V and $i > 0$
 - Diode off: $i = 0$ and $v_D < 0.7$ V
 - Equivalent circuit model as an ideal diode with a 0.7-V voltage source

NTU EE Electronics – L. H. Lu
Small-signal approximation

- The diode is operated at a dc bias point and a small ac signal is superimposed on the dc quantities:
 \[v_D(t) = V_D + v_d(t) \]
 \[i_D(t) = I_S e^{v_D/nV_T} = I_S e^{(V_D + v_d)/nV_T} = I_S e^{v_D/nV_T} e^{v_d/nV_T} = I_D e^{v_d/nV_T} \]

- Under small-signal condition: \(v_d / nV_T \ll 1 \)
 \[i_D(t) \approx I_D \left(1 + \frac{v_d}{nV_T}\right) = I_D + \frac{I_D}{nV_T} v_d = I_D + i_d \]
 - \(I_D \) associates with \(V_D \to \) dc operating point \(Q \)
 - \(i_d \) associates with \(v_d \to \) small signal response

- The diode exhibits linear I-V characteristics under small-signal conditions (\(v_d \leq 10mV \))

- Diode small-signal resistance and conductance at operating point
 \[i_d = \frac{I_D}{nV_T} v_d = g_d v_d = \frac{v_d}{r_d} \]
 \[g_d = \frac{I_D}{nV_T} = \left[\frac{\partial i_D}{\partial V_D}\right]_{i_0 = I_D} \]
 \[r_d = \frac{nV_T}{I_D} = \frac{1}{\left[\frac{\partial i_D}{\partial V_D}\right]_{i_0 = I_D}} \]

The diode small-signal model

- Choose proper dc analysis technique or model to obtain the operation point \(Q \)
- The small-signal model is determined once \(Q \) is provided
- The small-signal model is used for circuit analysis when the diode is operating around \(Q \)
Circuit analysis techniques for total quantities (AC+DC)

- Eliminate all the time varying signals (ac voltage and current sources) for operation point analysis
- Use rapid analysis or accurate analysis to obtain dc voltage and current at operating point Q
- Determine the parameters of small-signal models from Q
- Replace the devices with small-signal models and eliminate all the dc sources
- Circuit analysis under small-signal approximation
- The complete response of the circuit is obtained by superposition of the dc and ac components

Voltage regulator by diode forward drop

- A regulator is to provide a constant dc voltage regardless changes in load and power-supply voltage
- The forward-voltage drop remains almost constant at 0.7 V within a wide current range
- Multiple diodes in series to achieve the required voltage drop
- Better regulation can be provided for higher bias current and smaller r_d

![Voltage regulator diagram](image-url)
3.4 Operation in the Reverse Breakdown Region – Zener Diodes

Symbol and circuit model for the Zener diode

- In breakdown region, a reverse bias \((V_Z)\) beyond the knee voltage \((V_{ZK})\) leads to a large reverse current \((I_Z)\).
- The diode in breakdown region is given by \(V_Z = V_{Z0} + r_z I_Z\)
 - The breakdown diode is modeled by a voltage source \(V_{Z0}\) in series with an incremental resistance \(r_z\)
 - Incremental voltage versus current: \(\Delta V = r_z \Delta I\)
 - The simplified model is only valid for \(I_Z > I_{ZK}\) (knee current)
 - Equivalent \(r_z\) increases as \(I_Z\) decreases

- Diode types:
 - Diode: only forward and reverse regions are considered
 - Zener diode: forward, reverse and breakdown regions

\[\text{Diagram showing diode symbols and circuit model.}\]
Design of the Zener shunt regulator

Output voltage of the regulator:

\[V_o = \frac{R}{R + r_z} V_{z_0} + \frac{r_z}{R + r_z} V^+ - \frac{R r_z}{R + r_z} I_L \]

- **Line regulation:**
 \[\frac{\Delta V_o}{\Delta V^+} = - \frac{r_z}{R + r_z} \]

- **Load regulation:**
 \[\frac{\Delta V_o}{\Delta I_L} = - \frac{R r_z}{R + r_z} \]

- Line and load regulation should be minimized
- For \(r_z \ll R \), line regulation can be minimized by choosing small \(r_z \)
- Load regulation can be minimized by choosing small \(r_z \) and large \(R \)
- There is an upper limit on the value of \(R \) to ensure sufficiently high current \(I_Z \) (\(r_z \) increases if \(I_Z \) is too low)
- \(R \) should be selected from
 \[R = \frac{V_{S_{\text{min}}} - V_{z_0} - r_z I_{Z_{\text{min}}}}{I_{Z_{\text{min}}} + I_{L_{\text{max}}}} \]

NTUEE Electronics – L. H. Lu
3.5 Rectifier Circuits

Block diagram of a dc power supply

- DC power supply
 - Generate a dc voltage from ac power sources
 - The ac input is a low-frequency **large-signal** voltage

- Power transformer
 - Step the line voltage down to required value and provides electric isolation

- Diode rectifier
 - Converts the input sinusoidal to a **unipolar output**
 - Can be divided to **half-wave** and **full-wave rectifiers**

- Filter
 - Reduces the magnitude variation for the rectifier output
 - Equivalent to time-average operation of the input waveform

- Voltage Regulator
 - Further stabilizes the output to obtain a constant dc voltage
 - Can be implemented by Zener diode circuits
The half-wave rectifier

- Voltage transfer curve:
 \[v_s < V_{D0} \rightarrow v_o = 0 \]
 \[v_s \geq V_{D0} \rightarrow v_o = v_s - V_{D0} \]

- Rectifier diode specifications:
 - Current-handling capability: the largest current the diode is expected to conduct
 - **Peak inverse voltage** (PIV): the largest reverse voltage the diode can stand without breakdown
 - PIV = \(V_s \) (input voltage swing) and the diode breakdown voltage is selected at least 50% higher

\[V_s < V_{D0} \rightarrow v_o = 0 \]
\[V_s \geq V_{D0} \rightarrow v_o = V_s - V_{D0} \]
The full-wave rectifier (center-tapped transformer)

- Voltage transfer curve:
 \[|v_S| < V_{D0} \Rightarrow v_O = 0 \]
 \[v_S \geq V_{D0} \Rightarrow v_O = v_S - V_{D0} \]
 \[v_S \leq -V_{D0} \Rightarrow v_O = -v_S - V_{D0} \]

- Transformer secondary winding is center-tapped
- Peak inverse voltage (PIV) = \(2V_S - V_{D0}\)
- Rectified output waveform for both positive and negative cycles
Full-wave rectifier (Bridge rectifier)

- Voltage transfer curve:
 \[|v_s| < 2V_{D_0} \rightarrow v_o = 0\]
 \[v_s \geq 2V_{D_0} \rightarrow v_o = v_s - 2V_{D_0}\]
 \[v_s \leq -2V_{D_0} \rightarrow v_o = -v_s - 2V_{D_0}\]

- Does not require a center-tapped transformer
- Higher turn-on voltage \(2V_{D_0}\)
- Peak inverse voltage (PIV) = \(V_s - V_{D_0}\)
- Most popular rectifier circuit configuration

\[v_o \rightarrow v_s\]

\[\text{Slope } \approx -1 \rightarrow \text{Slope } \approx 1\]

\[V_s, -v_s, v_o, 2V_D\]

\[R\]
Rectifier with a filter capacitor – the peak rectifier

- Output unloaded case:

- Output loaded case:

NTUEE Electronics – L. H. Lu
Precision half-wave rectifier – the superdiode

- Superdiode is composed of an op amp and a diode.
- Superdiode works as an ideal diode with zero turn-on voltage.
 - Positive input voltage:
 - Diode turns on
 - Closed-loop op amp with virtual short at input
 - Output voltage follows input voltage
 - Negative input voltage:
 - Diode turns off
 - Op amp in open loop
 - Output voltage is 0 V
- Rectifier with superdiode can demonstrate better efficiency.
3.6 Limiting and Clamping Circuits

Limiter circuits

- For input in a certain range, the limiter acts as a linear circuit.
- For input exceeds the threshold, the output voltage swing is limited.
- Classification:
 - Based on transfer characteristics: hard limiter and soft limiter
 - Based on the polarity: single limiter and double limiter
- A variety of limiting circuits by diodes:

\[\text{NTUEE Electronics – L. H. Lu} \]
Clamped capacitor or DC restorer

- Output unloaded case:

- Output loaded case: