CHAPTER 10 OPERATIONAL-AMPLIFIER CIRCUITS

Chapter Outline
10.1 The Two-Stage CMOS Op Amp
10.2 The Folded-Cascode CMOS Op Amp
10.3 The 741 Op-Amp Circuit
10.4 DC Analysis of the 741
10.5 Small-Signal Analysis of the 741
10.6 Gain, Frequency Response, and Slew Rate of the 741
10.7 Modern Techniques for the Design of BJT Op Amp
10.1 The Two-Stage CMOS Op Amp

Multi-stage amplifiers
- Practical transistor amplifiers usually consist of a number of stages connected in cascade
- Input stage:
 - High input resistance to avoid signal loss due to high-resistance source
 - Voltage gain
 - Large CMRR for differential amplifiers
- Middle stages:
 - Voltage gain
 - Shifting of the dc level for required voltage swing
 - Differential to single-ended conversion if necessary
- Output stage:
 - Low output resistance to avoid loss of gain due to low-resistance load
 - Current supply required by the load
 - Sufficient voltage swing required by the load
 - Small-signal approximation may not apply
Circuit Configuration

- Most widely used op amp in VLSI circuits
- Bias circuit: I_{REF} and Q_8
- Input stage: Q_1-Q_5
 - Active-loaded MOS differential pair
 - Differential input and single-ended output
 - Provides voltage gain and high input resistance
- Output stage: Q_6-Q_7
 - Active-loaded common-source amplifier
 - Provides voltage gain
 - High output resistance (not suitable for low-impedance loads)
- DC arrangement:
 - The bias current of the input differential pair is provided by Q_5
 - The bias current of the second stage is provided by Q_7
 - To avoid systematic (predictable) offset:
 \[
 \frac{(W/L)_6}{(W/L)_4} = 2 \frac{(W/L)_2}{(W/L)_5}
 \]
Input common-mode range and output swing

- The transistors are supposed to be in saturation for proper circuit operation
- ICMR: \(-V_{SS} + V_{OV3} + V_m - |V_{tp}| \leq V_{ICM} \leq V_{DD} - |V_{tp}| - |V_{OV5}|\)
- Output swing: \(-V_{SS} + V_{OV6} \leq v_o \leq V_{DD} - |V_{OV7}|\)

Voltage gain

- Low-frequency small-signal gain:
 \[
 G_{m1} = g_{m1} = g_{m2} \\
 R_1 = r_{o2} \parallel r_{o4} \\
 A_1 = -G_{m1}R_1 = -g_{m1}(r_{o2} \parallel r_{o4}) \\
 G_{m2} = g_{m6} \\
 R_2 = r_{o6} \parallel r_{o7} \\
 A_2 = -G_{m2}R_2 = -g_{m6}(r_{o6} \parallel r_{o7}) \\
 A_i = A_1A_2 = g_{m1}(r_{o2} \parallel r_{o4})g_{m6}(r_{o6} \parallel r_{o7})
 \]

- Amplifier prototype:
 - Input resistance: \(R_i = \infty\)
 - Output resistance: \(R_o = r_{o6} \parallel r_{o7}\)
 - Transconductance: \(G_m = -g_{m1}(r_{o2} \parallel r_{o4})g_{m6}\)

- Common-mode rejection ratio:
 \[
 CMRR = g_{m1}(r_{o2} \parallel r_{o4}) \cdot 2g_{m3}R_{SS}
 \]
Frequency response

- Poles and zeros

 \[
 C_1 = C_{gd2} + C_{db2} + C_{gd4} + C_{db4} + C_{gs6} \\
 C_2 = C_{db6} + C_{db7} + C_{gs7} + C_z
 \]

 \[
 f_{p1} \approx \frac{1}{2\pi R_1 G_{m2} R_2 C_C}
 \]

 \[
 f_{p2} \approx \frac{1}{2\pi} \frac{G_{m2}}{C_2}
 \]

 \[
 f_{z1} \approx \frac{1}{2\pi} \frac{G_{m2}}{C_C}
 \]

 → \(f_{p2} \) decreases for a capacitive load
 → May result in stability issue

- Unity-gain frequency for a dominant pole case

 \[
 f_r \approx |A_r| f_{p1} = \frac{1}{2\pi} \frac{G_{m1}}{C_C}
 \]

 \[
 \frac{G_{m1}}{C_C} < \frac{G_{m2}}{C_2} \quad \text{and} \quad G_{m1} < G_{m2}
 \]

- Phase margin

 \[
 \phi_{p2} = -\tan^{-1}(f_r / f_{p2})
 \]

 \[
 \phi_z = -\tan^{-1}(f_r / f_z)
 \]

 \[
 \phi_{total} = 90^\circ + \tan^{-1}(f_r / f_{p2}) + \tan^{-1}(f_r / f_z)
 \]

 \[
 PM = 180^\circ - \phi_{total} = 90^\circ - \tan^{-1}(f_r / f_{p2}) - \tan^{-1}(f_r / f_z)
 \]
Phase margin improvement technique
- Adding a series resistance in the feedback path
- The zero is defined by

\[\frac{V_{i2}}{R + \frac{1}{sC}} = G_{m2}V_{i2} \quad \Rightarrow \quad s = \frac{1}{\frac{1}{C_C} \left(\frac{1}{G_{m2}} - R \right)} \]

- The zero can be moved toward higher frequencies for better phase margin

Slew rate
- Slew rate is defined as the maximum voltage change rate at output
- Associated with charging/discharging time of C_C
- Extreme cases:
 - Limited by bias current of Q_5 (typical case): $SR = I/C_C$
 - Limited by bias current of Q_7: $SR = I_f/C_C$
- Relationship between SR and f_t
 - $SR = 2\pi f_t V_{OV} = \omega V_{OV}$
 - Slew rate is determined by the overdrive voltage for a given unity-gain frequency
 - PMOS devices are preferred for the differential pair with a fixed current I at the cost of lower gain
Power-supply rejection ratio (PSRR)

- PSRR is defined as the ratio of the amplifier differential gain to the gain from the supply voltage
 \[
 PSRR^+ = \frac{A_d}{A^+} = \frac{v_o/v_{id}}{v_o/v_{dd}}
 \]
 \[
 PSRR^- = \frac{A_d}{A^-} = \frac{v_o/v_{id}}{v_o/v_{ss}}
 \]

Design trade-offs

- CMOS two-stage op amp performance is determined by
 - The channel length of the MOSFETs
 - The overdrive voltage of the MOSFETs

- Performance benefit for a larger channel length: gain, CMRR, PSRR
- Performance benefit for a smaller overdrive voltage: gain, CMRR, PSRR, ICMR, output swing and offset
- Performance benefit for a larger overdrive voltage: high-frequency characteristics (gain)

\[
f_T = \frac{1}{2\pi} \frac{g_m}{C_{gs} + C_{gd}} \approx \frac{1}{2\pi} \frac{1.5 \mu V_{OV}}{L^2}
\]

- For modern submicron CMOS technologies:
 - Typical V_{OV} between 0.1 to 0.3 V
 - Channel length is at least 1.5 to 2 times minimum length (L_{min})
10.2 The Folded-Cascode CMOS Op Amp

Circuit Configuration

- Cascode topology to increase the gain of the input differential pair
- Folded topology to improve the ICMR and to reduce the required supply voltage
- Is generally considered a single-stage amplifier
- Also called operational transconductance amplifier (OTA)

DC bias:
- Bias current for Q_1-Q_2 is $I/2$
- Bias current for Q_5-Q_8 is $I_B - I/2$
- I_B can be realized by MOS current mirrors
Input common-mode range and output swing

- ICMR: \(-V_{SS} + V_{OV11} + V_{OV1} + V_m \leq V_{ICM} \leq V_{DD} - |V_{OV9}| + V_m\)
- Output swing: \(-V_{SS} + V_{OV5} + V_{OV7} + V_m \leq V_O \leq V_{DD} - |V_{OV10}| - |V_{OV4}|\)

Voltage gain

\[G_m = g_{m1} = g_{m2} \]
\[R_o = R_{o4} \parallel R_{o6} = [g_{m4}r_{o4}(r_{o2} \parallel r_{o10})](g_{m6}r_{o6}r_{o8}) \]
\[A_v = G_mR_o \approx g_{m1}[g_{m4}r_{o4}(r_{o2} \parallel r_{o10})](g_{m6}r_{o6}r_{o8}) \]

- High voltage gain due to increased output resistance
- Not desirable for applications where low output resistance is needed for the op amp

Frequency response

- Dominant pole at the output node
- Excellent high-frequency response

\[\frac{V_o}{V_{id}} = \frac{G_mR_o}{1+sc_LR_o} \quad \Rightarrow \quad f_c = \frac{1}{2\pi} \frac{G_m}{C_L} \]

Slew rate

- The slew rate is limited by the bias current \(I\) and the load \(C_L\)
- Slew rate \(SR = \frac{I}{C_L} = 2\pi f_c V_{OV1}\) for \(I_B > I\)
- Typically \(I_B\) is set 10% ~ 20% larger than \(I\)
Increasing the ICMR: rail-to-rail input operation

- NMOS and PMOS differential pairs in parallel
- ICMR exceeds the power supply voltage
- Differential output voltage provided
- ICM in the middle:
 - Both pairs operate simultaneously
 - \(A_v = 2G_mR_o \)
- ICM near supply voltage:
 - Only one of the pairs is operational
 - Gain drops to half

Increasing the output voltage range: wide-swing current mirror

- Modified cascode current mirror
- Output swing increased by \(V_t \)
- Output resistance remains the same
- A proper dc bias voltage \(V_{BIAS} \) is needed
8.3 The 741 Op-Amp Circuit

741 Op-Amp

- Device parameters:
 - npn: $I_S = 10^{-14}$ A, $\beta = 200$, $V_A = 125$ V
 - pnp: $I_S = 10^{-14}$ A, $\beta = 50$, $V_A = 50$ V
Bias circuit:
- Reference current generated by Q_{11}, Q_{12} and R_5
- Bias for input stage: Widlar current source (Q_{10}, Q_{11} and R_4) and current mirror Q_8, Q_9
- Bias for second stage: current mirror Q_{12}, Q_{13B} (Q_{13} is a two-output current source)
- Bias for output stage: current mirror Q_{12}, Q_{13A}/Q_{18}-Q_{19} provides $2V_{BE}$ drop between V_{B14} and V_{B20}

Input stage: (Q_1-Q_7, R_1-R_3)
- Input emitter follower (Q_1-Q_2): high input resistance
- Current-mirror load (Q_5-Q_7, R_1-R_3): high output resistance and differential to single-ended conversion
- Level shifting (Q_3 and Q_4): for required voltage swing and dc level at the input of the second stage

Second stage: (Q_{16}-Q_{17}, Q_{13B}, R_8-R_9)
- Emitter follower Q_{16} for high input resistance
- Common-emitter Q_{17} for voltage gain
- Miller compensation technique by C_C

Output stage: (Q_{14}, Q_{20})
- Complementary pair Q_{14} and Q_{20}
- Low output resistance
- Relatively large load current without dissipating a large amount of power
- Emitter follower Q_{23} to increase input resistance of the output stage

Short-circuit protection circuitry Q_{15}, Q_{21}, Q_{24}, Q_{22}, R_6, R_7, R_{11}
10.4 DC Analysis of the 741

Reference bias current
- Provided by Q_{11}, Q_{12} and R_5
 \[I_{REF} = \frac{V_{CC} - V_{EB12} - V_{BE11} - (-V_{EE})}{R_5} \]
 \[\Rightarrow I_{REF} = 0.73 \text{ mA (for } V_{CC} = V_{EE} = 15 \text{ V)} \]

Input-stage bias
- Widlar current source Q_{11}, Q_{10} and R_4:
 \[V_T \ln \left(\frac{I_{REF}}{I_{C10}} \right) = I_{C10} R_4 \]
 \[\Rightarrow I_{C10} = 19 \text{ \(\mu\)A} \]
- Current mirror Q_8 and Q_9:
 \[\frac{2I}{1 + 2/\beta_p} + \frac{2I}{\beta_p} = I_{C10} \]
 \[\Rightarrow I_{C1} = I_{C2} \cong I_{C3} = I_{C4} = 9.5 \text{ \(\mu\)A} \]
 \[\Rightarrow Q_1-Q_4 \text{ and } Q_8-Q_9 \text{ form a negative feedback loop} \]
 \[\Rightarrow \text{Bias current can be stabilized by the negative feedback} \]
Current-source load Q_5-Q_7 and R_1-R_3

\[I_{C7} \approx I_{E7} = \frac{2I}{\beta_N} + \frac{V_{BE6} + IR_2}{R_3} = \frac{2I}{\beta_N} \ln\left(\frac{I}{I_S}\right) + IR_2 \]

\[\Rightarrow I_{C7} = 10.5 \, \mu A \]

Input bias current and offset currents

- **Input bias current:**
 \[I_B = \frac{I_{B1} + I_{B2}}{2} = \frac{I}{\beta_N} \]
 \[\Rightarrow I_B = 47.5 \, nA \]

- **Input offset current:**
 \[I_{OS} = |I_{B1} - I_{B2}| \]
 \[\Rightarrow \text{Non-zero input offset due to mismatches in the } \beta \text{ value} \]

Input common-mode range:

- Input common-mode voltage over which the input stage remains in the linear active mode
- The upper end limited by saturation of Q_1 and Q_2
- The lower end limited by saturation of Q_3 and Q_4
Second-stage bias

\[I_{C17} \approx I_{C13B} \approx 0.75I_{\text{REF}} \]

\[V_{BE17} = V_T \ln \left(\frac{I_{C17}}{I_S} \right) \]

\[I_{C16} \approx I_{E16} = I_{B17} + \frac{I_{E17}R_8 + V_{BE17}}{R_9} \]

\[\Rightarrow I_{C17} \approx I_{C13B} = 550 \mu A \]

\[V_{EB17} = 618 \text{ mV and } I_{C16} = 16.2 \mu A \]

Output-stage bias

- DC for \(Q_{23} \):
 \[I_{C23} \approx I_{E23} \approx 0.25I_{\text{REF}} \]
 \[\Rightarrow I_{C23} \approx 180 \mu A \text{ (} I_{B23} \approx 3.6 \mu A \text{ negligible for } I_{C17} \) \]

- DC for \(Q_{18} - Q_{19} \):
 \[I_{C18} \approx 0.25I_{\text{REF}} - V_{BE18}/R_{10} \]
 \[V_{BE18} = V_T \ln \left(\frac{I_{C18}}{I_S} \right) \]
 \[\Rightarrow I_{C18} \approx 165 \mu A \text{ and } I_{C19} \approx V_{BE18}/R_{10} + I_{B18} = 15.8 \mu A \]

- DC for \(Q_{14} \) and \(Q_{20} \):
 \[V_{BB} = V_{BE18} + V_{BE19} = 588 \text{ mV} + 530 \text{ mV} = 1.118 \text{ V} \]
 \[I_{C14} = I_{C20} = 154 \mu A \text{ (for } I_{S14} = I_{S20} = 3 \times 10^{-14} \text{ A} \)
10.5 Small-Signal Analysis of the 741

The input stage

- **Differential input resistance:**
 \[i_e = v_i / (4r_e) \]
 \[R_id = 4(\beta_\infty + 1)r_e \]
 \[\Rightarrow r_e = 2.63 \, k\Omega \text{ and } R_id = 2.1 \, M\Omega \]

- **Transconductance:**
 \[G_m1 \equiv \frac{i_e}{v_i} \approx \frac{2a_i e}{v_i} = \frac{\alpha}{2r_e} = \frac{1}{2} g_m1 \]
 \[\Rightarrow G_m1 = 0.19 \, mA/V \]

- **Output resistance:**
 \[R_o = r_o[1 + g_m(R_e || r_\pi)] \]
 \[\Rightarrow R_{o4} = r_o4[1 + g_{m4}(r_e4||r_\pi)] = 10.5 \, M\Omega \]
 \[\Rightarrow R_{o6} = r_o6[1 + g_{m6}(R_2||r_\pi6)] = 18.2 \, M\Omega \]
 \[\Rightarrow R_{o1} = R_{o4}||R_{o6} = 6.7 \, M\Omega \]

- **Equivalent circuit for the input stage:**

Diagram:

- Circuit diagram showing the input stage with components labeled as follows:
 - Input voltage \(v_i \)
 - Resistance \(R_id \)
 - Transconductance \(G_m1 \)
 - Output resistances \(R_o4 \) and \(R_o6 \)
 - Collector capacitance \(C_6 \)
 - Additional components and connections as per the diagram.
The second stage

- Input resistance
 \[R_{i2} = (\beta_{16} + 1) \left\{ r_{e16} + [R_9 \parallel (\beta_{17} + 1)(r_{e17} + R_8)] \right\} \]
 \[\Rightarrow R_{i2} \approx 4 \text{ M}\Omega \]

- Transconductance
 \[G_{m2} = \frac{i_{e17}}{v_{i2}} = \frac{\alpha \cdot R_9 \parallel R_{i17}}{r_{e17} + R_8 \parallel R_{i17}} \]
 \[\Rightarrow G_{m2} = 6.5 \text{ mA/V} \]

- Output resistance
 \[R_{o2} = R_{o13B} \parallel R_{o17} \approx r_{o17} [1 + g_{m17}(r_{\pi17} \parallel R_8)] \]
 \[\Rightarrow R_{o2} = 81 \text{ k}\Omega \]

- Equivalent circuit for the second stage:
The output stage

- Output voltage limits
 \[v_{O\text{max}} = V_{CC} - |V_{CES}| - V_{BE14} \]
 \[v_{O\text{min}} = -V_{EE} + V_{CES} + V_{EB23} + V_{EB20} \]
 ➜ approximately 1 V below \(V_{CC} \) and 1.5 V above \(-V_{EE} \)

- Input resistance (for \(R_L = 2 \) k\(\Omega \), \(I_{C20} = 5 \) mA and \(I_{C14} = 0 \))
 \[R_{120} = r_{\pi20} + (1 + \beta_{20})R_L \approx \beta_{20}R_L \]
 \[R_{in3} \approx r_{\pi23} + (1 + \beta_{23})(R_{120} || r_{o13,4}) \approx \beta_{23}(R_{120} || r_{o13,4}) \]
 ➜ \(R_{in3} \approx 3.7 \) M\(\Omega \)

- Open-circuit voltage gain
 \[G_{vo3} = \frac{V_o}{V_o} \bigg|_{R_L=\infty} \approx 1 \]

- Transconductance
 \[v_{13} = v_{b23} \approx v_{e23} = v_{b20} \]
 \[G_{m3} \equiv \frac{i_o}{v_{13}} \bigg|_{R_L=0} \approx \frac{1}{r_{e20}} \approx g_{m20} \]
Output resistance

\[R_{o23} = r_{e23} + \frac{R_{o2}}{\beta_{23} + 1} \]

\[R_{out} = r_{e20} + \frac{R_{o23} \parallel r_{o13,4}}{\beta_{20} + 1} \approx r_{e20} + \frac{R_{o23}}{\beta_{20} + 1} \]

\[\Rightarrow R_{out} \approx 34 \, \Omega \]

Equivalent circuit for the output stage

Output short-circuit protection

- One of the two output transistors could conduct a large amount of current if output is short-circuited.
- Short-circuit protection is adopted in the 741 op amp.
- For current source case (\(I_{C14} > 20 \, mA \))
 \[\Rightarrow V_{BE15} > 540 \, mA \]
 \[\Rightarrow Q_{15} \text{ turns on and takes away the base current of } Q_{14} \]
 \[\Rightarrow I_{C14} \text{ is limited as the base current is reduced} \]
- Similar case for current sink case (\(I_{C20} > 20 \, mA \))
10.6 Gain, Frequency Response and Slew Rate of the 741

Small-signal gain

\[A_v = \frac{v_o}{v_i} = \frac{\frac{v_{o2}}{v_{i2}}}{\frac{v_{o1}}{v_{i1}}} = -G_m (R_{o1} \parallel R_{o2})(-G_m R_{o2})G_{v0} \frac{R_f}{R_L + R_{out}} \]

\[A_v = 243147 \text{ V/V} = 107.7 \text{ dB} \]

Frequency response

\[C_{in} = C_C (1 + |A_v|) \]
\[R_e = R_{o1} \parallel R_{o2} \]
\[f_P = \frac{1}{2\pi C_{in} R_e} \]
\[f_t = A_v f_P \]

\[f_P = 4.1 \text{ Hz} \]
\[f_t = 1 \text{ MHz} \]

Slew rate

\[SR = \frac{2I}{C_C} \]

\[SR = 0.63 \text{ V/\mu s} \]

- Relationship between \(f_t \) and slew rate

\[SR = 4V_T \omega_t \]

\[\Rightarrow \text{Slew rate of MOS opamp with same } f_t \text{ is 2~3 times higher than the 741} \]

\[\Rightarrow G_m \text{-reduction method: total bias current is kept constant with reduced } G_{m1} \]