CHAPTER 7 BUILDING BLOCKS OF INTEGRATED-CIRCUIT AMPLIFIERS

Chapter Outline
7.1 IC Design Philosophy
7.2 The Basic Gain Cell
7.3 The Cascode Amplifier
7.4 IC Biasing
7.5 Current-Mirror Circuits with Improved Performance
7.1 IC Design Philosophy

Integrated circuits

- More and more electronics circuits are integrated in a single chip
 - More complicated functions
 - Smaller size and lower cost
 - Suitable for mass-production
- Implementation cost depends on device area rather than device count
 - Large/moderate-value resistors should be avoided
 - Larger/moderate-value capacitors should be avoided
 - Preferable to use transistors due to chip-area consideration

Design philosophy

- The design philosophy for ICs is different from that of discrete-component circuits
 - Realize as many of functions as possible by using transistors only
 - Rely on device matching or size ratios for circuit design
 - Active loads are typically used for amplifier designs
7.2 The Basic Gain Cell

The CS and CE amplifier with current-source loads

- Active-load CS amplifier:
 - Equivalent circuit
 \[R_{in} = \infty \]
 \[A_{vo} = -g_m r_o \]
 \[R_o = r_o \]
 - Intrinsic gain
 \[g_m = \frac{I_D}{V_{OV} / 2} = \sqrt{2\mu_n C_{ox} (W/L)} \cdot \sqrt{I_D} \]
 \[r_o = \frac{V_A}{I_D} = \frac{V'_D}{I_D} \]
 \[A_0 = \frac{V_A}{V_{OV} / 2} = \frac{2V'_D}{V_{OV}} = \frac{V'_D \sqrt{2\mu_n C_{ox} W L}}{\sqrt{I_D}} \]

 ➤ Intrinsic gain is only 20 to 40 V/V for a MOSFET in a modern short-channel technology
 ➤ For a given technology: larger \(A_o \) as \(V_{OV} \) decreases and \(L \) increases
 ➤ For a given transistor: \(A_o \) increases as \(V_{OV} \) and \(I_D \) decrease
 ➤ Gain levels off at very low currents as the MOSFET enters the subthreshold region operation

 where it becomes similar to a BJT with an exponential current-voltage characteristics

- \(NTUEE \quad Electronics \quad - \quad L.H. \quad Lu \)
Active-load CE amplifier:

- Equivalent circuit

 \[R_{in} = r_z \]
 \[A_v = -g_m r_o \]
 \[R_o = r_o \]

- Intrinsic gain

 \[A_0 = g_m r_o = \frac{I_C}{I_T} \cdot \frac{V_A}{V_T} = \frac{V_A}{V_T} \]

 ➤ Maximum gain obtainable in a CE amplifier (assuming an ideal dc current source)
 ➤ Technology-determined parameter
 ➤ Independent of the transistor junction area and the bias current for a given fabrication process
 ➤ \(V_A \) ranges from 5 to 35 V for modern IC fabrication process
 ➤ \(V_A \) ranges from 100 to 130 V for high-voltage process
 ➤ Intrinsic gain ranges from 200 to 5000 V/V
Output resistance of the current-source load

- The current source can be realized by using a PMOS in saturation
 - The output resistance is no longer infinite due to channel-length modulation

$$I = \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L} \right) \left(V_{DD} - V_G - |V_t| \right)^2$$

$$r_{o2} = \frac{|V_{A2}|}{I}$$

- Voltage gain of the CS amplifier with a current-source load
 - The voltage gain is reduced due to the finite output resistance of the current-source load
 - The gain is reduced by half if Q_1 has the same Early voltage as Q_2 does ($r_{o1} = r_{o2}$)
Increasing the gain of the basic cell

- The gain is proportional to the resistance at the output
- It can be effectively increased by raising the output resistance of the gain cell
- Adding a current buffer:
 - Passes the current but raises the resistance level
 - The only candidate is CG or CB amplifier
 - Placing CG (or CB) on top of the CS (or CE) amplifying transistor is called **cascoding**

Gain enhancement:

- It is not sufficient to raise the output resistance of the amplifying transistor only
- A current buffer is also needed to raise the output resistance of the current-source load
7.3 Cascode Amplifier

The MOS cascode

- Circuit topology:
 - Putting a CG (Q_2: cascode transistor) on top of CS (Q_1: amplifying transistor)
 - The cascode transistor passes the small-signal current $g_{m1}v_i$ to the output node while raising the resistance level by a factor of K

- Small-signal analysis
 - Transconductance
 $$G_m = g_{m1}$$

Transistor biasing

$$v_x = v_{gs1} = v_1$$

$$g_{m1}v_x$$

$$v_i / r_{o1}$$

$$g_{m2}v_1$$

$$v_i / r_{o2}$$

$$i_o = g_{m2}v_1 + v_i / r_{o2} = 0$$

$$v_{gs2} = v_1$$

$$v_i / r_{o2}$$

$$g_{m1}v_x + v_i / r_{o1} + g_{m2}v_1 + v_i / r_{o2} = 0$$

$$i_o + g_{m2}v_1 + v_i / r_{o2} = 0$$

NTUEE Electronics – L.H. Lu
Output resistance
\[R_o = r_{o1} + r_{o2} + g_{m2}r_{o2}r_{o1} \approx g_{m2}r_{o2}r_{o1} \]
\[K = A_{o2} = g_{m2}r_{o2} \]

Voltage gain of the cascode amplifier with an ideal current source
\[A_{vo} = \frac{v_o}{v_i} = -g_m R_o = -g_{m1}r_{o1}g_{m2}r_{o2} = -A_{o1}A_{o2} \approx -A_0^2 \]
The cascode amplifier with a cascode current-source load

- The output resistance of the cascode current-source load

\[R_o = r_{o3} + r_{o4} + g_{m3}r_{o3}r_{o4} \approx g_{m3}r_{o3}r_{o4} \]

- Voltage gain of the amplifier

\[A_i \equiv \frac{v_o}{v_i} = -g_{m1} \left(R_{on} \parallel R_{op} \right) \]
\[= -g_{m1} \left[(g_{m2}r_{o2})r_{o1} \parallel (g_{m3}r_{o3})r_{o4} \right] \approx -\frac{1}{2} A_0^2 \]
Distribution of voltage gain in a cascode amplifier

- The cascode amplifier gain can be characterized as
 - A_{v1}: voltage gain from v_i to v_{o1}
 - A_{v2}: voltage gain from v_{o1} to v_o

\[
A_v = A_{v1} \cdot A_{v2} = \frac{v_{o1}}{v_i} \cdot \frac{v_o}{v_{o1}}
\]
\[
R_{in2} \equiv -\frac{v_{g2}}{i} = \frac{R_L + r_{o2}}{1 + g_{m2}r_{o2}} \approx \frac{R_L}{g_{m2}r_{o2}} + 1
\]
\[
A_{v1} = \frac{v_{o1}}{v_i} = -g_{m1}R_{d1} = -g_{m1}(r_{o1} \parallel R_{in2})
\]
\[
A_{v2} = \frac{A_v}{A_{v1}}
\]

$$g_{m2}v_x + \frac{(v_x - v_i)}{r_{o2}} = \frac{v_i}{r_{o2}}$$

$$i_x = g_{m2}v_x + \frac{(v_x - v_i)}{r_{o2}}$$
Summary table of gain distribution with small-signal parameters g_m and r_o

$$A_i = -g_m (g_m r_o^2 \parallel R_L) \quad A_{v1} = -g_m (r_o \parallel R_{in2}) \quad A_{v2} = \frac{A_v}{A_{v1}}$$

<table>
<thead>
<tr>
<th>Case</th>
<th>R_L</th>
<th>R_{in2}</th>
<th>R_{d1}</th>
<th>A_{v1}</th>
<th>A_{v2}</th>
<th>A_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>r_o</td>
<td>$-g_m r_o$</td>
<td>$g_m r_o$</td>
<td>$-(g_m r_o)^2$</td>
</tr>
<tr>
<td>2</td>
<td>$(g_m r_o) r_o$</td>
<td>r_o</td>
<td>$r_o/2$</td>
<td>$-\frac{1}{2} (g_m r_o)$</td>
<td>$g_m r_o$</td>
<td>$-\frac{1}{2} (g_m r_o)^2$</td>
</tr>
<tr>
<td>3</td>
<td>r_o</td>
<td>$\frac{2}{g_m}$</td>
<td>$\frac{2}{g_m}$</td>
<td>-2</td>
<td>$\frac{1}{2} (g_m r_o)$</td>
<td>$-(g_m r_o)$</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>$\frac{1}{g_m}$</td>
<td>$\frac{1}{g_m}$</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Output resistance of a source-degenerated CS amplifier

$$R_o = r_o + R_s + g_m r_o R_s$$
$$= r_o + (1 + g_m r_o) R_s$$

$$R_{in} = \frac{r_o + R_L}{1 + g_m r_o}$$
$$\approx \frac{1}{g_m} + \frac{R_L}{(1 + g_m r_o)}$$

NTUEE Electronics – L.H. Lu
Double cascoding

- Even higher output resistance can be achieved in MOSFET circuits by double cascoding
- Requires higher supply voltage as one more CG transistor is stacked in the gain stage
- Double cascoding is required for the current-source load to realize the advantage in voltage gain

The folded cascode

- Folded cascode utilizes a PMOS as the cascode transistor
- The dc current of \(Q_2 \) is \(I_2 \) and the current of \(Q_1 \) is \((I_1 - I_2) \)
- The voltage limitation due to stacking of NMOS transistors can be alleviated
- Small-signal operation is similar of NMOS cascode

\[
V_{DD} \quad I \quad Q_3 \quad v_o
\]

\[
V_{G3} \quad (g_{m3}r_{o3})(g_{m2}r_{o2})r_{o1} = A_0^3 r_o
\]

\[
V_{G2} \quad Q_2 \quad v_o \quad (g_{m2}r_{o2})r_{o1}
\]

\[
v_i \quad Q_1 \quad r_{o1}
\]

\[
v_o \quad Q_2 \quad V_{G2}
\]

\[
V_{DD} \quad I_1 \quad Q_1 \quad Q_2 \quad v_o
\]

\[
I_2 \quad v_i
\]
The BJT cascode

- Consists of a CE and a CB transistor
 - Equivalent circuit:
 - Input resistance:
 \[R_m = r_{\alpha 1} \]

- Transconductance:

\[
G_m = \frac{g_{m1}(g_{m2} + r_{o2}^{-1})}{(g_{m2} + r_{\pi 2}^{-1} + r_{o1}^{-1} + r_{o2}^{-1})} \approx g_{m1}
\]
■ Output resistance:

\[R_o = r_{o2} + (r_{o1} \parallel r_{\pi2}) + g_{m2}r_{o2}(r_{o1} \parallel r_{\pi2}) \approx g_{m2}r_{o2}(r_{o1} \parallel r_{\pi2}) \]

\[R_o^{\text{max}} = g_{m2}r_{\pi2}r_{o2} = \beta r_{o2} \]

⇒ Double cascoding with a BJT would not be useful \((R_o\) won’t be further raised by double cascoding)

![Diagram of BJT cascode circuit](image)

■ Open-circuit voltage gain:

\[A_{yo} = \frac{V_o}{V_i} = -G_mR_o = -g_m(g_{m2}r_{o2})(r_{o1} \parallel r_{\pi2}) \]

⇒ For \(g_{m1} = g_{m2} = g_m \) and \(r_{o1} = r_{o2} = r_o \)

\[A_{yo} = -g_m(g_mr_o)(r_o \parallel r_{\pi}) \]

\[|A_{yo}|^{\text{max}} = \beta(g_mr_o) = \beta A_0 \]

NTUEE Electronics - L.H. Lu
BJT cascode amplifier with a cascode current source

Output resistance of an emitter-degenerated CE amplifier

\[R_{\text{op}} = (g_m r_{o2})(r_{o1}||r_{e2}) \]

\[R_{\text{on}} = (g_m r_{o2})(r_{o1}||r_{e2}) \]

\[A_v = -g_m (R_{\text{on}}||R_{\text{op}}) \]

\[R_0 = r_o + (R_e||r_o) + g_m r_e (R_e||r_o) \]

\[= r_o [1 + g_m (R_e||r_o)] \]

\[R_{\text{in}} = \frac{r_o + R_L}{1 + \frac{1}{\alpha} g_m r_o + \frac{R_L}{r_o}} \]

\[= r_e + \frac{R_L}{1 + g_m r_o} \text{, for } R_L \ll \beta r_o \]

NTUEE Electronics - L.H. Lu
7.4 IC Biasing

Basic MOSFET current source

- MOSFET current mirror
 - Widely used for ICs with good device matching
 - \(Q_1 \) and \(Q_2 \) are identical and in saturation:
 \[
 I_D = I_{REF} = \frac{1}{2} k' \left(\frac{W}{L} \right)_1 \left(V_{GS} - V_m \right)^2 = \frac{V_{DD} - V_{GS}}{R}
 \]
 \[
 I_o = I_{D2} = I_{REF}
 \]
 - Current gain or current transfer ratio:
 \[
 \frac{I_o}{I_{REF}} = \frac{(W / L)_2}{(W / L)_1}
 \]

- Effect of \(V_O \) on \(I_O \)
 - Current mismatch due to channel-length modulation
 \[
 I_o = \frac{(W / L)_2}{(W / L)_1} I_{REF} \left(1 + \frac{V_O - V_{GS}}{V_{A2}} \right)
 \]
MOS current-steering circuits

- **Current sink**: pulls a dc current from a circuit
- **Current source**: pushes a dc current into a circuit
- All transistors should be operated in saturation
- Current mismatch exists for a finite V_A (channel-length modulation)
Basic BJT current mirror

- The case of infinite β:
 - Current is proportional to the area of EB junction
 \[
 \frac{I_O}{I_{REF}} = \frac{I_{S2}}{I_{S1}} = \frac{A_{E2}}{A_{E1}}
 \]

- The case of finite β:
 - Q_1 and Q_2 identical:
 \[
 \frac{I_O}{I_{REF}} = \frac{1}{1+\frac{2}{\beta}}
 \]
 - Current transfer ratio m (with infinite output resistance):
 \[
 \frac{I_O}{I_{REF}} = \frac{m}{1+\frac{m+1}{\beta}}
 \]
 - Current transfer ration m (with finite output resistance):
 \[
 \frac{I_O}{I_{REF}} = \frac{m}{1+\frac{m+1}{\beta}} \left(1 + \frac{V_O - V_{BE}}{V_{A2}}\right)
 \]
BJT current steering

- Provides current source and current sink by using BJT devices

\[
I_{\text{REF}} = \frac{V_{CC} + V_{EE} - V_{EB1} - V_{BE2}}{R}
\]

\[
I_1 = \frac{1}{4} I_{\text{REF}} \frac{1}{1 + \frac{4}{\beta_{\text{pnp}}}}
\]

\[
I_2 = \frac{1}{5} I_{\text{REF}} \frac{1}{1 + \frac{5}{\beta_{\text{npn}}}}
\]

\[
I_3 = \frac{2}{4} I_{\text{REF}} \frac{1}{1 + \frac{4}{\beta_{\text{pnp}}}}
\]

\[
I_4 = \frac{3}{5} I_{\text{REF}} \frac{1}{1 + \frac{5}{\beta_{\text{npn}}}}
\]

<Diagram of BJT current steering circuit>

NTUEE Electronics - L.H. Lu
7.5 Current-Mirror Circuits with Improved Performance

The constant-current source
- Used both in biasing and as active load
- Performance improvement of current mirrors
 - The accuracy of the current transfer ratio of the current mirror
 - The output resistance of the current source

Cascode MOS current mirrors
- The output resistance is raised by a factor of $g_{m3} r_{o3}$ (the intrinsic gain of the cascode transistor)
- The minimum voltage at the output of the current source is $V_t + 2V_{OV}$ (V_{OV} for basic current source)

![Diagram of a cascode MOS current mirror circuit]
A bipolar mirror with base-current compensation

- Base-current compensation by an additional transistor Q_3
- The current transfer ratio is much less dependent on β

$$\frac{I_o}{I_{REF}} = \frac{1}{1 + \frac{2}{\beta(\beta+1)}} \approx \frac{1}{1 + \frac{2}{\beta^2}}$$

- Output resistance
 $$R_o \approx r_{o2}$$

The Wilson current mirror

- Improving the current transfer ratio and output resistance
- The current transfer ratio:

$$\frac{I_o}{I_{REF}} = \frac{I_c \left(1 + \frac{2}{\beta} \left(\frac{\beta}{\beta+1}\right)\right)}{I_c \left[1 + \left(1 + \frac{2}{\beta} \left(\frac{1}{\beta+1}\right)\right)\right]} = \frac{\beta + 2}{\beta + 1 + \frac{\beta+2}{\beta}} = \frac{1}{1 + \frac{2}{\beta(\beta+2)}} \approx \frac{1}{1 + \frac{2}{\beta^2}}$$

NTUEE Electronics – L.H. Lu
- Output resistance:
 \[R_o = \frac{v_o}{i_x} = \left(\frac{\beta_1}{2} + 1 \right) r_{o3} + \frac{r_{e1}}{2} \approx \frac{1}{2} \beta_3 r_{o3} \]

- Comparison with cascode current mirror
 - Reduced \(\beta \)-dependence for the current transfer ratio
 - Output resistance is approximately reduced by half
 - Requires an additional \(V_{BE} \) like the cascode mirror

The Wilson MOS mirror

- Similar to the bipolar Wilson mirror
 - Output resistance:
 \[R_o = g_{m3} r_{o3} r_{o2} + \frac{1}{g_{m1}} \approx g_{m3} r_{o3} r_{o2} \]

- Modified circuit to avoid systematic current error resulting from the difference in \(V_{DS} \) between \(Q_1 \) and \(Q_2 \)
The Widlar current source

- Allows the generation of a small constant current using relatively small resistors
- Advantageous in considerable savings in chip area for integrated circuits
- Circuit performance
 - Output current:
 \[V_{BE1} = V_T \ln \left(\frac{I_{REF}}{I_S} \right) \]
 \[V_{BE2} = V_T \ln \left(\frac{I_O}{I_S} \right) \]
 \[V_{BE1} - V_{BE2} = V_T \ln \left(\frac{I_{REF}}{I_O} \right) = I_o R_E \]
 - Output resistance:
 \[R_o \approx [1 + g_{m3} (R_E || r_\pi)]r_o \]