CHAPTER 7 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

Chapter Outline
7.1 The CMOS Differential Pair
7.2 Small-Signal Operations of the MOS Differential Pair
7.3 The BJT Differential Pair
7.4 Other Nonideal Characteristics of the Differential Amplifier
7.5 The Differential Amplifier with Active Load
7.1 The MOS Differential Pair

The differential pair (differential amplifier) configuration

- Widely used building block in analog integrated circuit design
 - Performance depends critically on the matching of the devices
 - Utilizes more components than single-ended circuits
 - Well suited for IC fabrication

- Advantages of using differential pair
 - Less sensitive to noise and interference than single-ended circuits
 - Bias is provided without the need for bypass and coupling capacitors

The CMOS differential pair

- The design philosophy for ICs is different from that of discrete-component circuits
 - Two matched transistors are used
 - The source terminals are connected together
 - Identical device parameters
 - \(k_n, V_T \), and even layout) for \(Q_1 \) and \(Q_2 \)
 - Biased by a constant-current source
 - Resistive loads are used for simplicity
 - Differential input at the gates
 - Differential output at the drains
Operation with a common-mode input voltage

- Circuit analysis
 - Both input terminals are connected to a common-mode voltage V_{CM}
 - The current divides equally due to device matching

\[
\frac{I}{2} = \frac{1}{2} k_n \frac{W}{L} (V_{GS} - V_t)^2
\]

\[
V_S = V_{CM} - V_{GS} = V_{CM} - \left(\frac{I}{\sqrt{k_n'(W/L)}} - V_t \right)
\]

\[
V_{OV} = \frac{I}{\sqrt{k_n'(W/L)}}
\]

\[
v_{d1} = v_{d2} = V_{DD} - \frac{I}{2} R_D
\]

- The differential pair does not respond to common-mode input signals

- Input common-mode range:
 - The range of V_{CM} for proper operation
 - Both Q_1 and Q_2 should be in saturation

\[
V_{CM_{max}} = V_{DD} - \frac{I}{2} R_D + V_t
\]

\[
V_{CM_{min}} = -V_{SS} + V_{CS} + V_{GS} = -V_{SS} + V_{CS} + V_{OV} + V_t
\]
Operation with a differential input voltage

- A difference voltage v_{id} exists between the input terminals
- The current of Q_1 is different from that of Q_2 due to differential input voltage
- The overall current I remains unchanged
- The value of v_{id} at which the entire bias current I is steered into Q_1 is

$$v_{GS1} = V_i + \frac{2I}{k'(W/L)} = V_i + \sqrt{2V_{OV}}$$

$$v_{id\text{max}} = V_i + \sqrt{2V_{OV}} - V_i = \sqrt{2V_{OV}}$$

- The current I can be steered from one transistor to the other by varying v_{id} in the range

$$-\sqrt{2V_{OV}} \leq v_{id} \leq \sqrt{2V_{OV}}$$

\Rightarrow The range of differential-mode operation

- Differential pair as a linear amplifier
 - Keep the differential input voltage v_{id} small
 - The currents of the transistor pair become $I/2 \pm \Delta I$
 - A differential output voltage is taken between the two drains as $2\Delta I R_D$
Large-signal operation

\[v_{id} = v_{GS1} - v_{GS2} = \frac{2i_{D1}}{k_n'(W/L)} - \frac{2i_{D2}}{k_n'(W/L)} \]

\[I = i_{D1} + i_{D2} \]

- Drain currents of the differential pair

\[i_{D1} = \frac{I}{2} + \left(\frac{I}{V_{OV}} \right) \left(\frac{v_{id}}{2} \right) \sqrt{1 - \left(\frac{v_{id}}{2V_{OV}} \right)^2} \]

\[i_{D2} = \frac{I}{2} - \left(\frac{I}{V_{OV}} \right) \left(\frac{v_{id}}{2} \right) \sqrt{1 - \left(\frac{v_{id}}{2V_{OV}} \right)^2} \]

- Normalized transfer characteristics
 - Nonlinear transfer characteristics
 - The overdrive voltage \(V_{OV} \) is calculated as
 \[i_{D1} = i_{D2} = I/2 \]

- Small-signal approximation
 - Linear I-V characteristics for small \(v_{id} \)

\[i_{D1} \approx \frac{I}{2} + \left(\frac{I}{V_{OV}} \right) \left(\frac{v_{id}}{2} \right) \]

\[i_{D2} \approx \frac{I}{2} - \left(\frac{I}{V_{OV}} \right) \left(\frac{v_{id}}{2} \right) \]
Linearity of the differential pair

- The linearity of the differential pair can be increased by increasing the overdrive voltage V_{OV}
- Linearity-transconductance trade-off:
 - Smaller aspect ratio (W/L) of Q_1 and Q_2 at fixed bias current I
 - Resulting in smaller transconductance and gain

- Linearity-power trade-off:
 - Larger bias current I with fixed aspect ratio
 - Resulting in larger transconductance and gain at the cost of higher power dissipation
7.2 Small-Signal Operation of the MOS Differential Pair

Differential gain
- The differential input signal \(v_{id} \) is applied in a **complementary** (or balanced) manner.
- **Single-ended outputs** \(v_{o1} \) and \(v_{o2} \): output taken between one of the drains and ground.
- **Differential output** \(v_{od} \): output taken between the two drains.

Small-signal circuit analysis:

\[
g_m = \sqrt{k'_{n}(W/L)}I = \frac{I}{v_{ov}}
\]

\[
v_{o1} = -g_m R_D \frac{v_{id}}{2}
\]

\[
v_{o2} = g_m R_D \frac{v_{id}}{2}
\]

- **Single-ended gain:**

\[
\frac{v_{o1}}{v_{id}} = -\frac{1}{2} g_m R_D
\]

\[
\frac{v_{o2}}{v_{id}} = \frac{1}{2} g_m R_D
\]

- **Differential gain:**

\[
A_d \equiv \frac{v_{od}}{v_{id}} = \frac{v_{o2} - v_{o1}}{v_{id}} = g_m R_D
\]
The differential half-circuit

Virtual ground:
- Differential operation for a symmetrical circuit
- The voltage at the joint source connection must be zero
- A signal ground is established at the source terminals without a large bypass capacitor
- Performance of a symmetrical differential circuit can be evaluated by considering only half the circuit

\[A_d = \frac{v_{od}}{v_{id}} = g_m (R_D \parallel r_o) \]
The differential amplifier with current-source load

\[A_d = \frac{v_{os}}{v_{id}} = g_m \left(r_{o1} \parallel r_{o3} \right) \]

\[A_d = \frac{v_{os}}{v_{id}} = g_m \left(R_{on} \parallel R_{op} \right) = g_m \left(g_{m3} r_{o3} r_{o1} \parallel g_{m5} r_{o3} r_{o7} \right) \]
Common-mode gain of a differential pair

- A differential pair with ideal current source
 - The output resistance (R_{SS}) is infinite
 - Drain currents of Q_1 and Q_2 do not change with V_{CM}
 - The single-ended outputs remain unchanged
 - The differential output voltage and common-mode gain are zero

- A differential pair with a practical current source
 - The output resistance (R_{SS}) is finite
 - Drain currents of Q_1 and Q_2 change simultaneously with V_{CM}
 - The single-ended outputs vary with V_{CM}
 - The differential output voltage and common-mode gain are zero

- The differential pair rejects common-mode signals regardless the value of R_{SS}

\[
v_{icm} = i \left(\frac{1}{g_m} + 2R_{SS} \right) \Rightarrow i = \frac{v_{icm}}{1/g_m + 2R_{SS}}
\]

\[
v_{o1} = v_{o2} = -\frac{R_D}{1/g_m + 2R_{SS}}v_{icm} \approx -\frac{R_D}{2R_{SS}}v_{icm}
\]

\[
v_{od} = v_{o2} - v_{o1} = 0
\]
Common-mode half-circuit

- Circuit analysis technique for symmetrical circuit with common-mode operation
- The symmetrical points are equal potential
- No current flowing across the symmetrical line
- The performance can be evaluated by common-mode half-circuit

\[
v_{o1} = v_{o2} = \frac{R_D}{\frac{1}{g_m} + 2R_{SS}} v_{icm}
\]
Effect of resistance mismatch

- **Common-mode gain:**

 $$v_{ol} = -\frac{R_D}{1/g_m + 2R_{SS}} v_{icm} \approx -\frac{R_D}{2R_{SS}} v_{icm}$$

 $$v_{o2} = -\frac{R_D + \Delta R_D}{1/g_m + 2R_{SS}} v_{icm} \approx -\frac{R_D + \Delta R_D}{2R_{SS}} v_{icm}$$

 $$A_{cm} \equiv \frac{v_{o2}}{v_{icm}} v_{o1} = \frac{R_D}{2R_{SS}} \left(\frac{\Delta R_D}{R_D} \right)$$

- Mismatch in R_D causes a finite common-mode gain

- **Common-mode rejection ratio (CMRR):**

 - CMRR is defined as the ratio of differential-mode gain and the common-mode gain
 - A measure of the effectiveness of the differential pair in rejecting common-mode interference
 - Is usually expressed in decibels

 $$CMRR \equiv \left| \frac{A_d}{A_{cm}} \right|$$

 $$CMRR(dB) = 20 \log \left| \frac{A_d}{A_{cm}} \right|$$

- **CMRR** of the differential amplifier with respect to the resistance mismatch

 $$CMRR = \frac{2g_m R_{SS}}{\Delta R_D / R_D}$$

 - Utilizes a bias current source with a high output resistance
 - High degree of matching between the drain resistance
Effect of transconductance mismatch

- Mismatch exists between Q_1 and Q_2

 \[g_{m1} = g_m + \Delta g_m / 2 \]

 \[g_{m2} = g_m - \Delta g_m / 2 \]

 \[\Delta g_m = g_{m1} - g_{m2} \]

- Common-mode gain:

 \[i_1 = \frac{g_{m1}v_{lcm}}{1 + (g_{m1} + g_{m2})R_S} \]

 \[i_2 = \frac{g_{m2}v_{lcm}}{1 + (g_{m1} + g_{m2})R_S} \]

 \[v_{o1} = -i_1R_D = -\frac{g_{m1}R_D}{1 + (g_{m1} + g_{m2})R_S}v_{lcm} \]

 \[v_{o2} = -i_2R_D = -\frac{g_{m2}R_D}{1 + (g_{m1} + g_{m2})R_S}v_{lcm} \]

 \[v_{od} = v_{o2} - v_{o1} = \frac{\Delta g_m R_D}{1 + 2g_mR_S}v_{lcm} \]

 \[A_{cm} = \frac{v_{od}}{v_{lcm}} = \frac{\Delta g_m R_D}{1 + 2g_mR_S} \approx \left(\frac{R_D}{2R_S} \right) \left(\frac{\Delta g_m}{g_m} \right) \]

- CMRR:

 \[CMRR = \frac{2g_mR_S}{\Delta g_m / g_m} \]
7.3 The BJT Differential Pair

Circuit configuration
- Two identical BJT transistors Q_1 and Q_2 with emitters jointed together
- Biased with a current source

Input common-mode range
- Allowable range of V_{CM} for Q_1 and Q_2 in active
 \[V_{CM_{\text{max}}} \approx V_c + 0.4 = V_{cc} - \alpha R_c \left(\frac{I}{2} \right) + 0.4 \]
 \[V_{CM_{\text{min}}} = -V_{EE} + V_{cs} + V_{BE} \]

Common-mode operation
- Common-mode input voltage V_{CM} for v_{B1} and v_{B2}
- Single-ended output voltage:
 \[V_{c1} = V_{cc} - \alpha R_c \left(\frac{I}{2} \right) \]
 \[V_{c2} = V_{cc} - \alpha R_c \left(\frac{I}{2} \right) \]
- Differential output voltage:
 \[V_{od} = V_{c2} - V_{c1} = 0 \]
- Finite output resistance of the current source
 - Single-ended output change with V_{CM}
 - Differential output is still zero
Large-signal operation

- **Transfer characteristics**
 \[
 \frac{i_{E1}}{i_{E2}} = \frac{I_s e^{(v_{g1}−v_{g2})/V_T}}{I_s e^{(v_{g1}−v_{g2})/V_T}} = e^{(v_{g1}−v_{g2})/V_T}
 \]
 \[
 i_{E1} = \frac{I}{1+\exp(-v_{id}/V_T)}
 \]
 \[
 i_{E2} = \frac{I}{1+\exp(v_{id}/V_T)}
 \]
 \[
 i_{E1} + i_{E2} = I
 \]

- **Normalized characteristics**
 - The bias current is divided equally for \(v_{id} = 0\)
 - Unequal current through \(Q_1\) and \(Q_2\) for \(v_{id} \neq 0\)
 - A relatively small \(v_{id}\) for complete current switching
 - The linearity can be improved by emitter degeneration \(R_e\)
 - Transconductance and gain decrease due to emitter degeneration

NDUEE Electronics – L.H. Lu

7-15
Small-signal operation

- Small-signal current
 - Differential pair: \(i_c = \frac{g_m v_{id}}{2} \)
 - Differential pair with emitter degeneration: \(i_c = \frac{\alpha v_{id}}{2} \left(\frac{2 r_e + 2 R_e}{(\beta + 1) r_e} \right) \approx \frac{g_m v_{id}}{2} \left(1 + g_m R_e \right) \)

- Input differential resistance
 - Differential pair: \(R_{id} = \frac{v_{id}}{i_b} = 2 r_\pi \)
 - Differential pair with emitter degeneration: \(R_{id} = (\beta + 1) (2 r_e + 2 R_e) \approx 2 [R_e + r_\pi (1 + g_m R_e)] \)
Differential voltage gain

- Differential pair: \(A_d = \frac{v_{od}}{v_{id}} = g_m R_C \)
- Differential pair with emitter degeneration: \(A_d = \frac{\alpha}{1 + g_m R_e} \)
- The differential amplifier can also be fed in a single-ended fashion

Equivalent circuit model
Common-mode gain and CMRR

- Differential pair with device matching:

\[v_{o1} = v_{o2} = -\frac{\alpha R_C}{r_e + 2R_{EE}} v_{icm} \]

\[v_{od} = v_{o2} - v_{o1} = 0 \]

- Differential pair with resistance mismatch:

\[v_{o1} = -\frac{\alpha R_C}{r_e + 2R_{EE}} v_{icm} \]

\[v_{o2} = -\frac{\alpha (R_C + \Delta R_C)}{r_e + 2R_{EE}} v_{icm} \]

\[v_{od} = v_{o2} - v_{o1} = -\frac{\alpha \Delta R_C}{r_e + 2R_{EE}} v_{icm} \]

\[A_{cm} = \frac{v_{od}}{v_{icm}} = -\frac{\alpha \Delta R_C}{r_e + 2R_{EE}} \approx -\frac{R_C}{2R_{EE}} \frac{\Delta R_C}{R_C} \]

\[CMRR = \frac{2g_m R_{EE}}{\Delta R_C / R_C} \]

- High output resistance is desirable
- The resistance mismatch should be minimized

- Common-mode input resistance

\[R_{icm} \approx R_{EE} \beta \frac{1 + R_C / (r_e \beta)}{1 + (R_C + 2R_{EE}) / r_o} \]
7.4 Other Nonideal Characteristics of the Differential Amplifier

Input offset voltage of the MOS differential pair

- **Output dc offset voltage**: the finite output voltage with both input grounded
- **Input offset voltage** (V_{OS}): the input referred offset voltage as the output offset divided by gain
 - Output voltage becomes zero if $-V_{OS}$ is applied between the inputs
 - Its polarity can not be predetermined
- Factors contribute to the dc offset voltage:
 - Mismatch in load resistance
 - Mismatch in aspect ratio (W/L)
 - Mismatch in threshold voltage V_t
Input offset voltage due to load resistance mismatch

\[R_{d1} = R_D + \frac{\Delta R_D}{2} \]
\[R_{d2} = R_D - \frac{\Delta R_D}{2} \]

\[V_{os} = \frac{V_o}{g_m R_D} = \frac{I}{2} \frac{\Delta R_D}{g_m R_D} = \frac{V_{ov}}{2} \frac{\Delta R_D}{R_D} \]

Input offset voltage due to aspect ratio mismatch

\[\left(\frac{W}{L} \right)_1 = \left(\frac{W}{L} \right) + \frac{1}{2} \Delta \left(\frac{W}{L} \right) \]
\[I_1 = \frac{I}{2} \left[1 + \frac{\Delta (W/L)}{2(W/L)} \right] \]

\[\left(\frac{W}{L} \right)_2 = \left(\frac{W}{L} \right) - \frac{1}{2} \Delta \left(\frac{W}{L} \right) \]
\[I_2 = \frac{I}{2} \left[1 - \frac{\Delta (W/L)}{2(W/L)} \right] \]

\[V_{os} = \frac{R_D (I_2 - I_1)}{g_m R_D} = \frac{V_{ov}}{2} \frac{\Delta (W/L)}{(W/L)} \]

Input offset voltage due to threshold voltage mismatch

\[V_{t1} = V_t + \frac{\Delta V_t}{2} \]
\[I_1 = \frac{1}{2} k_n \left(\frac{W}{L} \right) (V_{os} - V_t)^2 \left[1 - \frac{\Delta V_t}{2(V_{os} - V_t)} \right]^2 \approx \frac{I}{2} \left(1 - \frac{\Delta V_t}{V_{os} - V_t} \right) \]

\[V_{t2} = V_t - \frac{\Delta V_t}{2} \]
\[I_2 = \frac{1}{2} k_n \left(\frac{W}{L} \right) (V_{os} - V_t)^2 \left[1 + \frac{\Delta V_t}{2(V_{os} - V_t)} \right]^2 \approx \frac{I}{2} \left(1 + \frac{\Delta V_t}{V_{os} - V_t} \right) \]

\[V_{os} = \frac{(I_2 - I_1) R_D}{g_m R_D} = \Delta V_t \]

Input offset voltage:

- The three mismatch factors are uncorrelated

\[V_{os} = \sqrt{\left(\frac{V_{ov}}{2} \frac{\Delta R_D}{R_D} \right)^2 + \left(\frac{V_{ov}}{2} \frac{\Delta (W/L)}{(W/L)} \right)^2 + (\Delta V_t)^2} \]

- To minimize the input offset voltage
 - Decrease overdrive voltage \(V_{ov} \)
 - Minimize the device mismatch ratio
Input offset voltage of the bipolar differential pair

- Factors contribute to offset voltage
 - Mismatch in load resistance
 - Mismatch in junction area
 - Mismatch in β

- Input offset voltage due to load resistance mismatch
 \[
 R_{c1} = R_c + \Delta R_c / 2 \\
 R_{c2} = R_c - \Delta R_c / 2 \\
 \Rightarrow \quad V_{os} = \left(\alpha \frac{I}{2} \frac{\Delta R_c}{R_c} \right) / g_m R_c = V_T \left(\frac{\Delta R_c}{R_c} \right)
 \]

- Input offset voltage due to emitter area mismatch
 \[
 I_{s1} = I_s + \frac{\Delta I_s}{2} \\
 I_{s2} = I_s - \frac{\Delta I_s}{2} \\
 I_{e1} = \frac{I}{2} \left(1 + \frac{\Delta I_s}{2 I_s} \right) \\
 I_{e2} = \frac{I}{2} \left(1 - \frac{\Delta I_s}{2 I_s} \right) \\
 \Rightarrow \quad V_{os} = \alpha \left(\frac{I}{2} \frac{\Delta I_s}{I_s} \right) R_c / (g_m R_c) = V_T \left(\frac{\Delta I_s}{I_s} \right)
 \]

- Input offset voltage:
 - The factors are uncorrelated
 - The offset voltage can be minimized by reducing the device mismatch ratios
 - The input offset voltage for BJT (proportional to V_T) is typically smaller than its MOS counterpart (proportional to V_{OV})
Input bias current and offset currents of the bipolar differential pair

- **Input bias current:**
 - Finite bias currents are required at the input terminals of BJT differential pair
 - The input bias currents are simply the base current of the BJT transistors
 \[
 I_{B1} = I_{B2} = \frac{I}{2(\beta+1)}
 \]

- **Input offset current:**
 - Offset in the input bias currents due to device mismatch
 - Mostly from the mismatch in \(\beta \)
 \[
 \beta_1 = \beta + \frac{1}{2} \Delta \beta \\
 I_{B1} = \left(\frac{1}{2} \right) \left(\frac{1}{\beta + 1 + \Delta \beta / 2} \right) \approx \left(\frac{1}{2} \right) \left(\frac{1}{\beta + 1} \right) \left(1 - \frac{\Delta \beta}{2 \beta} \right)
 \]
 \[
 \beta_2 = \beta - \frac{1}{2} \Delta \beta \\
 I_{B2} = \left(\frac{1}{2} \right) \left(\frac{1}{\beta + 1 - \Delta \beta / 2} \right) \approx \left(\frac{1}{2} \right) \left(\frac{1}{\beta + 1} \right) \left(1 + \frac{\Delta \beta}{2 \beta} \right)
 \]
 \[
 I_{OS} = \frac{I}{2(\beta+1)} \frac{\Delta \beta}{\beta} = I_B \left(\frac{\Delta \beta}{\beta} \right)
 \]

Comparison for MOS and bipolar differential pair

- Bipolar differential pair typically has smaller input offset voltage
- Bipolar differential pair suffers from input offset current
7.5 The Differential Amplifier with Active Load

Differential to single-ended conversion

- Differential pair with differential output
 - Improved CMRR: suppress the influence of the common-mode interference
 - Higher voltage gain: gain is increased by a factor or 2
- Differential pair with single-ended output
 - Certain applications require single-ended output
 - A resistive load differential pair can simply provide the differential to single-ended conversion

- The active-loaded MOS differential pair
 - Utilizes a current mirror (Q_3 and Q_4) as the active load
 - Provides single-ended output for the differential pair
Basic circuit operation

- Quiescent point:
 - Perfect matching case:
 - Bias current is equally divided for Q_1 and Q_2
 - The current of Q_1 also flows through Q_3
 - Current of Q_3 is mirrored to Q_4
 - All currents are identical ($I_{D1} = I_{D2} = I_{D3} = I_{D4} = I/2$)
 - The currents of Q_2 and Q_4 balance out
 - Zero output current to the following stage
 - Quiescent output voltage $= V_{DD} - V_{SG3}$
 - Mismatch in the devices:
 - Nonzero net current at the output node
 - The current flows into the output resistances of Q_2 and Q_4
 - The output voltage deviates from $V_{DD} - V_{SG3}$

- Applying differential input voltage:
 - A difference current between Q_1 and Q_2
 - The net difference current exists at the output
Voltage gain of the active-loaded MOS differential pair

- Transconductance G_m:
 \[v_{g3} = -g_{m1} \left(\frac{v_{id}}{2} \right) \left(\frac{1}{g_{m3}} \parallel r_{o3} \parallel r_{o3} \right) \approx -g_{m1} \left(\frac{v_{id}}{2} \right) \]
 \[i_o = -g_{m3} v_{g3} + g_{m2} \left(\frac{v_{id}}{2} \right) = g_{m1} \left(\frac{g_{m1}}{g_{m3}} \right) \left(\frac{v_{id}}{2} \right) + g_{m2} \left(\frac{v_{id}}{2} \right) \approx g_{m1} v_{id} \]
 \[G_m \approx g_{m1} = g_{m2} \]

- Output resistance R_o:
 \[R_{in1} = r_{o1} + r_L = \frac{1}{g_{m1}} + \frac{1}{g_{m2}} \approx \frac{1}{g_{m1}} \]
 \[R_{o2} = R_{in1} + r_{o2} + g_{m2} r_{o2} \approx \frac{1}{g_{m1}} + r_{o2} + \frac{g_{m2}}{g_{m1}} r_{o2} \approx 2r_{o2} \]
 \[i = \frac{v_x}{R_{o2}} \]
 \[i_o = i + i + \frac{v_x}{r_{o4}} = 2 \frac{v_x}{R_{o2}} + \frac{v_x}{r_{o4}} \]
 \[R_o = r_{o2} \parallel r_{o4} \]

- Differential gain
 \[A_d \equiv \frac{v_o}{v_{id}} = G_m R_o = g_{m1} (r_{o2} \parallel r_{o4}) \approx \frac{1}{2} g_{m1} r_o = \frac{A_0}{2} \]
Common-mode gain and CMRR

- The active-loaded CMOS differential pair has a high CMRR even with a single-ended output.
- Common-mode half-circuit is not applicable as the circuit is not symmetrical.
- Q_1 and Q_2 can be treated as two separated CS transistor with source degeneration.

\[\text{NTUEE Electronics – L.H. Lu} \]
Common-mode gain:

\[v_s = \frac{2R_{SS} \| r_{o1}}{2R_{SS} \| r_{o1} + 1/g_m} v_{icm} \approx v_{icm} \]

\[i_o = \frac{v_{icm}}{2R_{SS}} \]

\[G_{mcem} = \frac{i_o}{v_{icm}} = \frac{1}{2R_{SS}} \]

\[R_{o1} = 2R_{SS} + r_{o1} + g_m r_{o1}(2R_{SS}) \]

\[R_{o2} = 2R_{SS} + r_{o2} + g_m r_{o2}(2R_{SS}) \]

\[v_{g3} = -G_{mcem} v_{icm} \left(R_{o1} \| r_{o3} \| \frac{1}{g_{m3}} \right) \]

\[i_4 = g_m v_{g3} = g_m v_{g3} = -g_m G_{mcem} v_{icm} \left(R_{o1} \| r_{o3} \| \frac{1}{g_{m3}} \right) \]

\[v_o = -v_{icm} \frac{r_{o4}}{2R_{SS}} \left[1 - g_m \left(R_{o1} \| r_{o3} \| \frac{1}{g_{m3}} \right) \right] \]

\[A_{cm} = \frac{v_o}{v_{icm}} \approx \frac{r_{o4}}{2R_{SS} \left[1 + g_m r_{o3} \right]} \approx -\frac{1}{2g_m R_{SS}} \]

CMRR

\[CMRR = \frac{|A_{d}|}{|A_{cm}|} = \left| g_m (r_{o2} \| r_{o1}) \right| \cdot (2g_m R_{SS}) \]
The bipolar differential pair with active load

- Circuit schematic:
 - Bipolar differential pair Q_1 and Q_2
 - Bipolar current mirror Q_3 and Q_4 as active load
 - Constant current source for dc bias
 - The bias current is equally divided for Q_1 and Q_2

- Input resistance (R_i):
 - Differential input resistance is defined at input $R_i = 2r_\pi$

- Transconductance (G_m):
 \[
 v_{b3} = -g_{m1}\left(\frac{v_{id}}{2}\right)(r_{e3} \parallel r_{o3} \parallel r_{o4} \parallel r_{\pi4})
 \approx -g_{m1}r_{e3}\left(\frac{v_{id}}{2}\right)
 \]
 \[
 g_{m4}v_{b4} = -g_{m4}g_{m1}r_{e3}\left(\frac{v_{id}}{2}\right)
 \]
 \[
 i_o = g_{m2}\left(\frac{v_{id}}{2}\right) - g_{m4}v_{b4} = (g_{m2} + g_{m4}g_{m1}r_{e3})\left(\frac{v_{id}}{2}\right)
 \]
 \[
 G_m \equiv \frac{i_o}{v_{id}} = \frac{g_{m2} + g_{m4}g_{m1}r_{e3}}{2} \approx g_m
 \]
- Output resistance (R_o):

$$R_{o2} \approx r_{o2} \left[1 + g_{m2} (r_{el} \parallel r_{\pi2}) \right] \approx r_{o2} (1 + g_{m2} r_{el}) \approx 2r_{o2}$$

$$i = \frac{v_x}{R_{o2}} = \frac{v_x}{2r_{o2}}$$

$$i_x = 2i + \frac{v_x}{r_{o4}} = \frac{v_x}{r_{o2}} + \frac{v_x}{r_{o4}}$$

$$R_o \equiv \frac{v_x}{i_x} = r_{o2} \parallel r_{o4}$$

- Differential gain:

$$A_d \equiv \frac{v_o}{v_{in}} = G_m R_o = g_m (r_{o2} \parallel r_{o4}) \approx \frac{1}{2} g_m r_o$$

- Common-mode gain:

$$i_1 \approx i_2 \approx \frac{v_{cm}}{2R_{EE}}$$

$$v_{b3} = -i \left(\frac{1}{g_{m3}} \parallel r_{\pi3} \parallel r_{o3} \parallel r_{\pi4} \right)$$

$$v_o = -r_{o4} (g_{m4} v_{b3} + i_2)$$

$$A_{cm} \equiv \frac{v_o}{v_{cm}} = \frac{r_{o4}}{2R_{EE}} g_{m4} \left(\frac{1}{g_{m3}} \parallel r_{\pi3} \parallel r_{o3} \parallel r_{\pi4} \right) - 1 \approx -\frac{r_{o4}}{2R_{EE}} g_{m3} + \frac{2}{r_{\pi3}} \approx -\frac{r_{o4}}{\beta_3 R_{EE}}$$

- CMRR:

$$CMRR = \frac{|A_d|}{|A_{cm}|} = g_m (r_{o2} \parallel r_{o4}) \left(\frac{\beta_3 R_{EE}}{r_{o4}} \right) \approx \frac{1}{2} \beta_3 g_m R_{EE}$$
- Systematic input offset voltage
 - Difference current between Q_3 and Q_4 due to finite β
 - Net current at output for both input terminals grounded
 - Input offset voltage to eliminate the output current
 - This offset has nothing to do with device mismatch

\[
\frac{I_4}{I_3} = \frac{1}{1 + 2/\beta_p}
\]

\[
I_4 = \alpha \frac{I/2}{1 + 2/\beta_p}
\]

\[
\Delta i = \alpha \frac{I}{2} - \alpha \frac{I/2}{1 + 2/\beta_p} = \alpha \frac{I}{2} + \frac{1}{2 + 2/\beta_p} \approx \alpha \frac{I}{\beta_p}
\]

\[
V_{OS} = -\frac{\Delta i}{G_m} = -\frac{2V_T}{\beta_p}
\]

- Improved current mirror can be used to reduce the systematic input offset