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13.1 Filter Transmission, Types and Specifications

Filter Transfer Function
 A filter is a linear two-port network represented by the ratio of the output to input voltage
 Transfer function T(s)  Vo(s)/Vi(s)
 Transmission : evaluating T(s) for physical frequency s = j→ T(j ) = |T(j )|e j()

 Gain: 20 log|T(j)| (dB)
 Attenuation:  -20 log|T(j)| (dB)

Output frequency spectrum : |Vo(s)| = |T(s)| |Vi(s)|

Types of Filters
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Filter Specification
 Passband edge : p

 Maximum allowed variation in passband transmission : Amax

 Stopband edge : s

 Minimum required stopband attenuation : Amin

 The first step of filter design is to determine the filter specifications
 Then find a transfer function T(s) whose magnitude |T(j)| meets the specifications
 The process of obtaining a transfer function that meets given specifications is called filter 

approximation

Low-Pass Filter Band-Pass Filter
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13.2 Filter Transfer Function

Transfer Function
 The filter transfer function is written as the ratio of two polynomials:

 The degree of the denominator → filter order
 To ensure the stability of the filter → N  M
 The coefficients ai and bj are real numbers
 The transfer function can be factored and expressed as:

 Zeros: z1 , z2 , … , zM and (NM) zeros at infinity
 Poles: p1 , p2 , … , pN

 Zeros and poles can be either a real or a complex number
 Complex zeros and poles must occur in conjugate pairs
 The poles have to be on the LHP of s-plane
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13.3 Butterworth and Chebyshev Filters

The Butterworth Filter
 Butterworth filters exhibit monotonically decreasing transmission with all zeros at  = 
 Maximally flat response → degree of passband flatness increases as the order N is increased
 Higher order filter has a sharp cutoff in the transition band
 The magnitude function  of the Butterworth filter is:

Required transfer functions can be defined based on filter specifications (Amax, Amin, p , s)
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Natural Modes of the Butterworth Filter
 The natural modes (poles) locate on a circle
 The radius of the circle is
 Equal angle space
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Design Procedure of the Butterworth Filters

Amax, Amin, p, s

Design Specifications

Design Procedure

1. Determine  (from Amax)

2. Determine the required filter order N (from p , s , Amin)

3. Determine the N natural modes (poles) with

4. Determine T(s)
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13.4 First-Order and Second-Order Filter Functions

Cascade Filter Design
 First-order and second-order filters can be cascaded to realize high-order filters
 Cascade design is one of the most popular methods for the design of active filters
 Cascading does not change the transfer functions of individual blocks if the output resistance is low

First-Order Filters
 Bilinear transfer function
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First-Order Filters (Cont’d)
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Second-Order Filters
 Biquadratic transfer function

 Pole frequency: 0

 Pole quality factor: Q
 Poles:

 Bandwidth:
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Second-Order Filters (Cont’d)
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Second-Order Filters (Cont’d)
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13.5 The Second-Order LCR Resonator

The Resonator Natural Modes

 The LCR resonator can be excited by either current or voltage source

 The excitation should be applied without change the natural structure of the circuit

 The natural modes of the circuits are identical (will not be changed by the excitation methods)

 The similar characteristics also applies to series LCR resonator

Parallel Resonator Current Excitation Voltage Excitation
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Realization of Transmission Zeros
 Values of s at which Z2(s) = 0 and Z1(s)  0 
→ Z2 behaves as a short

 Values of s at which Z1(s) =  and Z2(s)  
→ Z1 behaves as an open

Realization of Filter Functions
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Notch Filter

Low-Pass Notch  Filter High-Pass Notch  Filter
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13.6 Second-Order Active Filters (Inductor Replacement)

Second-Order Active Filters by Op Amp-RC Circuits
 Inductors are not suitable for IC implementation
 Use op amp-RC circuits to replace the inductors
 Second-order filter functions based on RLC resonator

The Antoniou Inductance-Simulation Circuit
 Inductors are realized by op amp-RC circuits with negative feedbacks
 The equivalent inductance is given by
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The Op Amp-RC Resonator
 The inductor is replaced by the Antoniou circuit
 The pole frequency and the quality factor are given by

 A simplified case where R1 = R2 = R3 = R5 = R and C4 = C6 = C
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Filter Realization

Low-Pass Filter High-Pass Filter

Bandpass Filter Notch Filter
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LPN Filter HPN Filter

All-Pass Filter
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13.7 Second-Order Active Filters (Two-Integrator-Loop)

Derivation of the Two-Integrator-Loop Biquad
 High-pass implementation:

 Band-pass implementation:

 Low-pass implementation:
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Circuit Implementation (I)

High-pass transfer function:

 Band-pass transfer function:

 Low-pass transfer function:

 Notch and all-pass transfer function:
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Circuit Implementation (II) – Tow-Thomas Biquad

 Use an additional inverter to make all the coefficients of the summer the same sign
 All op amps are in single-ended mode
 The high-pass function is no longer available
 It is known as the Tow-Thomas biquad
 An economical feedforward scheme can be employed with the Tow-Thomas circuit

22
2

2
2

31

12

11

111

)(

RCQCR
ss

RRCRR
r

RC
s

C
C

s

V

V
sT

i

o















13-22



NTUEE   Electronics   – L. H. Lu

13.8 Single-Amplifier Biquadratic Active Filters

Characteristics of the SAB Circuits
 Only one op amp is required to implement biquad circuit
 Exhibit greater dependence on the limited gain and bandwidth of the op amp
 More sensitive to the unavoidable tolerances in the values of resistors and capacitors
 Limited to less stringent filter specifications with pole Q factors less than 10

Synthesis of the SAB Circuits
 Use feedback to move the poles of an RC circuit from the negative real axis to the complex conjugate

locations to provide selective filter response
 Steps of SAB synthesis:

 Synthesis of a feedback loop that realizes a pair of complex conjugate poles characterized by 0
and Q

 Injecting the input signal in a way that realizes the desired transmission zeros
 Natural modes of the filter:
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The closed-loop characteristics equation:

 The poles of the closed-loop system are identical to the zeros of the RC network
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RC Networks with complex transmission zeros

Characteristics Equation of the Filter
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Injection the Input Signal
 The method of injection the input signal into the feedback loop through the grounded nodes
 A component with a ground node can be connected to the input source
 The filter transmission zeros depends on where the input signal is injected
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Generation of Equivalent Feedback Loops
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Generation of Equivalent Feedback Loops (Cont’d)
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13.9 Sensitivity

Filter Sensitivity
 Deviation in filter response due to the tolerances in component values
 Especially for RC component values and amplifier gain

Classical Sensitivity Function
 Definition:

 For small changes:
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13.10 Transconductance-C Filters

Limitations of Op Amp-RC Circuits
 Suitable for audio-frequency filters using discrete op amps, resistors and capacitors  
 High-frequency applications limited by the relatively low bandwidth of general-purpose op amps
 Impractical for IC implementations due to:

 The need for large capacitors and resistors increases the IC cost
 The need for very precise values of RC time constant requires expensive trimming/tuning
 The need for op amps that can drive resistive and large capacitive loads

Methods for IC Filter Implementations
 Transconductance-C filters:

 Utilize transconductance amplifiers or transconductors together with capacitors for filters
 High-quality and high-frequency transconductors can be easily realized in CMOS technology
 Has been widely used for medium/high-frequency applications (up to hundreds of MHz)

 MOSFET-C filters:
 Replace resistors with MOSFETs in linear region
 Techniques have been evolved to obtain linear operation with large input signals

 Switched-capacitor filters:
 Replace the required resistor by switching a capacitor at a relatively high frequency
 The resulting filters are discrete-time circuits as opposed to the continuous-time ones
 Is ideally suited for implementation low-frequency filters in IC form using CMOS technology
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Transconductors
 An ideal transconductor has infinite input resistance and infinite output resistance
 The output can be positive or negative depending the current direction
 Transconductor can be single-ended or fully differential
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Basic Building Blocks
 Negative transconductor used to realize a resistance
 Transconductor loaded with a capacitor as an integrator

First-Order Gm-C Low-Pass Filter
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Second-Order Gm-C Low-Pass Filter
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Simplified Circuit
 Gm1 = Gm2 = Gm

 C1 = C2 = C

Fully Differential Circuit
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13.11 Switched-Capacitor Filters

Basic Principle
 A capacitor switched between two nodes at a sufficiently high rate is equivalent to a resistor
 The resistor in the active-RC integrator can be replaced by the capacitor and the switches
 Equivalent resistor:

 Equivalent time constant for the integrator = Tc(C2/C1)
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Practical Circuits
 Can realize both inverting and non-inverting integrator
 Insensitive to stray capacitances
 Noninverting switched-capacitor (SC) integrator

 Inverting switched-capacitor (SC) integrator
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Filter Implementation
 Circuit parameters for the two integrators with the same time constant
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