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CHAPTER 14  SIGNAL GENERATORS AND 
WAVEFORM-SHAPING CIRCUITS

Chapter Outline
14.1   Basic Principles of Sinusoidal Oscillators
14.2   Op Amp-RC Oscillators
14.3   LC and Crystal Oscillators
14.4   Bistable Multivibrators
14.5   Generation of Square and Triangular Waveforms using Astable Multivibrators
14.6   Generation of a Standardized Pulse-The Monostable Multivibrators
14.7   Integrated-Circuit Timers
14.8   Nonlinear Waveform-Shaping Circuits



NTUEE   Electronics   – L. H. Lu

14.1 Basic Principles of Sinusoidal Oscillators

Types of Oscillators
Linear oscillator:

 Employs a positive feedback loop consisting of an amplifier and a frequency-selective network
 Some form of nonlinearity has to be employed to provide control of the amplitude of the output

Nonlinear oscillator:
 Generates square, triangular, pulse waveforms
 Employs multivibrators: bistable, astable and monostable

The Oscillator Feedback Loop and Oscillation Criterion
Positive feedback loop analysis:

Characteristic equation: 1-L(s) = 0
 Find poles of the closed-loop system by solving L(s) = 1
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Barkhausen criterion: 
 The phase of loop gain should be zero at 0

 The magnitude of the loop gain should be unity at 0 

 The characteristic equation has roots at s =  j0

Stability of oscillation frequency:
 0 is determined solely by the phase characteristics
 A steep function f () results in a more stable frequency

Stability of oscillation frequency:
 Oscillation: loop gain A = 1
 Growing output: loop gain A > 1
 Decaying output: loop gain A < 1

Nonlinear Amplitude Control
Oscillation mechanism:

 Initiating oscillation: loop gain slightly larger than unity (poles in RHP)
 Gain control: nonlinear network reduces loop gain to unity (poles on j-axis)
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Limiter Circuits for Amplitude Control
 For small output amplitude (D1 off, D2 off)

 incremental gain (slope) = Rf /R1

 For large negative output swing (D1 on, D2 off)

 incremental gain (slope) = (Rf ||R4)/R1

 For large positive output swing (D1 off, D2 on)

 incremental gain (slope) = (Rf ||R3)/R1
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14.2 OP Amp-RC Oscillator Circuits

Wien-Bridge Oscillator
Define the loop gain

Pole locations by solving the characteristic equation

 Oscillation condition: 2-R2/R1 = 0 and s = j0 = j/RC
 Start-up condition: 2-R2/R1 < 0 (poles at RHP) 

Barkhausen criterion:

 Oscillation condition: R2/R1 = 2 and 0 = 1/RC
 Start-up condition: 0 = RC and R2/R1 = 2+

Limiter is used for amplitude control
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Wien-Bridge Oscillator with Amplitude Control
Diodes are used to limit the amplitude of the output swing
Diodes are off with small-signal operation and can be neglected for analysis of the oscillation 

condition
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Phase-Shift Oscillator
The circuit oscillates at the frequency for which the phase shift of the RC network is 180
Only at this frequency will the total phase shift around the loop be 0 or 360
The minimum number of RC sections is three
K should be equal to the inverse of the magnitude of the RC network at oscillation frequency
 Slightly higher K is used to ensure that the oscillation starts
Limiter is used for amplitude control
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Quadrature Oscillator
Based on the two-integrator loop without damping
Loop gain:

Oscillation condition:

Poles are initially located in RHP (for Rf < 2R)
to ensure that oscillation starts

Too much positive feedback results in higher 
output distortion

 vO2 is purer than vO1 because of the filtering action 
provided by the second integrator on the peak-
limited output of the first integrator

 vO2 and vO1 have a phase difference of 90o due to 
the integrator function
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Active-Filter Tuned Oscillator
The circuit consists of a high-Q bandpass 

filter connected in a positive-feedback 
loop with a hard limiter

Any filter circuit with positive gain can be 
used to implement the bandpass filter

Can generate high-quality output sine 
waves

Have independent control of frequency, 
amplitude and distortion of the output 
sinusoid

Final Remark
Op amp-RF oscillators ~ 10 to 100kHz
Lower limit: passive components
Upper limit: frequency response and slew 

rate of op amp
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14.3 LC and Crystal Oscillators

LC Tuned Oscillators
Colpitts oscillator: capacitive divider
Hartley oscillator: inductive divider
A parallel LC circuit between base and collector
R models the overall losses 

Analysis of Colpitts Oscillators

Utilize the transistor’s nonlinear I-V characteristics for amplitude control (self-limiting)
Collector (drain) current waveforms are distorted due to the nonlinear characteristics
Output voltage is a sinusoid with high purity because of the filtering action of the LC tuned circuit
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Complete Circuit for a Colpitts Oscillator

RE

DC Analysis

AC Analysis
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The Cross-Coupled LC Oscillator
Popular LC oscillator circuit suitable for IC implementation
Capable of operating at high frequencies (up to hundreds of GHz)
The oscillation frequency is defined by the LC tank
The cross-couple pair is to start up the oscillation
Differential oscillation output available
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Crystal Oscillators
Crystal impedance:

Crystal reactance is inductive over very narrow frequency (s to p )
The frequency band is well defined for a given crystal
Use the crystal to replace the inductor of the Colpitts oscillators
Oscillation frequency is dominated by Cs (much smaller than other C’s)

Crystals are available with resonance frequencies KHz ~ hundred MHz
The oscillation frequency is fixed (tuning is not possible)
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14.4 Bistable Multivibrators

Bistable Characteristics
Positive feedback for bistable multivibrator
Stable states:

(1) vO = L+ and v+ = L+R1/(R1+R2)
(2) vO = L- and v+ = L-R1/(R1+R2)

Metastable state: vO = 0 and v+ = 0

Transfer Characteristics of the Inverting Bistable Circuit
 Initially vI = L-, the bistable is in the state of vO = L+ and v+ = L+R1/(R1+R2) 
→ vO change state to L when vI increases to a value of L+R1/(R1+R2)

 Initially vI = L+, the bistable is in the state of vO = L and v+ = L R1/(R1+R2) 
→ vO change state to L+ when vI decreases to a value of L R1/(R1+R2)

The circuit exhibits hysteresis with a width of (VTHVTL)
 Input vI is referred to as a trigger signal which merely initiates or triggers regeneration

14-14
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Transfer Characteristics of the Noninverting Bistable Circuit
 Initially vI = L-, the bistable is in the state of vO = L- and v+ = vI R2/(R1+R2)+LR1/(R1+R2) < 0

→ vO change state to L+ when vI increases to a value (VTH) that causes v+ = 0 → VTH = L(R1/R2)>0

 Initially vI = L+, the bistable is in the state of vO = L+ and v+ = vI R2/(R1+R2)+L+ R1/(R1+R2) > 0

→ vO change state to L- when vI decreases to a value (VTL) that causes v+ = 0 → VTL = L+(R1/R2)<0

Application of the Bistable Circuit as a Comparator
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Limiter Circuits for Precise Output Levels
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14.5 Generation of Square and Triangular Waveforms using Astable
Multivibrators

Operation of the Astable Multivibrator

RC charge/discharge: 

For vO = L+ and v+ = vO R1/(R1+R2) > 0 
→ v is charged toward L+ through RC
→ vO change stage to L when v = v+

For vO = L and v+ = vOR1/(R1+R2) < 0
→ v is discharged toward L through RC
→ vO change stage to L+ when v = v+

For L = -L+:
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Generation of Triangular Waveforms

Triangular can be obtained by replacing the low-pass RC circuit with an integrator

The bistable circuit required is of the noninverting type
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14.6 Generation of a Standardized Pulse 
– The Monostable Multivibrators

Op-Amp Monostable Multivibrators
Circuit components:

 Trigger: C2 , R4 and D2

 Clamping diode: D1

 R4 >> R1→ iD4  0
The circuit has one stable state:

 vO = L+

 vB = VD1  0
 D1 and D2 on

Operation of monostable multivibrator
 Negative step as the trigger input
 D2 conducts heavily
 vC is pulled below vB for effective trigger
 vO changes state to L- and vC becomes negative
 D1 and D2 off and C1 is discharged toward L-

 vO changes state to L+ as vB = vC = L-

 C1 is charged toward L+

 vB is clamped to VD1  0 and the circuit is back to its stable state
 Positive trigger step turns off D2 (invalid trigger)
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14.7 Integrated-Circuit Timers

Monostable Multivibrator using 555 Timer Circuit

Stable state: S = R = 0 and Q = 0 
 Q1 on and vC = 0

Trigger (vtrigger < VTL): S = 1 and Q = 1
 Q1 off and vC is charged toward VCC

Trigger pulse removal (vtrigger > VTL): S = R = 0 and Q = 1 
 Q1 off and vC is charged toward VCC

End of recovery period (vC = VTH): R = 1 and Q = 0 
 Q1 on and vC is discharged toward GND

Stable state: vC drops to 0 and S = R = 0 and Q = 0
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Astable Multivibrator using 555 Timer Circuit

Operation of astable multivibrator
 Initially vC = 0: S/R = 1/0 and Q = 1  Q1 off and vC is charged toward VCC thru RA and RB

 vC reaches VTH: S/R = 0/1 and Q = 0  Q1 on and vC is discharged toward GND thru RB

 vC reaches VTL: S/R = 1/0 and Q = 1  Q1 off and vC is charged toward VCC thru RA and RB
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14.8 Nonlinear Waveform-Shaping Circuits

Nonlinear Amplification Method
Use amplifiers with nonlinear transfer 

characteristics
to convert triangular wave to sine wave

Differential pair with an emitter degeneration
resistance can be used as sine-wave shaper

Breakpoint Method
R4 , R5 >> R1 , R2 and R3 to avoid loading effect

 –V1 < vIN < V1 :

 vO = vIN

 –V2 < vIN < –V1 or V1 < vIN < V2

 vO = V1 +  (vIN – V1) R5 / (R4 + R5)

 vIN < –V2 or V2 < vIN

 vO = V2
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