CHAPTER 14 CMOS DIGITAL LOGIC CIRCUITS

Chapter Outline
14.1 Digital Logic Inverters
14.2 The CMOS Inverter
14.3 Dynamic Operation of the CMOS Inverter
14.4 CMOS Logic-Gate Circuits
14.5 Implications of Technology Scaling: Issues in Deep-Submicron Design
14.1 DIGITAL LOGIC INVERTERS

The Voltage-Transfer Characteristic (VTC)

- The function of the inverter is to invert the logic value of its input signal
- The voltage-transfer characteristic is used to evaluate the quality of inverter operation

![Diagram of inverter circuit and voltage-transfer characteristic curve]

- VTC parameters
 - V_{OH}: output high level
 - V_{OL}: output low level
 - V_{IH}: the minimum value of input interpreted by the inverter as a logic 1
 - V_{IL}: the maximum value of input interpreted by the inverter as a logic 0
 - Transition region: input level between V_{IL} and V_{IH}
Noise Margins

- The VTC is generally non-linear
- V_{IH} and V_{IL} are defined as the points at which the slope of the VTC is -1
- Robustness (noise margin at a high level): $NM_H = V_{OH} - V_{IH}$
- Robustness (noise margin at a low level): $NM_L = V_{IL} - V_{OL}$
- Static inverter characteristics for ideal VTC:
 - $V_{OH} = V_{DD}$
 - $V_{OL} = 0$
 - $V_{IH} = V_{IL} = V_{DD}/2$
 - $NM_H = NM_L = V_{DD}/2$

![Ideal VTC Diagram](image)
Power Dissipation
- Static power dissipation: power dissipated when the inverter stays in logic 0 or logic 1
- Dynamic power dissipation: power dissipated as the output is switching

\[P_D = f CV_{DD}^2 \]

Propagation Delay
- \(t_{PHL} \): high-to-low propagation delay
- \(t_{PLH} \): low-to-high propagation delay
- \(t_p \) (propagation delay) = (\(t_{PLH} + t_{PHL} \))/2
- Maximum switching frequency \(f_{max} = 1/2t_p \)
- The output transient of the inverter can be characterized by a \(RC \) charge/discharge model

\[v_o(t) = V_x - (V_x - V_{0+})e^{-t/RC} \]
Power-Delay Product and Energy-Delay Product

- Power and delay are often in conflict for inverter operation
- Power-delay product is a figure-of-merit for comparing logic-circuit technologies or families
- Power-delay product is defined as \(PDP = P_d t_p = C V_{DD}^2 / 2 \)
- Energy-delay product is defined as \(EDP = C V_{DD} V_{pd} / 2 \)

Silicon Area

- Area reduction through advances in processing technology
- Area reduction through advances in circuit design techniques
- Area reduction through careful chip layout

Fan-In and Fan-Out

- Fan-in of a gate is the number of its inputs
- Fan-out is the maximum number of similar gates that a gate can drive

Logic-Circuit Families

[Diagram showing digital IC technologies and logic-circuit families, including CMOS, Bipolar, BiCMOS, GaAs, Complementary CMOS, Pseudo-NMOS, Pass-transistor logic, Dynamic logic, TTL, and ECL.]
Inverter Implementation

- Simplest implementation of the inverter with a MOSFET and a load

![Simplest implementation diagram]

- Inverter implementation with complementary switches

![Complementary switches diagram]

- Inverter implementation with a double-throw switch

![Double-throw switch diagram]
14.2 THE CMOS INVERTER

Circuit Operation

- A CMOS inverter consists of an n-channel and a p-channel MOSFET
- The n-channel device turns on and the p-channel device turns off as the input level goes high
- The p-channel device turns on and the n-channel device turns off as the input level goes low
- The turn-on device is modeled by a resistance: \(r_{DSN} = \left[k_n (W/L_n)(V_{DD} - V_{th}) \right]^1 \) and \(r_{DSP} = \left[k_p (W/L_p)(V_{DD} - |V_{th}|) \right]^1 \)
- \(V_{OH} = V_{DD} \) and \(V_{OL} = 0 \) for any CMOS inverter
The Voltage-Transfer Characteristic

- The transistors go through five different operation regions as the input goes from 0 to V_{DD}
- The operating point is obtained by making $i_{DN} = i_{DP}$

- **Region I:** (Q_N off; Q_P tri.)
 $i_{DN} = 0 = i_{DP}$

- **Region II:** (Q_N sat.; Q_P tri.)
 $i_{DN} = \frac{1}{2} k_n (v_I - V_m)^2 = i_{DP} = \frac{1}{2} k_p (V_{DD} - v_I - |V_{tp}|)(V_{DD} - v_O) - \frac{1}{2} (V_{DD} - v_O)^2$

- **Region III:** (Q_N sat; Q_P sat)
 $i_{DN} = \frac{1}{2} k_n (v_I - V_m)^2 = i_{DP} = \frac{1}{2} k_p (V_{DD} - v_I - |V_{tp}|)^2$

- **Region IV:** (Q_N tri.; Q_P sat.)
 $i_{DN} = k_n (v_I - V_m)v_O - \frac{1}{2} v_O^2 = i_{DP} = \frac{1}{2} k_p (V_{DD} - v_I - |V_{tp}|)^2$

- **Region V:** (Q_N tri.; Q_P off)
 $i_{DN} = i_{DP} (= 0)$
Static Characteristics of the CMOS Inverter

- Ratioless logic: V_{OH} and V_{OL} are independent of ratio of the transistors
 - $V_{OH} = V_{DD}$
 - $V_{OL} = 0$
- Static power dissipation is zero for both states
- Noise margins can be determined by the VTC
- The switching voltage (when $v_I = v_O$) is defined by
 $$V_M = \frac{r(V_{DD} - |V_p|) + V_n}{r + 1} \quad \text{where} \quad r = \frac{k_p}{k_n} = \frac{\mu_p(W/L)_p}{\mu_n(W/L)_n}$$
 - V_M increases (VTC shifts) with r
 - NM_L increases and NM_H decreases as r increases
 - NM_L decreases and NM_H increases as r decreases

\[\text{NTUEE Electronics III} \]
The Matched Inverter

- A matched inverter has equivalent pull-up and pull-down device with \(k_n = k_p \) and \(V_{tn} = |V_{tp}| = V_1 \)
- The VTC is symmetric
- Determine \(V_{IL} \) from the VTC in Region II:
 \[
 \frac{1}{2}(v_I - V_I)^2 = \left((V_{DD} - v_I - V_I)(V_{DD} - v_O) - \frac{1}{2}(V_{DD} - V_O)^2 \right)
 \]
 \[v_I - V_I = -(V_{DD} - v_O) - (V_{DD} - v_I - V_I) \frac{dv_O}{dv_I} + (V_{DD} - v_O) \frac{dv_O}{dv_I}\]
 \[V_{IL} = \frac{1}{8}(3V_{DD} + 2V_I)\]
- Determine \(V_{IH} \) from the VTC in Region IV:
 \[(v_I - V_I)v_O - \frac{1}{2}v_O^2 = \frac{1}{2}(V_{DD} - v_I - V_I)^2 \]
 \[v_O + (v_I - V_I) \frac{dv_O}{dv_I} - v_O \frac{dv_O}{dv_I} = -(V_{DD} - v_I - V_I)\]
 \[V_{IH} = \frac{1}{8}(5V_{DD} - 2V_I)\]
- Noise margins: \(NM_H = NM_L = (3V_{DD} + 2V_I)/8 \)
- Switching voltage: \(V_M = V_{DD}/2 \)
14.3 DYNAMIC OPERATION OF THE CMOS INVERTER

Determining the Propagation Delay

- Evaluated by charging/discharge the output capacitor \(C \) through \(Q_P \) and \(Q_N \)
- Average current method:
 - \(t_{PHL} \):
 \[
 I_{av} = \frac{1}{2} \left[i_{DN}(E) + i_{DN}(M) \right]
 \]
 \[
 i_{DN}(E) = \frac{1}{2} k_n (V_{DD} - V_m)^2
 \]
 \[
 i_{DN}(M) = k_n \left((V_{DD} - V_m) \left(\frac{V_{DD}}{2} \right) - \frac{1}{2} \left(\frac{V_{DD}}{2} \right)^2 \right)
 \]
 \[
 t_{PHL} = \frac{CV_{DD}}{2I_{av}} = \frac{\alpha_n C}{k_n V_{DD}}
 \]
 where \(\alpha_n = 2 \left[\frac{7}{4} - \frac{3V_m}{V_{DD}} + \frac{V_m^2}{V_{DD}^2} \right] \)
 - \(t_{PLH} \):
 \[
 t_{PLH} = \frac{CV_{DD}}{2I_{av}} = \frac{\alpha_p C}{k_p V_{DD}}
 \]
 where \(\alpha_p = 2 \left[\frac{7}{4} - \frac{3V_{pp}}{V_{DD}} + \frac{V_{pp}^2}{V_{DD}^2} \right] \)
 - Propagation delay: \(t_p = (t_{PHL} + t_{PLH})/2 \)
An alternative approach:
- Modeling the turn-on device as a resistance
- Use RC charge/discharge behavior to evaluate the propagation delay
- The empirical values of the resistors are given by
 \[R_N = \frac{12.5}{(W/L)_n} \text{k}\Omega \quad \text{and} \quad R_P = \frac{30}{(W/L)_p} \text{k}\Omega \]
- \(t_{PHL} = 0.69 R_N C \)
- \(t_{PLH} = 0.69 R_P C \)
Determining the Equivalent Load Capacitance

- Components accountable for the equivalent load capacitance
 - Transistor parasitic capacitances
 - Wiring capacitance or interconnect capacitance
 - Input capacitance of the following stages

\[
C = 2C_{gd1} + 2C_{gd2} + C_{db1} + C_{db2} + C_{g3} + C_{g4} + C_w
\]
Inverter Sizing

- Minimum length permitted by the technology is usually used as the length for all channels
- Device aspect ratio \((W/L)_n\) is usually selected in the range 1 to 1.5
- The selection of \((W/L)_n\) is relative to \((W/L)_n\)
 - Matched inverter by \((W/L)_p : (W/L)_n = \mu_n : \mu_p\)
 - \((W/L)_p = (W/L)_n\): minimum area, small propagation delay
 - \((W/L)_p = 2(W/L)_n\): a frequently used compromise
- Transistor sizing (aspect ratios are increased by a factor of \(S\)) versus propagation delay
 - Load capacitance: \(C = C_{\text{int}} + C_{\text{ext}} = SC_{\text{int0}} + C_{\text{ext}}\)
 - Equivalent resistance: \(R_{eq} = \frac{1}{2} \left(\frac{R_N}{S} + \frac{R_p}{S} \right) = \frac{R_{eq0}}{S}\)
 - Propagation delay:
 \[t_p = 0.69 \left(\frac{R_{eq0}}{S} \right) \left(SC_{\text{int0}} + C_{\text{ext}} \right) = 0.69 \left(R_{eq0}C_{\text{int0}} + \frac{1}{S} R_{eq0}C_{\text{ext}} \right) \]

Dynamic Power Dissipation

- Dynamic power dissipation: \(P_d = fCV_{DD}^2\)
- Peak current: \(I_{\text{peak}} = \frac{1}{2} k_n \left(\frac{V_{DD}}{2} - V_m \right)^2\)

\[\begin{align*}
 & \text{I} \quad \text{I}_{\text{peak}} \\
 & V_m \quad 0 \quad \frac{V_{DD}}{2} \\
 & V_{DD} \quad 0 \quad \frac{V_{DD}}{2} \\
 & V_{DD} \quad 0
\end{align*}\]
The PDN can be most directly synthesized by expressing \overline{Y}.

The PUN can be most directly synthesized by expressing Y.

The PDN can be obtained from the PUN (and vice versa) using duality property.

However, duality of the PDN and PUN is not a necessary condition.
Transistor Sizing

- The (W/L) ratios are chosen for a worst-case gate delay equal to that of the basic inverter.
- The derivation of equivalent (W/L) ratio is based on the equivalent resistance of the transistors.

\[r_{DS} \propto (W/L)^{-1} \]

- Series Connection \((W/L)_{eq} = \left[\frac{1}{(W/L)_1} + \frac{1}{(W/L)_2} + \ldots \right]^{-1} \)
- Parallel Connection \((W/L)_{eq} = (W/L)_1 + (W/L)_2 + \ldots \)

Effects of Fan-In and Fan-Out

- Each additional input to a CMOS gate requires two additional transistors.
- Increases the chip area and the propagation delay due to excess capacitive loading.
- The number of NAND gate is typically limited to 4.
- Redesign the logic design may be required for a higher number of inputs.
- Advantages of using CMOS logic: static power dissipation, ratioless design, noise margin.
- Disadvantage of using CMOS logic: area, complexity, capacitive loading, propagation delay.
Examples for CMOS Logic Gates

\[Y = A + B \]

\[Y = \overline{A} \overline{B} \]

\[Y = A(B + CD) \]
14.5 IMPLICATIONS OF TECHNOLOGY SCALING

Moore’s Law

- A new technology is developed for every 2~3 years due to cost and speed requirement
- The trend was predicted more than 40 years ago by Gordon Moore
- For every new technology generation:
 - The minimum length is reduced by a factor of 1.414 and the area is reduced by a factor of 2
 - The cost is reduced by half or the circuit complexity is doubled
 - Device scaling generally decreases the parasitics and enhances the operating speed
 - The operating power is reduced
- The current technology node advances into deep-submicron
- Issues in deep-submicron technologies have to be taken into account for circuit designs
Scaling Implications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Relationship</th>
<th>Scaling Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W, L, t_{ox}</td>
<td>$1/S$</td>
</tr>
<tr>
<td>2</td>
<td>V_{DD}, V_i</td>
<td>$1/S$</td>
</tr>
<tr>
<td>3</td>
<td>Area/Device</td>
<td>WL</td>
</tr>
<tr>
<td>4</td>
<td>C_{ox}</td>
<td>e_{ox}/t_{ox}</td>
</tr>
<tr>
<td>5</td>
<td>$k_n^, k_p^$</td>
<td>μ_nC_{ox}, μ_pC_{ox}</td>
</tr>
<tr>
<td>6</td>
<td>C_{gate}</td>
<td>WLC_{ox}</td>
</tr>
<tr>
<td>7</td>
<td>t_p (intrinsic)</td>
<td>$\alpha C/\kappa V_{DD}$</td>
</tr>
<tr>
<td>8</td>
<td>Energy/Switching cycle (intrinsic)</td>
<td>CV_{DD}^2</td>
</tr>
<tr>
<td>9</td>
<td>P_{dyn}</td>
<td>$f_{max}CV_{DD}^2 = \frac{CV_{DD}^2}{2t_p}$</td>
</tr>
<tr>
<td>10</td>
<td>Power density</td>
<td>$P_{dyn}/\text{Device area}$</td>
</tr>
</tbody>
</table>
Velocity Saturation

- Long-channel devices:
 - Drift velocity: \(v_n = \mu_n E \)
 - Electric field in the channel: \(E = \frac{V_{DS}}{L} \)
- Short-channel devices:
 - Velocity saturates at a critical field \(E_{cr} \) with \(v_{sat} \approx 10^7 \text{ cm/s} \)
 - The \(V_{DS} \) at which velocity saturates is denoted by \(V_{DS_{sat}} \)
 - \(V_{DS_{sat}} = E_{cr}L = \frac{v_{sat}L}{\mu_n} \)
 - \(V_{DS_{sat}} \) is a device parameter

The I-V Characteristics

- Long-channel devices
 - Saturation current: \(i_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t)^2 \)
- Short-channel devices
 - For \(V_{GS} - V_t < V_{DS_{sat}} \): same as long-channel devices
 - For \(V_{GS} - V_t > V_{DS_{sat}} \):
 \[
 I_{D_{sat}} = \mu_n C_{ox} \frac{W}{L} \left[\left(V_{GS} - V_t \right) V_{DS_{sat}} - \frac{1}{2} V_{DS_{sat}}^2 \right] \\
 = WC_{ox} v_{sat} \left(V_{GS} - V_t - \frac{1}{2} V_{DS_{sat}} \right)
 \]
Current Equation for Velocity Saturation

- For $v_{GS} \geq V_t \geq V_{DSsat}$ and $v_{DS} \geq V_{DSsat}$, the drain current is given by
 \[
 i_D = \mu_C \frac{W}{L} V_{DSsat} \left(v_{GS} - V_t - \frac{1}{2} V_{DSsat} \right) \left(1 + \lambda V_{DS} \right)
 \]
 - The current is reduced from the prediction of a long-channel device
 - The dependence on v_{GS} is more linear rather than quadratic

- Four regions of operation: cutoff, triode, saturation and velocity saturation
- Short-channel PMOS transistors undergo velocity saturation at the same value of v_{sat}
- The effects on PMOS are less pronounced due to lower mobility and higher V_{DSsat}
Subthreshold Conduction

- The device is not complete off in deep-submicron devices as $v_{GS} < V_t$
- The subthreshold current is exponentially proportional to v_{GS}: $i_D = I_s \exp(v_{GS}/nV_T)$
- It is a problem in digital IC design for two reasons:
 - Such current leads to nonzero static power dissipation for CMOS logics
 - May cause undesirable discharge of capacitors in dynamic CMOS logics

The Interconnect

- The width of the interconnect scales down with the CMOS technology
- The metal wire is no longer an ideal short
 - Series parasitic resistance may cause undesirable voltage drop and excess delay
 - Parasitic capacitance to ground may lead to speed degradation and additional dynamic power