CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

Chapter Outline

- 15.1 CMOS Logic-Gate Circuits
- 15.2 Digital Logic Inverters
- 15.3 The CMOS Inverter
- 15.4 Dynamic Operation of the CMOS Inverter
- 15.5 Transistor Sizing
- 15.6 Power Dissipation

15.1 CMOS Logic-Gate Circuits

Switch-Level Transistor Model

General Structure of CMOS Logic

NMOS pull-down network (PDN) and PMOS pull-up network (PUN) operated by input variables in a complementary fashion

Alternative Circuit Symbols for MOSFETS in Digital Circuits

Two-Input Logic Gates

□ Two-input NOR gate, two-input NAND gate and Exclusive-OR gate

Synthesis Method for PUN and PDN

- □ The PDN can be directly synthesized by expressing the **inverted** Boolean function in **uncomplemented** variables (inverters are needed if complemented variables appear in the expression)
- □ The PUN can be directly synthesized by expressing the **nonverted** Boolean function in **complemente**d variables (inverters are needed if uncomplemented variables appear in the expression)
- The PUN can be also obtained from the PDN (and vice versa) using the duality property

Examples for CMOS Logic Gates

15.2 Digital Logic Inverters

The Voltage-Transfer Characteristic (VTC)

□ The function of the inverter is to invert the logic value of its input signal

□ The voltage-transfer characteristic is used to evaluate the quality of inverter operation

□ VTC parameters

- V_{OH} : output high level
- V_{OL} : output low level
- V_{IH} : the minimum value of input interpreted by the inverter as a logic 1
- $V_{\rm IL}$: the maximum value of input interpreted by the inverter as a logic o
- **Transition region: input level between** $V_{\rm IL}$ and $V_{\rm IH}$

Noise Margins

□ The VTC is generally non-linear

 \Box V_{IH} and V_{IL} are defined as the points at which the slope of the VTC is -1

 \Box Robustness (noise margin at a high level): $NM_{\rm H} = V_{\rm OH} - V_{\rm IH}$

 \Box Robustness (noise margin at a low level): $NM_{\rm L} = V_{\rm IL} - V_{\rm OL}$

□ Static inverter characteristics for ideal VTC:

NTUEE Electronics III

Propagation Delay

- $\Box t_{PHL}$: high-to-low propagation delay
- $\Box t_{PLH}$: low-to-high propagation delay
- $\Box t_{\rm P}$ (propagation delay) = $(t_{\rm PLH}+t_{\rm PHL})/2$
- \Box Maximum switching frequency $f_{\text{max}} = 1/2t_{\text{P}}$

□ The output transient of the inverter can be characterized by a *RC* charge/discharge model

Inverter Implementation

□ Simplest implementation of the inverter with a MOSFET and a load

□ Inverter implementation with complementary switches

□ Inverter implementation with a double-throw switch

NTUEE Electronics III

15.3 The CMOS Inverter

Circuit Operation

- A CMOS inverter consists of an n-channel and a p-channel MOSFET
- The n-channel device turns on and the p-channel device turns off as the input level goes high
- □ The p-channel device turns on and the n-channel device turns off as the input level goes low

□ The turn-on device is modeled by a resistance: $r_{DSN} = [k_n (W/L)_n (V_{DD} - V_{in})]^{-1}$ and $r_{DSP} = [k_p (W/L)_p (V_{DD} - |V_{ip}|)]^{-1}$ □ $V_{OH} = V_{DD}$ and $V_{OL} = 0$ for any CMOS inverter

NTUEE Electronics III

 \Box The transistors go through five different operation regions as the input goes from o to V_{DD}

Region I:
$$(Q_{N} \text{ off; } Q_{P} \text{ tri.})$$

$$i_{DN}(=0) = i_{DP}$$
Region II: $(Q_{N} \text{ sat.; } Q_{P} \text{ tri.})$

$$i_{DN} = \frac{1}{2}k_{n}(v_{I} - V_{in})^{2} = i_{DP} = k_{p}\left[(V_{DD} - v_{I} - |V_{ip}|)(V_{DD} - v_{O}) - \frac{1}{2}(V_{DD} - v_{O})^{2}\right]$$
Region III: $(Q_{N} \text{ sat; } Q_{P} \text{ sat})$

$$i_{DN} = \frac{1}{2}k_{n}(v_{I} - V_{in})^{2} = i_{DP} = \frac{1}{2}k_{p}(V_{DD} - v_{I} - |V_{ip}|)^{2}$$
Region IV: $(Q_{N} \text{ tri.; } Q_{P} \text{ sat.})$

$$i_{DN} = k_{n}\left[(v_{I} - V_{in})v_{O} - \frac{1}{2}v_{O}^{2}\right] = i_{DP} = \frac{1}{2}k_{p}(V_{DD} - v_{I} - |V_{ip}|)^{2}$$
Region V: $(Q_{N} \text{ tri.; } O_{P} \text{ off})$

$$i_{DN} = i_{DP}(=0)$$

Static Characteristics of the CMOS Inverter

 \Box Ratioless logic: V_{OH} and V_{OL} are independent of ratio of the transistors

$$V_{\rm OH} = V_{\rm DD}$$

$$\mathbf{V}_{OL} = \mathbf{0}$$

□ Static power dissipation is zero for both states

□ Noise margins can be determined by the VTC

 \Box The switching voltage (when $v_{I} = v_{O}$) is defined by

 Q_N in saturation

Vol

 O_P in triode region

NTUEE Electronics III

15-13

The Matched Inverter

□ A matched inverter has equivalent pull-up and pull-down device with $k_n = k_p$ and $V_{tn} = |V_{tp}| = V_t$ □ The VTC is symmetric

 \Box Determine V_{IL} from the VTC in Region II:

$$\frac{1}{2}(v_{I} - V_{t})^{2} = \left[(V_{DD} - v_{I} - V_{t})(V_{DD} - v_{O}) - \frac{1}{2}(V_{DD} - v_{O})^{2} \right]$$
$$v_{I} - V_{t} = -(V_{DD} - v_{O}) - (V_{DD} - v_{I} - V_{t})\frac{dv_{O}}{dv_{I}} + (V_{DD} - v_{O})\frac{dv_{O}}{dv_{I}}$$
$$V_{IL} = \frac{1}{9}(3V_{DD} + 2V_{t})$$

 \Box Determine $V_{\rm IH}$ from the VTC in Region IV:

$$(v_{I} - V_{t})v_{o} - \frac{1}{2}v_{o}^{2} = \frac{1}{2}(V_{DD} - v_{I} - V_{t})^{2}$$
$$v_{o} + (v_{I} - V_{t})\frac{dv_{o}}{dv_{I}} - v_{o}\frac{dv_{o}}{dv_{I}} = -(V_{DD} - v_{I} - V_{t})$$
$$V_{IH} = \frac{1}{8}(5V_{DD} - 2V_{t})$$

□ Noise margins: $NM_{\rm H} = NM_{\rm L} = ({}_{3}V_{\rm DD} + {}_{2}V_{\rm t})/8$ □ Switching voltage: $V_{\rm M} = V_{\rm DD}/2$

15.4 Dynamic Operation of the CMOS Inverter

Determining the Propagation Delay

 \Box Evaluated by charging/discharge the output capacitor C through $Q_{\rm P}$ and $Q_{\rm N}$

- Average current method: V_{DD} UII $\blacksquare t_{\rm PHL}$: V_{DD} $I_{av} = \frac{1}{2} [i_{DN}(E) + i_{DN}(M)]$ $i_{DN}(E) = \frac{1}{2}k_n(V_{DD} - V_{tn})^2$ VIO $\downarrow^{i_{DN}}$ 1_{PHL} $\leftarrow t_{PLH}$ V_{DD} $i_{DN}(M) = k_n \left[(V_{DD} - V_{in}) \left(\frac{V_{DD}}{2} \right) - \frac{1}{2} \left(\frac{V_{DD}}{2} \right)^2 \right]$ V_{DD} $t_{PHL} = \frac{CV_{DD}}{2I_{m}} = \frac{\alpha_n C}{k_n V_{DD}}$ Operating where $\alpha_n = 2 / \left[\frac{7}{4} - \frac{3V_{tn}}{V_{DD}} + \frac{V_{tn}^2}{V_{DD}^2} \right]$ IDN A point at t = 0 + $v_{GSN} = V_{DD}$ V_{DD} E $\blacksquare t_{\rm PLH}$: IDN Capacitor discharge $t_{PLH} = \frac{CV_{DD}}{2I_{av}} = \frac{\alpha_p C}{k_p V_{DD}}$ through Q_N Operating point Operating where $\alpha_p = 2 \left[\frac{7}{4} - \frac{3 |V_{tp}|}{V_{DD}} + \frac{V_{tp}^2}{V_{DD}^2} \right]$ after switching point at is completed t = 0 -D $\frac{V_{DD}}{2}$ VDD vo $(V_{DD} - V_t)$
 - Propagation delay: $t_{\rm P} = (t_{\rm PHL} + t_{\rm PLH})/2$

□ An alternative approach:

- Modeling the turn-on device as a resistance
- Use RC charge/discharge behavior to evaluate the propagation delay
- The empirical values of the resistors are given by

$$R_N = \frac{12.5}{(W/L)_n} (k\Omega)$$
 and $R_P = \frac{30}{(W/L)_p} (k\Omega)$

- t_{PHL} = 0.69 $R_{\text{N}}C$ and t_{PLH} = 0.69 $R_{\text{P}}C$
- Step function at input may underestimate propagation delay $\rightarrow t_{PHL} \cong R_N C$ and $t_{PLH} \cong R_P C$

NTUEE Electronics III

Determining the Equivalent Load Capacitance

- □ Components accountable for the equivalent load capacitance
 - Transistor parasitic capacitances from Q_1 and Q_2 (intrinsic component)
 - Input capacitance of the following stages (extrinsic component)
 - Wiring capacitance or interconnect capacitance (extrinsic component)

NTUEE Electronics III

15.5 Transistor Sizing

Inverter Sizing

□ Minimum length permitted by the technology is usually used as the length for all channels

 \Box Device aspect ratio $(W/L)_n$ is usually selected in the range 1 to 1.5

 \Box The selection of $(W/L)_p$ is relative to $(W/L)_n$

• Matched inverter by $(W/L)_p : (W/L)_n = \mu_n : \mu_p$

 \blacksquare $(W/L)_p = (W/L)_n$: minimum area, small propagation delay

■ $(W/L)_p = 2(W/L)_n$: a frequently used compromise

 \Box Transistor sizing (aspect ratios are increased by a factor of *S*) versus propagation delay

• Load capacitance: $C = C_{int} + C_{ext} = SC_{int0} + C_{ext}$

Equivalent resistance:
$$R_{eq} = \frac{1}{2} \left(\frac{R_N}{S} + \frac{R_P}{S} \right) = \frac{R_{eq0}}{S}$$

Propagation delay: $t_P = 0.69 \left(\frac{R_{eq0}}{S} \right) (SC_{int0} + C_{ext}) = 0.69 \left(R_{eq0}C_{int0} + \frac{1}{S}R_{eq0}C_{ext} \right)$

 \Box The propagation decreases as *S* increases for cases where *C*_{ext} dominates

 \Box The propagation is nearly independent of the transistor sizing (*S*) for cases where C_{int} dominates

Effects of Fan-In and Fan-Out

Each additional input to a CMOS gate requires two additional transistors

□ Increases the chip area and the propagation delay due to excess capacitive loading

The number of NAND gate is typically limited to 4

□ Redesign the logic design may be required for a higher number of inputs

Advantages of using CMOS logic: static power dissipation, ratioless design, noise margin

Disadvantage of using CMOS logic: area, complexity, capacitive loading, propagation delay

Driving a Large Capacitance

- □ A large capacitive load drastically increases the propagation delay
- □ Use a large inverter to drive the load could alleviate the propagation delay
- □ The input capacitance increases accordingly equivalently shifting the burden forward
- □ Chain of scaled inverters in cascade to alleviate the problem with large capacitive load

15. 6 Power Dissipation

Power Dissipation

□ Static power dissipation: power dissipated when the inverter stays in logic 0 or logic 1

Dynamic power dissipation: power dissipated as the output is switching

• $0.5C(V_{DD})^2$ is dissipated in the PUN in each cycle

• $0.5C(V_{DD})^2$ is dissipated in the PDN in each cycle

• Dynamic power dissipation: $P_D = f C(V_{DD})^2$

□ Another component of power dissipation during switching results from the current conduction through Q_P and Q_N and the peak current for a matched inverter is given by

Power-Delay Product and Energy-Delay Product

□ Power and delay are often in conflict for inverter operation

□ Power-delay product is a figure-of-merit for comparing logic-circuit technologies or families

D Power-delay product is defined as $PDP = P_D t_P = CV_{DD}^2 / 2$

 \Box Energy-delay product (energy per transition) is defined as $EDP = CV_{DD}^2 t_P / 2$