CHAPTER 16 MEMORY CIRCUITS

Chapter Outline
16.1 Latches and Flip-Flops
16.2 Semiconductor Memories: Types and Architectures
16.3 Random-Access Memory (RAM) Cells
16.4 Sense-Amplifier and Address Decoders
16.5 Read-Only Memory (ROM)
16.1 LATCHES AND FLIP-FLOPS

Logic Classifications

- Combinational circuits: the output depends only on the present value of the input
- Sequential circuits: the output depends not only on the present input values but also on the previous values
- Static sequential circuits: use positive feedback to provide two stable states (bistable)
- Dynamic sequential circuits: use the storage of charge on a capacitor

Latch

- Exhibits two stable operating points and one unstable operating point
- The latch needs to be triggered to change stage
- The latch together with the triggering circuitry forms a flip-flop
The SR Flip-Flop

- The latch is triggered by input S and R
 - \(S = 1 \) and \(R = 0 \) \(\rightarrow \) \(Q = 1 \)
 - \(S = 0 \) and \(R = 1 \) \(\rightarrow \) \(Q = 0 \)
 - \(S = 0 \) and \(R = 0 \) \(\rightarrow \) \(Q \) unchanged
 - \(S = 0 \) and \(R = 0 \) \(\rightarrow \) \(Q \) undefined (not allowed).

CMOS Implementation of SR Flip-Flop

- The flip-flop is set by \(S \) and \(R \) when the clock \(\phi \) is high
 - \(Q_5 \) and \(Q_6 \) should be able to pull the output node at least below the threshold of inverter \((Q_3, Q_4)\)
 - The period of the set signal should be long enough to cause regeneration to take over
- The state is latched when the clock \(\phi \) is low
- No static power dissipation (no conducting path between \(V_{DD} \) and ground except during switching)
D Flip-Flop Circuits

- Simple implementation of the D flip-flop:
 - \(\phi = 1 \) and \(\bar{\phi} = 0 \): the loop is open and \(Q \) is determined by \(D \)
 - \(\phi = 0 \) and \(\bar{\phi} = 1 \): the loop is closed and the flip-flop is in latch mode
 - Two-phase non-overlapping clock is required for D flip-flop operation
 - Major drawback: the output simply follows the signal on the D input line during \(\phi \)

- Master-slave D flip-flop:
16.2 SEMICONDUCTOR MEMORIES

Memory Types

- Random-access memory (RAM): access time is independent of the physical location of the stored info
- Sequential memories: data are available only in the same sequence in which the data were stored
- Read/write memory: permits data to be stored and retrieved at comparable speeds
- Read-only memory (ROM): only permits reading operation

Memory-Chip Organization

- The bits on a memory chip are either individually addressable (64M × 1) or addressable in groups (16M × 4)
- The increase in word line and bit line lengths slows down their transient response due to larger R and C
- Memory chip is partitioned into a number of blocks to improve the transient response

Memory-Chip Timing

- Memory access time: the time between the initiation of a read operation and the data at the output
- Memory cycle time: the minimum time allowed between two consecutive memory operations.
- Access time and cycle time are in the range of a few to few hundred nanoseconds
16.3 RANDOM-ACCESS MEMORY (RAM) CELLS

RAM Cells
- It is imperative to reduce the cell size for a large number of bits on a chip
- The power dissipation should be minimized for RAM cells
- There are two basic types of MOS RAMs:
 - Static (SRAM): utilize static latches as the storage cells. (≈ 6 transistors/cell)
 - Dynamic (DRAM): store binary data on capacitors and require periodic refreshing. (≈ 1T+1C/cell)
- Both static and dynamic RAMs are volatile

Static Memory Cell
- A typical static memory cell comprises a latch (two cross-coupled inverters) and two access transistors
- The access transistors are turned on when the word line is selected
- The complementary bit lines are connected to the latch when the cell is selected

![Static Memory Cell Diagram](image-url)
Read Operation of SRAM

- The complementary bit lines are precharged to an intermediate voltage between V_{DD} and ground
- The bit lines are connected to the latches through access transistors when the cell is selected
- A differential voltage develops between complementary bit lines
- The voltage change v_G and v_B should be sufficiently small not to change the latch state during readout
- The read operation in an SRAM is nondestructive
- Readout delay is determined by the rise time of word line and time needed to develop the required voltage
- The dynamic operation can be approximated by treating Q_1 and Q_5 as r_{ON1} and r_{ON5}
- The larger ($W/L)_5$, the faster the v_B develops
- The smaller ($W/L)_5$, the smaller voltage change for v_B
Design Constraint for Read Operation

- The worst case scenario is to choose a precharge value of V_{DD}
- Q_5 operates in saturation region and Q_1 operates in triode region:
 \[I_5 = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_5 (V_{DD} - V_m - V_0)^2 = I_1 = \mu_n C_{ox} \left(\frac{W}{L} \right)_1 (V_{DD} - V_m) V_0 - \frac{1}{2} V_0^2 \]
- The design constraint is specified by
 \[V_0 = (V_{DD} - V_m) \left(1 - \frac{1}{\sqrt{1 + \frac{(W/L)_5}{(W/L)_1}}} \right) \leq V_m \rightarrow \frac{(W/L)_5}{(W/L)_1} \leq \frac{1}{\left(1 - \frac{V_m}{V_{DD} - V_m} \right)^2} - 1 \]
- The voltage change in v_Q will be very small
- The \overline{B} line is discharged by I_5 at the beginning:
 \[\Delta V = I_5 \Delta t / C_{\overline{B}} \]
- The time needed to develop a voltage difference ΔV is
 \[\Delta t = C_{\overline{B}} \Delta V / I_5 \]
- The \overline{B} line will be finally discharged to 0 in steady state
- Sense amplifiers are usually used to speed up the read operation
Write Operation of SRAM

- The complementary bit-lines are respectively set to V_{DD} and ground before the operation.
- The cell is selected by the word line and the cell is connected to the bit lines thru access transistors.
- Q_5 is in saturation and the current for charging capacitor equals to $I_5 - I_1$.
- I_5 decreases (due to reduced v_{GS5} and body effect) and I_1 increases (due to reduced v_{GS1}) as $v_{\bar{Q}}$ increases.
- When $v_\bar{Q}$ and $v_\bar{Q}$ reach $V_{DD}/2$, the regenerative feedback initiates and cause the flip-flop to change state.
- Write delay is determined by the time for $v_\bar{Q}$ and $v_\bar{Q}$ to reach $V_{DD}/2$ and the delay time of the flip-flop.
- The charging (discharging) component of write delay is much smaller than the corresponding component in the read operation because only small capacitance C_Q needs to be charged (discharged).
- The delay time in write operation is dominated by the word-line delay.

\[\text{NTU EE Electronics III} \quad 16-9\]
Design Constraint for Write Operation

- \(Q_4 \) operates in saturation region and \(Q_6 \) operates in triode region:

\[
I_s = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right) (V_{DD} - |V_{in}|)^2 = I_6 = \mu_n C_{ox} \left(\frac{W}{L} \right) \left[(V_{DD} - V_{in}) V_Q - \frac{1}{2} V_Q^2 \right]
\]

- The design constraint is specified by

\[
V_Q = (V_{DD} - V_{in}) \left(1 - \frac{\mu_p (W / L)_4}{\mu_n (W / L)_6} \right) \leq V_{in} \Rightarrow \frac{(W / L)_4}{(W / L)_6} \leq \frac{\mu_p}{\mu_n} \left[1 - \left(1 - \frac{V_{in}}{V_{DD} - V_{in}} \right)^2 \right]
\]

Design Procedure of the SRAM Cell

- The aspect ratios of the PMOS and NMOS devices in the latch are determined
- Choose the aspect ratio of the access transistors carefully
 - Read operation specifies the upper limit of the device size
 - Write operation specifies the lower limit of the device size
Dynamic RAM Cell

- One-transistor cell: one transistor and one capacitor per cell
- Only one bit line is used in DRAMs
- When the cell is storing a 1, the capacitor is charged to $V_{DD} - V_t$
- When the cell is storing a 0, the capacitor is discharged to 0V
- Refresh operation must be performed every 5 to 10 ms

Read Operation

- The bit lines are precharged to $V_{DD}/2$
- The word line is raised to V_{DD} and all the access transistors in the selected row are conductive
- A small voltage difference will be detected in the bit lines
- The read operation is destructive

$$C_S V_{CS} + C_B \frac{V_{DD}}{2} = (C_B + C_S) \left(\frac{V_{DD}}{2} + \Delta V \right)$$

$$\Delta V = \frac{C_S}{C_B + C_S} \left(V_{CS} - \frac{V_{DD}}{2} \right) \approx \frac{C_S}{C_B} \left(V_{CS} - \frac{V_{DD}}{2} \right) \text{ for } C_B >> C_S$$

Write Operation

- The data bit to be written is set to V_{DD} or ground and C_S will be charged or discharged to $V_{DD} - V_t$ or 0V
- All other cells in the selected row perform write operation at the same time
- Refresh operation: a read operation followed by a write operation for stored data
16.4 SENSE AMPLIFIERS AND ADDRESS DECODERS

Operation of Sense Amplifier

- A sense amplifier is formed by a latch with two cross-coupled CMOS inverters
- Q_5 and Q_6 connect the sense amplifier to V_{DD} and ground when data-sensing action is required
- Precharge and equalization circuit is controlled by ϕ_p prior to a read operation (Q_8 and Q_9 precharge the bit lines to $V_{DD}/2$; transistor Q_7 helps speed up this process by equalizing the voltages on the two lines)
- Complete read operation:
 - The precharge and equalization circuit is activated by ϕ_p and complementary bit lines are set to $V_{DD}/2$
 - Word line goes up and the cell is connected to bit lines
 - The sense amplifier turned on by ϕ_s as an adequate difference voltage signal is developed between the bit lines by the storage cell
 - The data stored in the cell is refreshed as the sense amplifier pulls the bit lines to V_{DD} and ground
Dynamic Operation of Sense Amplifier

- When the sense amplifier is activated, both inverters are biased in transition region ($V_{IN} = V_{DD}/2$)
- With input signal v_i, the resulting output signal $(g_{mp} + g_{mn})v_i$ is fed back to the input (positive feedback)
- The bit line voltage rises/decays exponentially with a time constant of C_B/G_m under small-signal operation
- As the voltage deviates from $V_{DD}/2$, the it tends to saturate at V_{DD} or ground (large-signal operation)

Read-1 operation: $v_B = \frac{V_{DD}}{2} + \Delta V(1)e^{\left(\frac{G_m}{C_B}\right)t}$

Read-0 operation: $v_B = \frac{V_{DD}}{2} - \Delta V(0)e^{\left(\frac{G_m}{C_B}\right)t}$
An Alternative Sense Amplifier

- A differential amplifier with a current mirror as the active load
- The charging/discharging current is defined by the bias current I
- The voltage difference developed by the sense amplifier: $\Delta V = \frac{I \Delta t}{C}$
- The voltage required for complete current switching: $\Delta V = \sqrt{2} V_{OV}$

Alternative Precharging Arrangement
Differential Operation in Dynamic RAMs

- Each bit line is split into two identical halves
- Each half-line is connected to half the cells in the column and an additional dummy cell
- The dummy cell serves as the other half of a differential DRAM cell
- During precharge phase, two dummy cells are precharged to $V_{DD}/2$
- Differential signal $\Delta V(1)$ or $\Delta V(0)$ is detected by the sense amplifier when it is enabled

"NTUEE Electronics III" 16-15
Row-Address Decoder

- The decoder can be realized by NOR functions provided by the matrix structure → NOR decoder
- The word lines are precharged to V_{DD} during precharge
- All the unselected word lines will be discharged
- No static power dissipation due to dynamic operation

\[
W_0 = \overline{A_0 A_1 A_2} = A_0 + A_1 + A_2
\]
\[
W_1 = \overline{A_0 A_1 A_2} = A_0 + A_1 + A_2
\]
\[
W_2 = \overline{A_0 A_1 A_2} = A_0 + A_1 + A_2
\]
\[
W_3 = \overline{A_0 A_1 A_2} = A_0 + A_1 + A_2
\]
\[
W_4 = \overline{A_0 A_1 A_2} = A_0 + A_1 + A_2
\]
\[
W_5 = \overline{A_0 A_1 A_2} = A_0 + A_1 + A_2
\]
\[
W_6 = \overline{A_0 A_1 A_2} = A_0 + A_1 + A_2
\]
\[
W_7 = \overline{A_0 A_1 A_2} = A_0 + A_1 + A_2
\]
Column-Address Decoder

- Column-address decoder is to connect one of the 2^N bit lines to the data I/O line of the chip.
- It exhibits the same function as a multiplexer.
- Pass-transistor logic decoder:
 - A NOR decoder + pass-transistor multiplexer
- Tree decoder:
 - Utilize smaller number of transistors
 - Speed decreases due to a relatively large number of series transistors in the signal path
Pulse-Generation Circuits

- The ring oscillator:
 - Generates periodic output waveforms
 - Odd number of stages in the loop
 - The oscillation frequency is $1/2Nt_p$

- A one-shot or monostable multivibrator circuit
 - A single output pulse with a predetermined width is provided when triggered
 - The width is determined by Nt_p
16.5 READ-ONLY MEMORY (ROM)

MOS ROM

- The circuit can be in a static or a dynamic form
- The data stored in the ROMs is determined at the time of fabrication

Mask-Programmable ROMs

- Mask programmable ROMs can avoid having custom design each ROM from scratch
- MOSFETs are included at all bit locations but only the gates of those transistors where 0’s are to be stored are connected to the word lines
Programmable ROM (PROM)
- The data can be programmed by the user, but only once
- A typical PROM uses polysilicon fuses to connect the emitter of each BJT to the digital line

Erasable Programmable ROM (EPROM)
- The data can be erased and reprogrammed as many times by the uses
- A floating-gate transistor can be used for EPROM at all bit locations as memory cells (stacked-gate cells)
- Programming process:
 - Apply high voltage to the select gate and between the source and the drain
 - Hot electrons are injected into the floating gate and become trapped
 - After the programming process, the programmed transistors exhibit high threshold voltage
 - The process of charging is self-limiting as the charge accumulation increases
Erasure process:
- Illuminate the cell with UV light for a specified duration
- The UV light provides the trapped electrons sufficient energy to transported back to the substrate