CHAPTER 16 ADVANCED MOS AND BIPOLAR LOGIC CIRCUITS

Chapter Outline

- 16.1 Implications of Technology Scaling
- 16.2 Digital IC Technology, Logic-Circuit Family and Design Methodologies
- 16.3 Pseudo-NMOS Logic Circuits
- 16.4 Pass-Transistor Logic Circuits
- 16.5 Dynamic MOS Logic Circuits

16.1 Implications of Technology Scaling

Moore's Law

- □A new technology is developed for every 2~3 years due to cost and speed requirement
- ☐ The trend was predicted more than 40 years ago by Gordon Moore
- □ For every new technology generation:
 - The minimum length is reduced by a factor of 1.414 and the area is reduced by a factor of 2
 - The cost is reduced by half or the circuit complexity is doubled
 - Device scaling generally decreases the parasitics and enhances the operating speed
 - The operating power is reduced
- ☐ The current technology node advances into deep-submicron
- ☐ Issues in deep-submicron technologies have to be taken into account for circuit designs

Scaling Implications

Implications of Device and Voltage Scaling					
	Parameter	Relationship	Scaling Factor		
1	W, L, t_{ox}		1/S		
2	V_{DD} , V_t		1/S		
3	Area/Device	WL	$1/S^2$		
4	C_{ox}	ε_{ox}/t_{ox}	S		
5	k'_n, k'_p	$\mu_n C_{ox},\mu_p C_{ox}$	S		
6	$C_{ m gate}$	WLC_{ox}	1/S		
7	t_P (intrinsic)	$\alpha C/KV_{DD}$	1/S		
8	Energy/Switching cycle (intrinsic)	CV_{DD}^2	$1/S^3$		
9	$P_{ m dyn}$	$f_{\text{max}}CV_{DD}^2 = \frac{CV_{DD}^2}{2t_P}$	$1/S^2$		
10	Power density	P _{dyn} /Device area	1		

Velocity Saturation

- ☐ Long-channel devices:
 - Drift velocity: $v_n = \mu_n E$
 - Electric field in the channel: $E = v_{DS}/L$
- ☐ Short-channel devices:
 - Velocity saturates at a critical field E_{cr} with $v_{sat} \cong 10^7$ cm/s
 - The v_{DS} at which velocity saturates is denoted by V_{DSsat}
 - $\blacksquare V_{\text{DSsat}} = E_{\text{cr}}L = v_{\text{sat}}L/\mu_{\text{n}}$
 - \blacksquare V_{DSsat} is a device parameter

The I-V Characteristics

- ☐ Long-channel devices
 - Saturation current: $i_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} V_t)^2$
- ☐ Short-channel devices
 - For v_{GS} - V_t < V_{DSsat} : same as long-channel devices
 - For v_{GS} - V_t > V_{DSsat} :

$$I_{Dsat} = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_t) V_{DSsat} - \frac{1}{2} V_{DSsat}^2 \right]$$
$$= W C_{ox} V_{sat} \left(V_{GS} - V_t - \frac{1}{2} V_{DSsat} \right)$$

Current Equation for Velocity Saturation

 \square For v_{GS} - $V_t \ge V_{DSsat}$ and $v_{DS} \ge V_{DSsat}$, a general expression of the drain current is given by

$$i_D = \mu_n C_{ox} \frac{W}{L} V_{DSsat} \left(v_{GS} - V_t - \frac{1}{2} V_{DSsat} \right) (1 + \lambda V_{DS})$$

- The current is reduced from the predication of a long-channel device
- The dependence on v_{GS} is more linear rather than quadratic
- ☐ Four regions of operation: cutoff, triode, saturation and velocity saturation
- \square Short-channel PMOS transistors undergo velocity saturation at the same value of v_{sat}
- \Box The effects on PMOS are less pronounced due to lower mobility and higher V_{DSsat}

Subthreshold Conduction

- \Box The device is not complete off in deep-submicron devices as $v_{GS} < V_{t}$
- \Box The subthreshold current is exponentially proportional to v_{GS} : $i_D = I_s \exp(v_{GS}/nV_T)$
- ☐ It is a problem in digital IC design for two reasons:
 - Such current leads to nonzero static power dissipation for CMOS logics
 - May cause undesirable discharge of capacitors in dynamic CMOS logics

The Interconnect

- ☐ The width of the interconnect scales down with the CMOS technology
- ☐ The metal wire is no longer an ideal short
 - Series parasitic resistance may cause undesirable voltage drop and excess delay
 - Parasitic capacitance to ground may lead to speed degradation and additional dynamic power

16.2 Digital IC Technology, Logic-Circuit Families, and Design Methodologies

Logic-Circuit Families

- ☐ Classified by fabrication technology: CMOS, Bipolar, BiCMOS, GaAs
- ☐ Most widely logic-circuit technology is CMOS
- ☐ Various logic families are implemented in CMOS technology

Styles for Digital System Design

- ☐ Assemble the system using standard IC packages of various levels of complexity
- □ Application specific IC (ASIC) with customized digital design when large volume is required
- ☐ Semicustom design:
 - Gate-array (unconnected logic gates) with final customized metallization step
 - Field-programmable gate array (FPGA) can be programmed by the user

16.3 The Pseudo-NMOS Logic Circuits

The Voltage-Transfer Characteristic (VTC)

- ☐ The function of the inverter is to invert the logic value of its input signal
- ☐ The voltage-transfer characteristic is used to evaluate the quality of inverter operation

□ VTC parameters

- V_{OH} : output high level
- $V_{\rm OL}$: output low level
- lacksquare V_{IH} : the minimum value of input interpreted by the inverter as a logic 1
- \blacksquare $V_{\rm IL}$: the maximum value of input interpreted by the inverter as a logic o
- lacktriangle Transition region: input level between $V_{\rm IL}$ and $V_{\rm IH}$

NMOS Inverter Circuits

- ☐ A simple inverter circuit is composed of a NMOS and a load
- ☐ The load can be realized by a resistor or another NMOS device

Pseudo-NMOS Inverters

- ☐ Use a PMOS transistor as the load
- ☐ Does not suffer from body effect
- ☐ Directly compatible with complementary CMOS circuits
- ☐ Area and delay penalties arising from the fan-in in complementary CMOS gate is reduces

Static Characteristics

- ☐ Load curve represents a much lower saturation current
- $\square k_{\rm n}$ is usually greater than $k_{\rm p}$ by a factor of 4 to 10
- \square A ratioed type logic with $r \equiv k_{\rm n}/k_{\rm p}$
- ☐ The logic is typically operated in two extremely cases:
 - $\blacksquare v_{I} = o: v_{O} = V_{OH} = V_{DD}$
 - \blacksquare $v_{\rm I} = V_{\rm DD}$: $v_{\rm O} = V_{\rm OL} > o$ (nonzero $V_{\rm OL}$ for pseudo-NMOS)
- □ The VTC can be derived based on i_{DN} and i_{DP} :

$$i_{DN} = \frac{1}{2} k_n (v_I - V_t)^2 \quad \text{for } v_O \ge v_I - V_t \quad \text{(saturation)}$$

$$i_{DN} = k_n \left[(v_I - V_t) v_O - \frac{1}{2} v_O^2 \right] \quad \text{for } v_O \le v_I - V_t \quad \text{(triode)}$$

$$i_{DP} = \frac{1}{2} k_p (V_{DD} - V_t)^2 \quad \text{for } v_O \le V_t \quad \text{(saturation)}$$

$$i_{DP} = k_p \left[(V_{DD} - V_t) (V_{DD} - v_O) - \frac{1}{2} (V_{DD} - v_O)^2 \right] \quad \text{for } v_O \ge V_t \quad \text{(triode)}$$

Derivation of the VTC

- \square Assume $V_{\rm tn} = |V_{\rm tp}| = V_{\rm t}$ for the derivations
- ☐ Region I (Segment AB):

$$v_O = V_{OH} = V_{DD}$$

☐ Region II (Segment BC):

$$v_O = V_t + \sqrt{(V_{DD} - V_t)^2 - r(v_I - V_t)^2}$$

☐ Region III (Segment CD):

$$r\left[(v_I - V_t)v_O - \frac{1}{2}v_O^2 \right] = \left[(V_{DD} - V_t)(V_{DD} - v_O) - \frac{1}{2}(V_{DD} - v_O)^2 \right]$$

☐ Region IV (Segment DE):

$$v_O = (v_I - V_t) - \sqrt{(v_I - V_t)^2 - \frac{1}{r}(V_{DD} - V_t)^2}$$

☐ Static Characteristics:

$$V_{OH} = V_{DD}$$

$$V_{OL} = (V_{DD} - V_t)(1 - \sqrt{1 - k_p / k_n})$$

$$V_{IH} = V_t + \frac{2}{\sqrt{3k_n / k_p}}(V_{DD} - V_t)$$

$$V_{IL} = V_t + \frac{V_{DD} - V_t}{\sqrt{(k_n / k_p)(k_n / k_p + 1)}}$$

$$NM_H = V_{OH} - V_{IH}$$

$$NM_L = V_{IL} - V_{OL}$$

$$V_M = V_t + \frac{V_{DD} - V_t}{\sqrt{k_n / k_p + 1}}$$

Region	VTC Segment	$Q_{\rm N}$	$Q_{\mathbb{P}}$	Condition
I	AB	Cut-off	Triode	$v_I < V_t$
II	BC	Saturation	Triode	$v_O > v_I - V_t$
III	CD	Triode	Triode	$V_t < v_O < v_I - V_t$
IV	DE	Triode	Saturation	$v_O < V_t$

Dynamic Operation

- \square Determine t_{PLH} :
 - The analysis is identical to the CMOS inverter and the output *C* is charged by PMOS

$$t_{PLH} = \frac{\alpha_p C}{k_p V_{DD}}$$
 where $\alpha_p = 2 \sqrt{\frac{7}{4} - 3\left(\frac{V_t}{V_{DD}}\right) + \left(\frac{V_t}{V_{DD}}\right)^2}$

- \square Determine t_{PHL} :
 - The discharge current is $i_{DN} i_{DP}$ while i_{DP} is typically negligible as r is large

$$t_{PHL} = \frac{\alpha_n C}{k_n V_{DD}} \quad \text{where} \quad \alpha_n = 2 / \left[1 + \frac{3}{4} \left(1 - \frac{1}{r} \right) - \left(3 - \frac{1}{r} \right) \left(\frac{V_t}{V_{DD}} \right) + \left(\frac{V_t}{V_{DD}} \right)^2 \right]$$

 $\square \alpha_{\rm n} \cong \alpha_{\rm p}$ for a large value of r and $t_{\rm PLH}$ is much larger than $t_{\rm PHL}$

Design of Pseudo-NMOS Inverter

- \Box Determine ratio $r = k_n / k_p$
 - The larger the value of r, the lower V_{OL} is and the wider the noise margins are
 - \blacksquare A larger r increases the asymmetry in the dynamic response
 - Usually, r is selected in the range of 4 to 10
- \square Determine $(W/L)_n$ and $(W/L)_p$
 - A smaller (W/L) to keep the gate area small and thus obtain a small value for C
 - A smaller (W/L) to keeps I_{sat} of Q_p and static power dissipation low
 - Larger (W/L) ratios in order to obtain low t_p and thus fast response

Gate Circuits

- ☐ Identical to PDN of CMOS gate except for the load device
- \square The (W/L) ratio of the load device is chosen as the basic inverter
- \square The (W/L) ratios of the PDN are chosen for a worst-case gate delay equal to that of the basic inverter (assuming C is constant)

Concluding Remarks

- ☐ In pseudo-NMOS, NOR gates are preferred over NAND gates in order to use minimum-size devices
- ☐ Pseudo-NMOS is particularly suited for applications in which output remains high most of the time
 - Static power dissipation can be reasonably low
 - The output transitions that matter would presumably be high-to-low

Comparison with CMOS Logic

- ☐ The transistor number is reduced for lower implementation cost
- ☐ The routing complexity is reduced
- □ Output capacitance is reduced for higher speed
- ☐ Rationed design
- ☐ Nonzero static power dissipation

16.4 Pass-Transistor Logic Circuits

Design of Pass-Transistor Logic (PTL) Circuits

- ☐ Using series and parallel combinations of switches
- ☐ The switches are controlled by input logic variables to connect the input and output nodes
- ☐ Can be implemented by a single NMOS transistor or CMOS transmission gate
- \square Every circuit node has **at all times** a low-resistance path to $V_{\rm DD}$ or ground

Operation with NMOS Transistor as the Switch

- □ Pass-transistor with output high ("poor 1")
 - The output node refers to the source terminal of the NMOS
 - *Q* is in saturation during the charging process
 - $V_{\rm t}$ increases with $v_{\rm O}$ due to body effect \rightarrow resulting in a large $t_{\rm PLH}$
 - $V_{OH} = V_{DD} V_t$ → reduced gate noise immunity and possible static power for the following CMOS inverter stage

- □ Pass-transistor with output low ("good o")
 - The input node refers to the source terminal of the NMOS (Body Effect is neglected)
 - The output node can be discharged completely $\rightarrow V_{\rm OL} = 0$

Restoring the Output Level

- \Box The circuit-based approach by adding a feedback loop with Q_R
 - The PMOS Q_R turns on by v_{O_2} (= "o") to restore the signal loss at v_{O_1} = "1"
 - The PMOS Q_R is turn off by v_{O_2} (= "1") when v_{O_1} = "0"
 - Operation is more involved than it appears due to the positive feedback
 - \blacksquare Q_R has to be a "weak PMOS transistor" in order not to play a major role in the circuit operation
- ☐ The alternative approach by process technology
 - The signal loss is due to the threshold voltage of the NMOS devices
 - Threshold adjustment by ion implantation to make zero-threshold devices
 - Subthreshold conduction becomes significant for zero-threshold devices

The Use of CMOS Transmission Gates as Switches

- ☐ PMOS and NMOS are in parallel with complementary control signal
- ☐ Both NMOS and PMOS provide charging/discharging current
- \Box Good logic level with V_{OH} = V_{DD} and V_{OL} = o
- ☐ The complexity, silicon area and load capacitance are increased
- \square Body effect has to be taken into account to evaluate i_{DN} and i_{DP}

The Equivalent Resistance of the Transmission Gate

- ☐ The CMOS transmission gate in charging case is modeled by
- \square The equivalent resistance of Q_N :

For
$$v_O \le V_{DD} - V_{tn}$$
:
 $i_{DN} = \frac{1}{2} k_n (V_{DD} - V_{tn} - v_O)^2$ and $R_{Neq} = \frac{V_{DD} - v_O}{\frac{1}{2} k_n (V_{DD} - V_{tn} - v_O)^2}$

For
$$v_O > V_{DD} - V_{tn}$$
:
 $i_{DN} = 0$ and $R_{Nea} = \infty$

- \square The equivalent resistance of $Q_{\mathbb{P}}$:
 - For $v_{\rm O} \leq |V_{\rm tp}|$: $i_{DP} = \frac{1}{2} k_p (V_{DD} - |V_{tp}|)^2$ and $R_{Peq} = \frac{V_{DD} - v_O}{\frac{1}{2} k_p (V_{DD} - |V_{tp}|)^2}$
 - For $v_{\rm O} > |V_{\rm tp}|$:

$$i_{DP} = k_p \left[(V_{DD} - |V_{tp}|)(V_{DD} - v_O) - \frac{1}{2}(V_{DD} - v_O)^2 \right] \text{ and } R_{Peq} = \frac{V_{DD} - v_O}{k_p \left[(V_{DD} - |V_{tp}|)(V_{DD} - v_O) - \frac{1}{2}(V_{DD} - v_O)^2 \right]}$$

$$\square$$
 Empirical formula of R_{TG} with $(W/L)_n = (W/L)_p$ for certain CMOS technologies is

$$R_{TG} = \frac{12.5}{(W/L)_{\rm m}} (k\Omega)$$

Calculation of Propagation Delay in the Signal Path

☐ The signal path containing multiple transmission gates can be modeled by resistors and capacitors

- ☐ The model is in a form of an *RC* ladder network
- ☐ The propagation delay is given by Elmore delay formula as

$$t_P = 0.69[(C_{out1} + C_{TG1})R_{P1} + (C_{TG2} + C_{in2})(R_{P1} + R_{TG})]$$

- ☐ The factor o.69 is dropped for estimation as the input is not a step function
- □*Elmore delay formula is given by

$$t_P = 0.69[C_1R_1 + C_2(R_1 + R_2) + C_3(R_1 + R_2 + R_3) + ...]$$

Pass-Transistor Logic Circuit Examples

Final Remarks

- ☐ Advantages of CMOS transmission gate over pass-transistor logic with NMOS devices
 - Logic level: good "1" and "o"
 - No level restoring technique needed
- ☐ Disadvantages of CMOS transmission gate over pass-transistor logic with NMOS devices
 - Silicon area and complexity: an additional input requires one NMOS and one PMOS devices
 - Complementary control signal required
 - Propagation delay: more capacitive loading from the MOSFETs

16.5 Dynamic MOS Logic Circuits

Principle of Dynamic Logic Circuits

- □ Rely on the storage of signal voltage on parasitic capacitances at certain circuit nodes
- ☐ The circuits need to be periodically refreshed
- ☐ Maintain the low device count of pseudo-NMOS with zero static power dissipation

Operation of Dynamic Logic Circuits

- \square Precharge phase: Q_p on and Q_e off \rightarrow charge the output node to V_{DD}
- \square Evaluation phase: Q_p off and Q_e on \rightarrow selectively discharge the output node through PDN

Nonideal Effects

- ☐ Noise margin:
 - Since $V_{\rm IL} \approx V_{\rm IH} \approx V_{\rm tn}$, the resulting noise margins are $NM_{\rm L} \approx V_{\rm tn}$ and $NM_{\rm H} \approx V_{\rm DD} V_{\rm tn}$
 - Asymmetric noise immunity (poor $NM_{\rm L}$)
- ☐ Output voltage decay due to leakage effects:
 - When PDN is off, leakage current will slowly discharge the output node
 - The leakage is from the reversed-biased junctions and possibly the subthreshold conduction
- ☐ Charge sharing:
 - Some of the internal nodes in PDN will share the charge in C_L even the PDN path is off
 - Can be solved by adding a permanently turn-on transistor Q_L at the cost of static power dissipation V_{DD}

Domino CMOS Logic

☐ Problem with cascading dynamic logic gates: errors caused by undesirable premature discharge

☐ Domino CMOS logic:

- A dynamic logic with a static CMOS inverter connected to its output
- The output to the following stages is o during the precharge phase
- Can alleviate the premature discharge problem

Premature discharge

- ☐ A cascade of Domino CMOS logic:
 - Each stage has to wait for the rising edge from the preceding stage
 - The rising edge propagates through a cascade of gates

Concluding Remarks

- ☐ Advantages of Domino logic: small area, high-speed operation, and zero static power dissipation
- ☐ Disadvantages of Domino logic:
 - Asymmetric noise margin
 - Leakage issue
 - Charge sharing
 - Dead time: unavailability of output during precharge phase