The oscillator uses MEMS resonator as its frequency selective tank, there will be oscillate if the loop gain \(L(j\omega) \) at \(\omega_o \) matched the Barkhausen’s Criteria.

We applied a adjustable pulse width unit to replace S-counter, that has the same performance and more simple than the traditional PSC.

The anchors of Lamé mode resonator move away from main structure, different from C-C Beam, that suppresses energy loss through them.

The loss of inductor was compensated by cross-couple pairs, the wide tune and the fine tune were controlled through \(V_b \) and \(V_c \), respectively.

Our CP has high linearity. The dead zone, PFD+Charge Pump, had eliminated.

The type-IV PFD, we chosen that because of its detecting range covers \(\pm 2\pi \).

The oscillator uses MEMS resonator as its frequency selective tank, there will be oscillate if the loop gain \(L(j\omega) \) at \(\omega_o \) matched the Barkhausen’s Criteria.

We applied a adjustable pulse width unit to replace S-counter, that has the same performance and more simple than the traditional PSC.

The anchors of Lamé mode resonator move away from main structure, different from C-C Beam, that suppresses energy loss through them.

The loss of inductor was compensated by cross-couple pairs, the wide tune and the fine tune were controlled through \(V_b \) and \(V_c \), respectively.

Our CP has high linearity. The dead zone, PFD+Charge Pump, had eliminated.

The type-IV PFD, we chosen that because of its detecting range covers \(\pm 2\pi \).

The oscillator uses MEMS resonator as its frequency selective tank, there will be oscillate if the loop gain \(L(j\omega) \) at \(\omega_o \) matched the Barkhausen’s Criteria.

We applied a adjustable pulse width unit to replace S-counter, that has the same performance and more simple than the traditional PSC.

The anchors of Lamé mode resonator move away from main structure, different from C-C Beam, that suppresses energy loss through them.

The loss of inductor was compensated by cross-couple pairs, the wide tune and the fine tune were controlled through \(V_b \) and \(V_c \), respectively.

Our CP has high linearity. The dead zone, PFD+Charge Pump, had eliminated.

The type-IV PFD, we chosen that because of its detecting range covers \(\pm 2\pi \).

The oscillator uses MEMS resonator as its frequency selective tank, there will be oscillate if the loop gain \(L(j\omega) \) at \(\omega_o \) matched the Barkhausen’s Criteria.

We applied a adjustable pulse width unit to replace S-counter, that has the same performance and more simple than the traditional PSC.

The anchors of Lamé mode resonator move away from main structure, different from C-C Beam, that suppresses energy loss through them.

The loss of inductor was compensated by cross-couple pairs, the wide tune and the fine tune were controlled through \(V_b \) and \(V_c \), respectively.

Our CP has high linearity. The dead zone, PFD+Charge Pump, had eliminated.

The type-IV PFD, we chosen that because of its detecting range covers \(\pm 2\pi \).